CN107010674A - α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用 - Google Patents

α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用 Download PDF

Info

Publication number
CN107010674A
CN107010674A CN201610048168.9A CN201610048168A CN107010674A CN 107010674 A CN107010674 A CN 107010674A CN 201610048168 A CN201610048168 A CN 201610048168A CN 107010674 A CN107010674 A CN 107010674A
Authority
CN
China
Prior art keywords
nanometer rods
catalyst
nano
solution
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610048168.9A
Other languages
English (en)
Other versions
CN107010674B (zh
Inventor
申文杰
魏雪姣
周燕
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201610048168.9A priority Critical patent/CN107010674B/zh
Publication of CN107010674A publication Critical patent/CN107010674A/zh
Application granted granted Critical
Publication of CN107010674B publication Critical patent/CN107010674B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了α‑Fe2O3纳米棒和Au/α‑Fe2O3催化剂及其合成和应用。本发明α‑Fe2O3维持多孔纳米棒状结构,Au粒子的平均尺寸从2.2nm增加到8.6nm。同时,α‑Fe2O3纳米棒状结构还可调变Au纳米粒子的形貌,经300,400,500℃焙烧后的Au/α‑Fe2O3催化剂上Au纳米粒子的形貌分别为二维薄层状、三维截角八面体和片状截角八面体,体现出α‑Fe2O3棒状结构在分散和稳定Au纳米粒子结构上的独特性。所制备的Au/α‑Fe2O3催化剂可在室温下催化CO氧化,其反应速率达0.8047molCO/gAuh。

Description

α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用
技术领域
本发明涉及一种多孔α-Fe2O3纳米棒及其合成方法。
本发明涉及一种α-Fe2O3负载Au纳米粒子催化剂及调控Au/α-Fe2O3催化剂上Au纳米粒子形貌的的合成方法。
本发明涉及一种Au/α-Fe2O3催化一氧化碳室温氧化反应的应用。
背景技术
α-Fe2O3具有优异的氧化还原性能和晶相稳定性,被广泛作为负载金属纳米粒子的催化剂载体。比如,Au/α-Fe2O3催化剂通过金属与载体的相互作用呈现出优异的催化CO氧化反应性能[Chem.Lett.,1987,16,405;J.Catal.,1989,115,301;Science,2008,321,1331;Catal.Sci.Technol.,2013,3,2881]。大量研究表明α-Fe2O3的形貌和尺寸是影响Au/α-Fe2O3催化剂性能的关键因素之一;如G.H.Wang等将Au纳米粒子负载在不同尺寸和形貌的α-Fe2O3纳米材料上,发现缺陷位较多的纳米纺锤体α-Fe2O3所制备的Au/α-Fe2O3催化CO氧化的活性远高于菱形α-Fe2O3纳米粒子负载的金催化剂[Appl.Catal.A,2009,364,42]。A.Gedanken等利用含有1-5nm孔状结构的α-Fe2O3纳米棒负载金纳米粒子时,发现其CO氧化的活性高于以球形纳米粒子负载的金催化剂,其原因在于这种孔状的α-Fe2O3可以很好的分散和稳定1-5nm的金纳米粒子[Chem.Mater.,2007,19,4776]。影响Au/α-Fe2O3催化剂性能的另一个关键因素是Au纳米粒子的形貌。如A.A.Herzing等发现Au/α-Fe2O3催化CO氧化的活性位为具有双层结构的Au纳米簇,而单层结构的Au纳米簇催化CO氧化的活性则较差[Science,2008,321,1331]。但由于α-Fe2O3载体尺寸和形貌的不均一,Au活性物种的比例小于20%,导致Au原子利用效率较低。到目前为止,在调控α-Fe2O3载体上Au物种形貌方面仍然缺乏有效的技术路线。
此外,Au/α-Fe2O3催化剂在焙烧处理过程中,普遍存在着Au纳米粒子易烧结变大,导致催化剂性能的大幅度下降。如J.Hua等人利用共沉淀法制备的Au/α-Fe2O3催化剂于350-550℃焙烧2h后,Au纳米粒子尺寸从5.7nm增长到8.5nm,而且其尺寸分布范围明显宽化(3.0-18.0nm)[Appl.Catal.A,2004,259,121]。P.Landon等人利用共沉淀法制备的Au/α-Fe2O3催化剂于400-600℃焙烧3h后,近球形Au纳米粒子尺寸从3.7nm增加到16.1nm[J.Mater.Chem.,2006,16,199]。从上述研究进展中可以看出,如何抑制Au/α-Fe2O3催化剂上Au纳米粒子在焙烧过程中的烧结,尤其是在α-Fe2O3载体上选择性调控Au物种的形貌仍然是当前纳米材料和纳米催化研究领域的挑战。
发明内容
本发明的目的在于提供一种多孔α-Fe2O3纳米棒的制备方法。
本发明的目的提供利用上述α-Fe2O3纳米棒调控Au纳米粒子尺寸和形貌,解决Au纳米粒子高温易烧结,分散度下降的问题。
本发明的目的提供上述α-Fe2O3纳米棒负载Au纳米粒子为催化剂应用于室温CO氧化反应。
本发明的目的是通过如下技术方案来实现的:
一种α-Fe2O3纳米棒合成方法,包括以下步骤:
(1)将无机铁盐、NaCl、聚乙二醇(PEG-400)溶解于一定量的水中,形成铁离子浓度为0.05~0.2mol/L的溶液,搅拌并升温加热至100~140℃;
(2)将一定量的0.1~0.5mol/L的Na2CO3溶液缓慢加入到上述溶液中,搅拌老化1小时,体系的pH为8.0~12.0;
(3)将老化的产物经过滤、洗涤、干燥后,得到β-FeOOH纳米棒;
(4)在β-FeOOH前驱体在300~600℃℃空气焙烧3~6小时,得到α-Fe2O3纳米棒。
所述铁盐为FeCl3·6H2O;所述的溶剂的体积比为PEG/H2O=1/19;
所述体系中NaCl的质量浓度为58.5g/L。
所述的体系的铁离子浓度0.05~0.2mol/L为优选。
所述体系的Na2CO3浓度0.1~0.5mol/L为优选。
所述的体系pH=8.0~12.0为优选。
所述的反应温度以100~140℃为优选。
采用Rigaku D/MAX-2500/PC型X射线粉末衍射仪表征产物结构,其XRD测试结果如图1a所示,表明产物为晶相单一的α-Fe2O3。采用Hitachi HT7700型透射电镜观察α-Fe2O3的形貌,测试结果如图2,直径为40-50nm,长度为300-500nm,同时具有多孔结构。
一种α-Fe2O3负载活性Au纳米粒子催化剂合成方法,包括以下步骤:
(1)利用所述的α-Fe2O3纳米棒作为载体,分散到(2~5)×10-4mol/L金盐水溶液中,并加热至60~100℃;
(2)将一定量的0.005~0.02mol/L的Na2CO3溶液缓慢加入到上述溶液中,调节pH为5.0~7.0,搅拌老化1小时;
(3)将固体产物经过滤、洗涤、干燥后,在300~500℃空气中焙烧,得到产品Au-T催化剂(T表示焙烧温度)。
所述金盐为HAuCl4水溶液,浓度以(2~5)×10~4mol/L为优选。
所述沉淀剂为Na2CO3水溶液,浓度以0.005~0.02mol/L为优选。
所述的体系以pH=5.0~7.0为优选。
所述的反应温度以300~500℃为优选。
采用Rigaku D/MAX-2500/PC型X射线粉末衍射仪表征产物结构,其XRD测试结果如图1b-d所示,表明产物为晶相单一的α-Fe2O3,峰形尖锐,表明产物结晶度良好。采用JEM–ARM200F型透射电镜观察Au/α-Fe2O3的形貌,Au粒子的尺寸在2.2~8.6nm的范围内可调;Au纳米粒子的形貌分别为二维薄层状、三维截角八面体和片状截角八面体。
利用α-Fe2O3纳米棒负载Au纳米粒子催化剂用于室温CO氧化反应,包括以下步骤:
(1)利用所述的α-Fe2O3纳米棒负载Au纳米粒子催化剂15~200mg,在300℃、20vol.%O2/N2气氛下预处理1~2h,降至室温(25~30℃);
(2)在室温(25~30℃)、通入反应气体1.0vol.%CO/2.5vol.%O2/He,流速50~200mL/min,反应12h;
所述催化剂用量以15~200mg为优选。
所述反应预处理时间以1~2h为优选
所述反应流速以50~200mL/min为优选。
采用气相色谱在线分析产物,其CO氧化反应结果如图6所示,Au-300和Au-400催化剂的CO的转化率分别为95%和24%,而Au-500催化剂则几乎没有活性,体现出明显的尺寸敏感性。相应的反应动力学数据见表1,其中可以看出当Au粒子的平均尺寸从2.2nm(Au-300)增加到3.5nm(Au-400),反应速率从0.8074减低为0.0392molCO/(gAuh);而当金粒子平均尺寸增大到8.6nm时,则几乎没有催化活性。
本发明的效果及优点是:(1)使用多元醇法合成α-Fe2O3纳米棒,工艺简单,环境友好;(2)使用无机金源,沉积沉淀法制备Au/α-Fe2O3催化剂,Au纳米粒子的热稳定性和分散度得到提高;(3)Au/α-Fe2O3可室温催化CO氧化反应,并表现出明显的尺寸效应。
附图说明
图1为由采用本发明方法的实施例1-4所制备样品的XRD谱图。横坐标为角度2θ,单位为°(度),纵坐标为衍射强度,单位为a.u.(绝对单位)。
图2是本发明实施例1所制备样品的透射电镜图(TEM)。
图3是本发明实施例2所制备样品的透射电镜图(TEM)。
图4是本发明实施例3所制备样品的透射电镜图(TEM)。
图5是本发明实施例4所制备样品的透射电镜图(TEM)。
图6是本发明实施例2-4所制备样品催化CO氧化的反应性能。
具体实施方式
表1是本发明实施例2-4制备所得样品的反应动力学数据。
实施例1
将5.408g FeCl3·6H2O、11.6g NaCl、10mL PEG加入190mL水中,搅拌并升温至于120℃;然后将200mL 0.2mol/L的Na2CO3溶液于以0.55mL/min的速度(6个小时)加入到上述溶液后,继续搅拌并老化1小时;调节pH为8.0~12.0,将老化的产物经过滤、洗涤、干燥后,于500℃下焙烧5小时,得到固体粉未。经XRD分析为α-Fe2O3晶相,其XRD谱图见图1a;TEM图像分别见图2。结果显示所合成的α-Fe2O3样品具有纳米棒状结构,直径为40-50nm,长度为300-500nm,其比表面积为79m2/g,平均孔径约20nm。
实施例2
取实施案例1中得到的1gα-Fe2O3纳米棒分散于300mL含有HAuCl4(4.9×10-4mol/L)的水溶液中,加热到80℃后,再加入60mL0.01mol/L Na2CO3溶液,调节pH为5.9。在该温度下老化1h后,经过滤、洗涤后,120℃干燥12h,得到固体前体。在300℃空气中焙烧5h所得Au/α-Fe2O3催化剂标记为Au-300,其中Au的担载量为1.6wt.%。其XRD谱图和TEM图片分别见图1b和图3a;载体纳米棒的直径为40-50nm,长度为300-500nm;Au纳米粒子的平均尺寸为2.2nm,进一步通过HRTEM(图3b)分析发现Au纳米粒子主要为二维薄层状结构。
实施例3
取实施案例2中固体前体于400℃焙烧5h,所得样品标记为Au-400,其XRD谱图和TEM图片分别见图1c和图4a;α-Fe2O3载体的形貌和晶相保持不变;Au纳米粒子的平均尺寸为3.5nm,其形貌主要为三维截角八面体(图4b)。
实施例4
取实施案例2中固体前体于500℃焙烧5h,所得样品标记为Au-500,其XRD谱图和TEM图片分别见图1d和图5a。α-Fe2O3载体的形貌和晶相保持不变;Au纳米粒子的平均尺寸为8.6nm,其形貌主要为片状截角八面体(图5b)。
实施例5
在室温(25~30℃)、反应气1.0vol.%CO/2.5vol.%O2/He,流速50mL/min条件下,考察了所制备的Au/α-Fe2O3催化剂的CO氧化性能,结果如图6所示。Au-300和Au-400催化剂的CO的转化率分别为95%和24%,而Au-500催化剂则几乎没有活性,体现出明显的尺寸敏感性。相应的反应动力学数据见表1,可以看出当Au粒子的平均尺寸从2.2nm(Au-300)增加到3.5nm(Au-400),反应速率从0.8074减低为0.0392molCO/(gAuh);而当金粒子平均尺寸增大到8.6nm时,则 几乎没有催化活性。同时还可看到,反应速率与金粒子形貌也密切相关;其中暴露较多的二维结构的薄层状的Au纳米粒子与氧化铁形成的界面周长最大,是获得CO氧化高活性的关键因素。
表1
本发明以NaCl为结构导向剂,聚乙二醇(PEG)为形貌控制剂,Na2CO3为沉淀剂,在水溶液中通过控制铁离子的水解动力学,合成了直径为40-50nm,长度为300-500nm,且具有多孔结构的α-Fe2O3纳米棒。以此α-Fe2O3纳米棒为载体,利用沉积沉淀法制备了Au/α-Fe2O3催化剂。于300~500℃空气中焙烧5h后,α-Fe2O3维持多孔纳米棒状结构,Au粒子的平均尺寸从2.2nm增加到8.6nm。同时,α-Fe2O3纳米棒状结构还可调变Au纳米粒子的形貌,经300,400,500℃焙烧后的Au/α-Fe2O3催化剂上Au纳米粒子的形貌分别为二维薄层状、三维截角八面体和片状截角八面体,体现出α-Fe2O3棒状结构在分散和稳定Au纳米粒子结构上的独特性。所制备的Au/α-Fe2O3催化剂可在室温下催化CO氧化,其反应速率达0.8047molCO/gAu h。

Claims (8)

1.一种α-Fe2O3纳米棒,直径为40-50nm,长度为300-500nm,比表面积为79g/m2
2.一种权利要求1所述α-Fe2O3纳米棒的合成方法,其工艺步骤为:
(1)将可溶性无机铁盐、NaCl、聚乙二醇(PEG-400)溶解到水溶液中,形成铁离子浓度为0.05~0.2mol/L的溶液,搅拌并升温加热至100~140℃;
(2)将0.1~0.5mol/L的Na2CO3溶液缓慢加入到上述溶液中,搅拌老化1小时以上,控制体系的pH为8.0~12.0;
(3)将老化的产物经过滤、洗涤、干燥后,得到β-FeOOH纳米棒;
(4)在300~600℃空气中焙烧3~6小时,得到α-Fe2O3纳米棒。
3.根据权利要求2所述的α-Fe2O3纳米棒的合成方法,其特征在于所述铁盐为FeCl3·6H2O。
4.根据权利要求1所述的α-Fe2O3纳米棒的合成方法,其特征在于:所述体系中聚乙二醇与H2O的体积比为1/19。
5.根据权利要求1所述的α-Fe2O3纳米棒的合成方法,其特征在于:所述体系中NaCl的质量浓度为58.5g/L。
6.一种Au/α-Fe2O3催化剂,其特征在于:载体为权利要求1所述的α-Fe2O3纳米棒,Au与载体的质量比(1.0~4.0)/100,即金的负载量为载体质量的1.0%~4.0wt.%。
7.一种权利要求6所述Au/α-Fe2O3催化剂合成方法,其特征在于包括以下步骤:
(1)利用权利要求1所述的α-Fe2O3纳米棒作为载体,分散到(2~5)×10-4mol/L的金盐水溶液中,加热到60~100℃;
(2)将0.005~0.2mol/L Na2CO3溶液加入到上述溶液中,调节体系pH为5.0~7.0,搅拌老化1小时以上;
(3)将老化的产物经过滤、洗涤、干燥后,在300~500℃空气中焙烧3~6小时,得到Au-T催化剂(T表示焙烧的温度)。
8.一种权利要求6所述Au/α-Fe2O3催化剂用于一氧化碳室温氧化反应中。
CN201610048168.9A 2016-01-25 2016-01-25 α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用 Expired - Fee Related CN107010674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610048168.9A CN107010674B (zh) 2016-01-25 2016-01-25 α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610048168.9A CN107010674B (zh) 2016-01-25 2016-01-25 α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用

Publications (2)

Publication Number Publication Date
CN107010674A true CN107010674A (zh) 2017-08-04
CN107010674B CN107010674B (zh) 2018-09-21

Family

ID=59438830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610048168.9A Expired - Fee Related CN107010674B (zh) 2016-01-25 2016-01-25 α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用

Country Status (1)

Country Link
CN (1) CN107010674B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389726A (zh) * 2018-02-11 2018-08-10 国家纳米科学中心 一种碳膜包覆的α-氧化铁纳米棒阵列及其制备方法和应用
CN108538632A (zh) * 2018-04-18 2018-09-14 中南大学 一种羟基氧化铁电极及其制备方法和应用
CN109731582A (zh) * 2019-02-21 2019-05-10 北京工业大学 一种高效催化氧化苯的AuMnOx/介孔Fe2O3催化剂的制备
CN110339844A (zh) * 2018-04-08 2019-10-18 中国科学院大连化学物理研究所 Fe纳米棒与Pt@Fe纳米棒催化剂及合成和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204655A (zh) * 2006-12-21 2008-06-25 中国人民解放军63971部队 一种纳米金催化剂的制备方法
CN104628042A (zh) * 2013-11-06 2015-05-20 中国科学院大连化学物理研究所 一种多孔氧化铁纳米棒阵列的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204655A (zh) * 2006-12-21 2008-06-25 中国人民解放军63971部队 一种纳米金催化剂的制备方法
CN104628042A (zh) * 2013-11-06 2015-05-20 中国科学院大连化学物理研究所 一种多孔氧化铁纳米棒阵列的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NITIN K. CHAUDHARI ET AL.: ""Size Control Synthesis of Uniform _-FeOOH to High Coercive Field Porous Magnetic α-Fe2O3 Nanorods"", 《J. PHYS. CHEM. C》 *
XUEJIAO WEIET AL.: ""Polymorphous transformation of rod-shaped iron oxides and their catalytic properties in selective reduction of NO by NH3"", 《RSC ADVANCES》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389726A (zh) * 2018-02-11 2018-08-10 国家纳米科学中心 一种碳膜包覆的α-氧化铁纳米棒阵列及其制备方法和应用
CN110339844A (zh) * 2018-04-08 2019-10-18 中国科学院大连化学物理研究所 Fe纳米棒与Pt@Fe纳米棒催化剂及合成和应用
CN110339844B (zh) * 2018-04-08 2021-08-17 中国科学院大连化学物理研究所 Fe纳米棒与Pt@Fe纳米棒催化剂及合成和应用
CN108538632A (zh) * 2018-04-18 2018-09-14 中南大学 一种羟基氧化铁电极及其制备方法和应用
CN109731582A (zh) * 2019-02-21 2019-05-10 北京工业大学 一种高效催化氧化苯的AuMnOx/介孔Fe2O3催化剂的制备
CN109731582B (zh) * 2019-02-21 2022-07-19 北京工业大学 一种高效催化氧化苯的AuMnOx/介孔Fe2O3催化剂的制备

Also Published As

Publication number Publication date
CN107010674B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
Zhang et al. High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation
Cushing et al. Recent advances in the liquid-phase syntheses of inorganic nanoparticles
Lin et al. Highly active and stable interface derived from Pt supported on Ni/Fe layered double oxides for HCHO oxidation
CN107010674B (zh) α-Fe2O3纳米棒和Au/α-Fe2O3催化剂及其合成和应用
Zhao et al. MOF-derived hollow porous Ni/CeO2 octahedron with high efficiency for N2O decomposition
CN106824183B (zh) 负载金纳米粒子的中空介孔碳纳米球复合材料及其制备方法与在持续处理co中的应用
Mobini et al. Supported Mn catalysts and the role of different supports in the catalytic oxidation of carbon monoxide
Feng et al. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol
Han et al. Controlled synthesis of double-shelled CeO 2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid
Ouyang et al. Large-scale synthesis of sub-micro sized halloysite-composed CZA with enhanced catalysis performances
Sun et al. Synthesis and room-temperature H2S sensing of Pt nanoparticle-functionalized SnO2 mesoporous nanoflowers
CN107824172B (zh) 一种表面富含缺陷位的纳米氧化铝载体的制备方法
Zhang et al. A yolk-double-shelled heterostructure-based sensor for acetone detecting application
CN106582651B (zh) 一种多孔载体负载的纳米钴催化剂的制备方法
CN109772465A (zh) 一种水溶性碳点改性钙钛矿型催化材料的制备方法
Wang et al. Synthesis of dendrimer-templated Pt nanoparticles immobilized on mesoporous alumina for p-nitrophenol reduction
CN107597130A (zh) 不同尺度高比表面积氧化铈氧化铜复合介孔球及制备方法
Odrozek et al. Amine-stabilized small gold nanoparticles supported on AlSBA-15 as effective catalysts for aerobic glucose oxidation
Xu et al. CO2 capture enhancement by encapsulation of nanoparticles in metal–organic frameworks suspended in physical absorbents
CN107915255A (zh) 纳米氧化锆的制备方法及其制备的纳米氧化锆
CN106984318B (zh) 一种双金属钴基催化剂及制备方法和应用
Zagaynov Sonochemical synthesis of mesoporous GdxZryTizCe1− x–y–zO2 solid solution
CN110339844A (zh) Fe纳米棒与Pt@Fe纳米棒催化剂及合成和应用
Li et al. Performance regulation of Mn/TiO 2 catalysts by surfactants for the selective catalytic reduction of NO with NH 3 at low temperatures
Roselin et al. A Comparison Between Deposition–Precipitation and Co-Precipitation Methods for the Preparation of Au–Ru/Fe2O3 Nanostructure Catalysts Tested for Partial Oxidation of Methanol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180921

Termination date: 20220125