CN107007845A - 一种碳酸锰纳米复合材料在磁共振成像中的应用 - Google Patents

一种碳酸锰纳米复合材料在磁共振成像中的应用 Download PDF

Info

Publication number
CN107007845A
CN107007845A CN201710265995.8A CN201710265995A CN107007845A CN 107007845 A CN107007845 A CN 107007845A CN 201710265995 A CN201710265995 A CN 201710265995A CN 107007845 A CN107007845 A CN 107007845A
Authority
CN
China
Prior art keywords
manganese carbonate
poly
magnetic resonance
dopamine
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710265995.8A
Other languages
English (en)
Other versions
CN107007845B (zh
Inventor
陈志伟
黄建攀
周樨
任磊
程友星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201710265995.8A priority Critical patent/CN107007845B/zh
Publication of CN107007845A publication Critical patent/CN107007845A/zh
Application granted granted Critical
Publication of CN107007845B publication Critical patent/CN107007845B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供了一种碳酸锰纳米复合材料在磁共振成像(MRI)中的应用。所述的碳酸锰核的粒径为80‑120nm,包覆层聚多巴胺的厚度在10‑30nm。此外,这种高分子聚合物具有生物相容性好等优点。因而,这种具有增强磁共振造影性能的锰基纳米造影剂在医学影像诊断领域具有广阔的应用价值。

Description

一种碳酸锰纳米复合材料在磁共振成像中的应用
技术领域
本发现涉及一种碳酸锰纳米复合材料在磁共振成像中的应用。
背景技术
核磁共振成像(Magnetic Resonance Imaging,MRI)由于其具有高成像分辨率、无电离辐射、同时能提供多层次诊断信息的特点,已经广泛运用于医学成像检测中。目前临床上广泛使用的T1造影剂为Gd(Ⅲ)的螯合物,因为三价钆离子的最外层有七个未成对电子,有很强的顺磁性。然而,最近研究指出以Gd3+为基的造影剂会导致肾源性***性纤维化,这使得以镧系金属为基材料特别是钆基复合材料造影剂在临床上的运用受到很大限制(Shin,T.H.;Choi,Y.;Kim,S.;Cheon,J.,Recent advances in magnetic nanoparticle-based
multi-modal imaging.Chem Soc Rev 2015,44(14),4501-4516.)。因此,人们将更多的注意力转移到最外层有五个未成对电子且同样具有T1造影作用的金属离子Mn2+上,旨在研发更加安全有效的T1造影剂。近年来,人们对氧化锰无机纳米粒子是研究越来越多,然而制备出来的颗粒显影效果并不明显,即r1值较低。
发明内容
本发明的主要目的在于提供一种聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料在磁共振成像MRI中的用途,其中:所述的碳酸锰核的粒径为80-120nm,包覆层聚多巴胺的厚度在10-30nm。
本发明的另一目的在于提供聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料作为磁共振成像MRI中的材料用途,所述的碳酸锰核的粒径为80-120nm,包覆层聚多巴胺的厚度在10-30nm。
其中,所述的聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料在MRI诊断中作为T1造影剂。
在本发明中,所述的聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料可以采用如下方式获得:1)微乳合成法,使用环己烷作为有机相溶剂,十六烷基三甲基溴化铵(CTAB)作为表面活性剂,正戊醇作为助溶剂,以及氯化锰和碳酸铵水溶液作为水相形成油包水的纳米体系,在室温下搅拌便可合成碳酸锰纳米颗粒。再将得到的碳酸锰经聚丙烯酸钠修饰后再进行聚多巴胺包覆,便可形成聚多巴胺包覆碳酸锰复合纳米材料。本发明中,所述的聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料,也可以采用其它方式获得。本发明的重点在于这种材料的新用途。
本发明涉及基于聚多巴胺增强碳酸锰造影性能的纳米材料在磁共振成像中的应用具有以下优点:
1)该粒子粒径均匀,呈平行六面体形,具有较大的比表面积,且根据需要可以调控包覆层聚多巴胺的厚度,10-30nm。
2)聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米粒子具有良好的水分散性和稳定性,冷冻干燥后可长时间保存。
3)具有良好的T1造影效果,r1值为6.2mM-1s-1
4)申请人发现聚多巴胺包覆在碳酸锰纳米粒子表面之后能够明显的提高其r1值。因此,申请人提出了在包覆聚多巴胺前后纳米粒子在MRI成像方面的应用。
5)申请人发现碳酸锰本身具有较好的造影性能,但是再经聚多巴胺包覆之后其造影性能进一步提升,可以作为一种良好的磁共振成像检测试剂
6)用于磁共振成象检测。
附图说明
图1是实施例1中的MnCO3纳米粒子的扫描电镜照片(Scanning ElectronMicroscope,SEM)。
图2是实施例1中的MnCO3@PDA纳米粒子的X射线衍射谱(X-ray powderdiffraction,XRD)。
图3是实施例1中的MnCO3@PDA纳米粒子的透射电镜照片(Transmission ElectronMicroscope,TEM)。
图4是实施例1中的MnCO3和MnCO3@PDA纳米粒子的T1加权像照片和T1弛豫时间倒数与Mn浓度的线性关系图。
具体实施方式
下面结合实施例和附图对本发明做进一步的说明。
材料制备:
1、碳酸锰纳米颗粒:量取50mL环己烷,4mL正戊醇和0.6mL 0.5M/L氯化锰溶液于100mL烧杯中混合均匀,然后称取4g CTAB于上述混合溶液中,整个混合体系置于超声波清洗器不断超声直至固体粉末完全溶解,溶液变得澄清透明为止。随后再向其中逐滴加入0.6mL 0.5M/L碳酸铵溶液,室温下不断搅拌2h。待反应结束后所得产物离心分离(10000rpm,10min),并先用无水乙醇洗涤2次,超纯水洗涤3次。
2、聚丙烯酸(PAA)修饰碳酸锰纳米粒子:首先称取100mg PAA(分子量约为3000)于100mL水中,待其完全分散后,使用浓度为0.5M/L Na2CO3溶液调节其pH至8.0左右得到PAA钠盐待用。将20mg所合成的碳酸锰纳米粒子分散于80mL超纯水中超声10min,等到粒子在水中均匀分散后置于磁力搅拌器上搅拌10min,再向其中加入2.5mL浓度为1mg/mL的PAA钠盐继续室温搅拌24h。所得产物离心分离(12000rpm,10min),纯水洗涤3次后分散于水中,确定其浓度为5mg/mL。样品保存于4℃冰箱中。
3、聚多巴胺包覆碳酸锰的合成:首先配制10mM的三羟基氨基甲烷盐酸(Tris-HCl)缓冲液:称取0.242g Tris置于200mL水中搅拌直至完全溶解,然后使用0.5M盐酸和碳酸钠溶液调节其pH至8.5待用。将2.5mg聚丙烯酸修饰的碳酸锰纳米粒子分散于30mL 10mMTris-HCl溶液超声分散,然后向其中加入1.0-4.0mg盐酸多巴胺。整个体系放在超声破碎仪上超声30min,最后接着超声振荡4h。采用离心分离(12000rpm,10min)的方式除去未反应的多巴胺材料,所得的MnCO3@PDA纳米颗粒使用超纯水洗涤3次后分散于水中。
实施例1:
一种基于聚多巴胺增强碳酸锰造影性能的纳米材料在磁共振成像中的应用,步骤如下:
1)首先取一定量的样品按照1:9的比例消解于新配置的王水中,后用新配3%的HNO3按照1:9的比例稀释至一定浓度。
2)使用电感耦合等离子共振仪(ICP-MS)精确标定碳酸锰和聚多巴胺包覆碳酸锰粒子中锰离子的含量,最终测得Mn2+浓度分别为20.1095mM和4.4855mM,后按照稀释比例逆推算出样品浓度。
3)首先分别取上述已标定浓度的碳酸锰纳米悬液0,1μL,2.5μL,4μL,5μL,10μL于1.5mL的离心管内,再分别向相应管内加入500μL,499μL,497.5μL,496μL,495μL和490μL的超纯水,确保每管中含有溶液体积为500μL;
再取上述已标定浓度的聚多巴胺包覆碳酸锰纳米悬液0,4.5μL,11.1μL,17.8μL,22.3μL,44.6μL于1.5mL的离心管内,再分别向相应的管内加入500μL,495.4μL,488.9μL,482.2μL,477.7μL,455.4μL的超纯水,确保每管中含有溶液体积为500μL。
4)然后向以上每管中再加入500μL浓度为2%的热琼脂溶液,并且用旋磁震荡仪1000rpm,2min,确保混合混匀,常温放置直至溶液固定。
5)将配好的溶液置于7T小动物成像仪(Agilent Technologies,Santa Clara,CA,USA)内进行MRI信号采集,测试参数设定:TR=3000ms,TE=15ms,视野为45×45mm。
结果见图1至图4
图1为实施例1中的MnCO3纳米粒子的SEM照片,从图1中可以看出,所制备的碳酸锰纳米粒子边长约为100nm,平均对角线长约为140nm。
图2是实施例1中的MnCO3@PDA纳米粒子的X射线衍射谱,从图谱中可以看到碳酸锰样品的衍射峰,没有检测到第二相,说明经过聚多巴胺包覆后碳酸锰没有发生物相变化。
图3是实施例1中的MnCO3@PDA纳米粒子的TEM图片,可以看到所制备的聚多巴胺包覆碳酸锰纳米粒子对角线长平均在170nm。
图4是实施例1中的MnCO3和MnCO3@PDA纳米粒子的T1成像照片和T1弛豫时间倒数与Mn浓度的线性关系图,可以看到所制备的碳酸锰纳米粒子的弛豫率为5.3mM-1s-1,但是经过聚多巴胺包覆后得到的MnCO3@PDA纳米粒子的弛豫率进一步提高,达到了6.3mM-1s-1,因而在MRI诊断中可作为良好的T1造影剂。

Claims (3)

1.聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料在磁共振成像MRI中的用途,其特征在于:所述的碳酸锰核的粒径为80-120nm,包覆层聚多巴胺的厚度在10-30nm。
2.聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料作为磁共振成像MRI中的材料用途,其特征在于:所述的碳酸锰核的粒径为80-120nm,包覆层聚多巴胺的厚度在10-30nm。
3.如权利要求2所述的聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料作为磁共振成像MRI中的材料用途,其特征在于:所述的聚多巴胺包覆碳酸锰(MnCO3@PDA)复合纳米材料在MRI诊断中作为T1造影剂。
CN201710265995.8A 2017-04-21 2017-04-21 一种碳酸锰纳米复合材料在磁共振成像中的应用 Expired - Fee Related CN107007845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710265995.8A CN107007845B (zh) 2017-04-21 2017-04-21 一种碳酸锰纳米复合材料在磁共振成像中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710265995.8A CN107007845B (zh) 2017-04-21 2017-04-21 一种碳酸锰纳米复合材料在磁共振成像中的应用

Publications (2)

Publication Number Publication Date
CN107007845A true CN107007845A (zh) 2017-08-04
CN107007845B CN107007845B (zh) 2020-07-21

Family

ID=59448086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710265995.8A Expired - Fee Related CN107007845B (zh) 2017-04-21 2017-04-21 一种碳酸锰纳米复合材料在磁共振成像中的应用

Country Status (1)

Country Link
CN (1) CN107007845B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108434462A (zh) * 2018-03-13 2018-08-24 中山大学 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用
CN108619533A (zh) * 2018-06-06 2018-10-09 厦门大学 一种普鲁士蓝纳米复合材料在磁共振成像中的应用
CN109952013A (zh) * 2019-04-04 2019-06-28 北京工商大学 一种螺旋形电磁屏蔽材料及其制备方法
CN112604006A (zh) * 2020-12-11 2021-04-06 厦门大学 一种医用碳酸盐纳米材料的制备方法及其应用
CN117105271A (zh) * 2023-08-29 2023-11-24 首都医科大学附属北京儿童医院 碳酸锰纳米sting激动剂及其制备方法与应用
CN117105271B (zh) * 2023-08-29 2024-05-31 首都医科大学附属北京儿童医院 碳酸锰纳米sting激动剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103520742A (zh) * 2013-10-11 2014-01-22 中国科学院长春应用化学研究所 一种提高磁性纳米造影剂稳定性的方法
CN104258423A (zh) * 2014-09-16 2015-01-07 首都医科大学 一种用于脑胶质瘤的钆掺杂碳酸锰双模式成像探针
CN106474473A (zh) * 2016-10-12 2017-03-08 湖北工业大学 一种基于钆修饰的Fe3O4@PDA纳米材料的光热诊疗剂的制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103520742A (zh) * 2013-10-11 2014-01-22 中国科学院长春应用化学研究所 一种提高磁性纳米造影剂稳定性的方法
CN104258423A (zh) * 2014-09-16 2015-01-07 首都医科大学 一种用于脑胶质瘤的钆掺杂碳酸锰双模式成像探针
CN106474473A (zh) * 2016-10-12 2017-03-08 湖北工业大学 一种基于钆修饰的Fe3O4@PDA纳米材料的光热诊疗剂的制备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERIK R. WISNER ET AL: "Preclinical Evaluation of Manganese Carbonate Particles for Magnetic Resonance Imaging of the Liver", 《ACAD RADIOL》 *
XINGLONG WU ET AL: "Microemulsion-Mediated Solvothermal Synthesis and Morphological Evolution of MnCO3 Nanocrystals", 《J. NANOSCI. NANOTECHNOL.》 *
YOUXING CHENG ET AL: "Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy", 《ACS APPL. MATER. INTERFACES》 *
郝晶 等: "多巴胺修饰超小Gd2O3纳米粒子的制备及MRI评价", 《武汉大学学报(理学版)》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108434462A (zh) * 2018-03-13 2018-08-24 中山大学 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用
CN108619533A (zh) * 2018-06-06 2018-10-09 厦门大学 一种普鲁士蓝纳米复合材料在磁共振成像中的应用
CN109952013A (zh) * 2019-04-04 2019-06-28 北京工商大学 一种螺旋形电磁屏蔽材料及其制备方法
CN109952013B (zh) * 2019-04-04 2020-06-02 北京工商大学 一种螺旋形电磁屏蔽材料及其制备方法
CN112604006A (zh) * 2020-12-11 2021-04-06 厦门大学 一种医用碳酸盐纳米材料的制备方法及其应用
CN112604006B (zh) * 2020-12-11 2022-03-15 厦门大学 一种医用碳酸盐纳米材料的制备方法及其应用
CN117105271A (zh) * 2023-08-29 2023-11-24 首都医科大学附属北京儿童医院 碳酸锰纳米sting激动剂及其制备方法与应用
CN117105271B (zh) * 2023-08-29 2024-05-31 首都医科大学附属北京儿童医院 碳酸锰纳米sting激动剂及其制备方法与应用

Also Published As

Publication number Publication date
CN107007845B (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
Zhou et al. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties
CN107007845A (zh) 一种碳酸锰纳米复合材料在磁共振成像中的应用
Yan et al. Highly green fluorescent Nb2C MXene quantum dots for Cu2+ ion sensing and cell imaging
Xu et al. Paramagnetic nanoparticle T 1 and T 2 MRI contrast agents
Yang et al. GdIII‐functionalized fluorescent quantum dots as multimodal imaging probes
Liu et al. Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging
Liu et al. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging
Dong et al. Preparation of magnetically separable N-halamine nanocomposites for the improved antibacterial application
Lu et al. Solid-state synthesis of monocrystalline iron oxide nanoparticle based ferrofluid suitable for magnetic resonance imaging contrast application
Zheng et al. PAA-capped GdF3 nanoplates as dual-mode MRI and CT contrast agents
Li et al. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging
Zhou et al. A versatile fabrication of upconversion nanophosphors with functional-surface tunable ligands
CN106913885A (zh) 一种磁性纳米粒子及其制备方法和应用
Yanli et al. Synthesis of bifunctional Gd2O3: Eu3+ nanocrystals and their applications in biomedical imaging
Atabaev et al. Multicolor nanoprobes based on silica-coated gadolinium oxide nanoparticles with highly reduced toxicity
Chen et al. Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd Co-doped LaF3 as a multimodal imaging probe
Huang et al. Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging
CN106525790A (zh) 一种汞离子荧光检测纳米探针的制备及应用
CN106668878B (zh) 一种集t1、t2双模式为一体的多功能介孔碳小球及其制备方法
Wang et al. Mn 12 single-molecule magnet aggregates as magnetic resonance imaging contrast agents
Nampi et al. Barium yttrium fluoride based upconversion nanoparticles as dual mode image contrast agents
Zhang et al. Rhodamine-B decorated superparamagnetic iron oxide nanoparticles: preparation, characterization and their optical/magnetic properties
Meng et al. Bismuth-and gadolinium-codoped carbon quantum dots with red/green dual emission for fluorescence/CT/T1-MRI mode imaging
Mi et al. Synthesis of surface amino-functionalized NaGdF4: Ce, Tb nanoparticles and their luminescence resonance energy transfer (LRET) with Au nanoparticles
Liu et al. A facile fabrication of spherical and beanpod-like magnetic-fluorescent particles with targeting functionalities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200721

Termination date: 20210421

CF01 Termination of patent right due to non-payment of annual fee