CN106984329A - The preparation method of ozone Heterogeneous oxidation solid catalyst - Google Patents

The preparation method of ozone Heterogeneous oxidation solid catalyst Download PDF

Info

Publication number
CN106984329A
CN106984329A CN201710275640.7A CN201710275640A CN106984329A CN 106984329 A CN106984329 A CN 106984329A CN 201710275640 A CN201710275640 A CN 201710275640A CN 106984329 A CN106984329 A CN 106984329A
Authority
CN
China
Prior art keywords
weight
component
acetylacetone
solid catalyst
pentanedione
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710275640.7A
Other languages
Chinese (zh)
Inventor
朱明�
王麒麟
宋佳柠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Normal University
Original Assignee
Sichuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Normal University filed Critical Sichuan Normal University
Priority to CN201710275640.7A priority Critical patent/CN106984329A/en
Publication of CN106984329A publication Critical patent/CN106984329A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • B01J35/40
    • B01J35/50
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Abstract

The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and technical field of chemical engineering catalysts.The preparation method is to use attapulgite, diopside, potassium feldspar, boromagnesite, shepardite and serpentinite porous material make carrier, carrier is modified through lithium hypochlorite and double (acetylacetone,2,4-pentanedione) beryllium reamings, add surfactant tri-n-octyl methyl ammonium chloride and surface activation process is carried out under ul-trasonic irradiation, then ultrasonic surface activated carrier in hydrothermal reaction kettle with composite mineralizer borax and potassium sulfate, catalytic activity auxiliary agent predecessor three (3 trifluoroacetyl group D camphors) praseodymium (III), three cyclopentadiene promethiums, acetylacetone,2,4-pentanedione samarium, ten water holmium oxalate Rare-earth chemicals, catalytic active center component predecessor normal transition metallo-organic compound ferrous fumarate, citric acid nickel, L lucid asparagus amino acid molybdenums and the ammino palladium of precious metal chemical complex dichloro four, hydro-thermal reaction is carried out under the effect of emulsifying agent β hydroxyethyl dimethyls ammonium lauryl sulfate, reaction product drying is removed after moisture, in Muffle furnace, calcination obtains ozone Heterogeneous oxidation solid catalyst under certain temperature.

Description

The preparation method of ozone Heterogeneous oxidation solid catalyst
Technical field
The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and chemical catalyst skill Art field.
Background technology
Ozonation technology using ozone oxidation ability it is strong the characteristics of, can be by many organic pollution oxidation Decompositions, extensively For wastewater treatment.Catalytic ozonation technology is divided into ozone homogeneous catalytic oxidation and ozone heterogeneous catalytic oxidation, and ozone is equal Phase catalysis oxidation has that the more difficult separation and recovery of catalyst is reused, ozone utilization rate is low causes water process operating cost higher, Organic pollutant removal rate is relatively low simultaneously and easily causing secondary pollution of water is limited to its application;Ozone heterogeneous catalysis oxygen There is change technology catalyst to be easily isolated and recycled and reusable, ozone utilization rate is high, organic pollutant removal rate is higher, drop Low water process operating cost and receive significant attention its application the advantages of do not result in secondary pollution.Ozone heterogeneous catalysis It is to reach local organic matter enrichment by catalyst surface absorption organic matter that oxidation of organic compounds, which is decomposed, while ozone molecule absorption exists The hydroxyl radical free radical that catalyst surface produces high activity under catalyst action decomposes organic matter.Ozone heterogeneous catalytic oxidation Handle in waste water technology, core technology is the preparation of ozone Heterogeneous oxidation solid catalyst.
Ozone Heterogeneous oxidation solid catalyst is generally made up of carrier, activated centre and auxiliary agent.Due to being polluted in waste water Species are various, complex chemical composition feature, can produce harmful effect to performance such as absorption, the mithridatism of catalyst. Prepare that the carrier structure that ozone Heterogeneous oxidation solid catalyst uses is more single at present, adsorptivity is relatively low;Activated centre is universal Using normal transition metal salt, mithridatism is poor;Preparation method mainly has infusion process, the precipitation method, mixing method and collosol and gel etc. Method attachment activity center and adjuvant component are easily liquated out in carrier surface, activated centre and adjuvant component, cause catalyst Easily lose catalytic activity.For exist in current ozone Heterogeneous oxidation solid catalyst preparation method Catalyst Adsorption compared with Low, mithridatism is poor and easily loses catalytic activity problem, and exploitation is strengthened using multicomponent porous carrier through reaming, surface active Catalyst Adsorption, makees catalytic activity auxiliary agent predecessor, normal transition Organometallic using Rare-earth chemicals and closes Thing and precious metal chemical complex are made catalytic active center predecessor and contained with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering preparation The ozone Heterogeneous oxidation solid catalyst of multi-element metal has to improve the preparation method of catalyst mithridatism and catalytic activity Larger environmental benefit and higher practical value.
The content of the invention
For existing in current ozone Heterogeneous oxidation solid catalyst preparation method, Catalyst Adsorption is relatively low, mithridatism Poor to lose catalytic activity problem with easy, exploitation strengthens catalyst using multicomponent porous carrier through reaming, surface active Adsorptivity, catalytic activity auxiliary agent predecessor, normal transition metallo-organic compound and expensive are made using Rare-earth chemicals Metallic compound is made catalytic active center predecessor and prepared with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering containing polynary gold The ozone Heterogeneous oxidation solid catalyst of category to improve the preparation method of catalyst mithridatism and catalytic activity, it is characterized in that Component A can be added in closed reactor and deionized water stirring prepares the aqueous solution, the weight concentration for control component A is 2%~6%, After the completion of prepared by solution, B component is added under agitation, 35 DEG C~50 DEG C are warming up to, continues stirring reaction 3h~6h, is filtered, instead Product is answered to obtain reaming modified support after 102 DEG C~106 DEG C dry constant weights;Reaming modified support puts into ultrasound reactor, The aqueous solution prepared by component C and deionized water is added, the weight concentration of component C is 3%~8%, is uniformly mixed, and control is super Sound power density is 0.3~0.8W/m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasound Surface active carrier mixed liquor;Ultrasonic surface activated carrier mixed liquor is transferred in hydrothermal reaction kettle, add D components and go from The aqueous solution that sub- water is prepared, the weight concentration of D components is 40%~55%, by weight, D component deionized water solutions:Ultrasonic table Weight ratio=1 of face activated carrier mixed liquor:(1.5~2), control 120 DEG C~180 DEG C of temperature, the hydro-thermal reaction time be 8h~ 16h, then dries to obtain fine particle;Fine particle is in Muffle furnace, 600 DEG C~950 DEG C, and calcination 3h~8h obtains ozone non- Homogeneous oxidizing solid catalyst.The component A is made up of lithium hypochlorite, double (acetylacetone,2,4-pentanedione) berylliums, by weight, lithium hypochlorite: Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B component is by attapulgite, diopside, potassium feldspar, boromagnesite, water magnesium Stone, serpentinite composition, by weight, attapulgite:Diopside:Potassium feldspar:Boromagnesite:Shepardite:The weight ratio of serpentinite= (5~15):(7~17):(9~19):(11~21):(13~23):(15~25), by weight, component A:The weight of B component The ratio between=1:(10~20), component C is tri-n-octyl methyl ammonium chloride, by weight, component C:The weight ratio of reaming modified support =1:(5~10), D components are by composite mineralizer borax, the potassium sulfate, (3- trifluoroacetyl groups-D- of catalytic activity auxiliary agent predecessor three Camphor) praseodymium (III), three cyclopentadiene promethiums, acetylacetone,2,4-pentanedione samarium, ten water holmium oxalate Rare-earth chemicals, in catalytic activity Heart predecessor normal transition metallo-organic compound ferrous fumarate, citric acid nickel, L- lucid asparagus amino acid molybdenums and noble metal The ammino palladium of compound dichloro four, emulsifying agent beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate composition, by weight, borax:Potassium sulfate: Three (3- trifluoroacetyl group-D- camphors) praseodymiums (III):Three cyclopentadiene promethiums:Acetylacetone,2,4-pentanedione samarium:Ten water holmium oxalates:Ferrous fumarate: Citric acid nickel:L- lucid asparagus amino acid molybdenums:The ammino palladium of dichloro four:The weight ratio of beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate =(4~8):(6~10):(3~6):(4~7):(5~8):(6~9):(10~15):(12~18):(4~7):(6~9): (6~20).Attapulgite, diopside, potassium feldspar, boromagnesite, shepardite, the serpentinite of the B component are crushed respectively, are gone Ion water washing, which is dried, to be removed after moisture, and -200 mesh ,+400 mesh sieves point are carried out through standard screen, control particle diameter be 0.0370mm~ 0.0750 mm。
What the technical method of the present invention was realized in:Lithium hypochlorite LiClO, double (second can be being added in closed reactor Acyl acetone) beryllium C10H14BeO4The aqueous solution is prepared with deionized water stirring, it is 0.0370mm~0.0750mm to add particle diameter after screening Attapulgite, diopside, potassium feldspar, boromagnesite, shepardite and serpentinite porous material carrier, in certain temperature and stirring bar Under part, the small Be of aqueous solution Ionic Radius2+(0.31Å)、Li+(0.60Å)Displace part ion radius in porous material big Ca2+(0.99Å)、K+(1.33Å)、Ba2+(1.35Å)Plasma, the aperture of porous material carrier becomes big, surface roughness increasing Plus, filtering dries the reaming modified support input ultrasound reactor after constant weight, adds tri-n-octyl methyl ammonium chloride [(C8H17)3NCH3]+Cl-The aqueous solution, control ultrasonic power density, ultrasonic frequency, temperature and sonic oscillation time, in ultrasound Under ripple cavitation, tri-n-octyl methyl ammonium chloride [(C8H17)3NCH3]+Cl-It is easy to escape into reaming modified support from the aqueous solution Duct is attached to reaming modified support surface, is beneficial to being interconnected and carrier surface activation for carrier duct, enhances suction Attached property;After the completion of ultrasonic activation, ultrasonic surface activated carrier mixed liquor is transferred in hydrothermal reaction kettle, with borax Na2B4O7· 10H2O, potassium sulfate K2SO4Composite mineralizer, catalytic activity auxiliary agent predecessor three (3- trifluoroacetyl group-D- camphors) praseodymium (III) C36H42F9O6Pr, three cyclopentadiene promethium Pm (C5H5)3, acetylacetone,2,4-pentanedione samarium C15H25O8Sm, ten water holmium oxalate C6Ho2O12Rare earth metal Organic compound, catalytic active center component predecessor normal transition metallo-organic compound ferrous fumarate C4H2O4Fe, lemon Sour nickel C12H10O14Ni3, L- lucid asparagus amino acid molybdenum Mo [OOCCH2CH(NH2)COO]3(H2O)3With the ammino palladium Pd (NH of dichloro four3)4Cl2Precious metal chemical complex, in emulsifying agent beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate [C12H25N(CH3)2CH2CH2OH]+ CH3SO4 -Effect is lower to carry out hydro-thermal reaction, and mineralizer accelerates diffusion, activates reactant lattice, promotes solid phase reaction Carry out, ultrasonic surface activated carrier and Rare-earth chemicals, normal transition metallo-organic compound, precious metal chemical complex Uniform Doped, emulsifying agent beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate makes reaction solution form quasi-stationary emulsion to prevent solid-liquid Separation, sedimentation, while to the further surface active of porous carrier, by the way that in certain temperature, the hydro-thermal reaction of time, drying is obtained The fine silt thing of Uniform Doped;The fine silt thing of Uniform Doped is in Muffle furnace, through high temperature sintering, the complete carbon of organic matter therein Change the microcellular structure for further enhancing porous carrier, obtain porous carrier supported rare earth metal oxide, transiting metal oxidation Thing and noble metal formation catalytic active center ozone Heterogeneous oxidation solid catalyst, improve catalyst mithridatism and Catalytic activity.
Relative to art methods, outstanding feature of the present invention is long using attapulgite, diopside, potassium in technology of preparing Stone, boromagnesite, shepardite, serpentinite porous material make carrier, due to lithium hypochlorite LiClO and double (acetylacetone,2,4-pentanedione) berylliums C10H14BeO4Reaming effect, tri-n-octyl methyl ammonium chloride [(C8H17)3NCH3]+Cl-, beta-hydroxyethyl dimethyl dodecyl base sulphur Sour ammonium [C12H25N(CH3)2CH2CH2OH]+CH3SO4 -The interconnected and surface activation in duct;Made by hydro-thermal reaction dilute Earth metal organic compound, normal transition metallo-organic compound and precious metal chemical complex reach Uniform Doped and are attached to carrier In surface and duct, high temperature sintering makes organic matter carbonization strengthen and form multi-level microcellular structure, and porous carrier is born Carry the multi-element metal catalytic active center and porous carrier knot of rare-earth oxide, transition metal oxide and noble metal formation Close more firm, the ozone Heterogeneous oxidation solid catalyst of preparation has a stronger adsorptivity, the cooperative effect of multi-element metal, Stability and high activity that particularly doped precious metal has, can suppress liquating out for metal catalytic activity component, improve The mithridatism and catalytic activity of catalyst, with good environmental benefit and economic benefit.
Embodiment
Embodiment 1:1.35g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 1.65g, 140ml deionized waters, being added to volume is 500ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 2.1%, lithium hypochlorite:Double (levulinics Ketone) beryllium weight ratio=1:1.2;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+ The 2.75g attapulgites of 400 mesh standard sieves, 3.75g diopsides, 4.75g potassium feldspars, 5.75g boromagnesites, 6.75g shepardites, The weight of 7.75g serpentinites, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(3g):The weight of porous material(31.5g)=1:10.5, 36 DEG C are warming up to, reaming modified support 31g is obtained after continuing stirring reaction 3.2h, filtering, 103 DEG C of dry constant weights;It is super in 500ml In sound wave reactor, reaming modified support 31g is put into, 3.25g tri-n-octyl methyl ammonium chlorides is added and is dissolved in 100ml deionized waters The aqueous solution, the weight concentration of the aqueous solution is 3.1%, is uniformly mixed, tri-n-octyl methyl ammonium chloride(3.25g):Reaming changes Property carrier(31g )=1:9.5;It is 0.4W/m to control ultrasonic power density3, ultrasonic frequency 21kHz, 41 DEG C of temperature, ultrasound is shaken Swing 2.2h;After the completion of ultrasonic activation, the ultrasonic surface activated carrier mixed liquor in ultrasound reactor is transferred to 500ml hydro-thermals In reactor, add by 2.1g boraxs, 3.05g potassium sulfates, 1.6g tri- (3- trifluoroacetyl group-D- camphors) praseodymium (III), The cyclopentadiene promethiums of 2.05g tri-, 2.6g acetylacetone,2,4-pentanediones samarium, the water holmium oxalates of 3.05g ten, 5.05g ferrous fumarates, 6.1g citric acids Nickel, 2.05gL- lucid asparagus amino acid molybdenum, the ammino palladium of 3.1g dichloros four, 3.05g beta-hydroxyethyls dimethyl dodecyl base ammonium sulfate and The aqueous solution that 50ml deionized waters are prepared, the weight concentration of the aqueous solution is 40.3%, the weight of the aqueous solution:Ultrasonic surface is lived Change weight=83.8g of carrier mixed liquor:134.25g=1:1.6,125 DEG C of temperature is controlled, the hydro-thermal reaction time is 8.3h, then 105 DEG C dry to obtain fine silt thing;Fine silt thing is in Muffle furnace, 620 DEG C, calcination 3.2h, after cooling down, can obtain fine powder Granular ozone Heterogeneous oxidation solid catalyst.
Embodiment 2:0.24g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 0.36g, 10ml deionized waters, being added to volume is 100ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 5.7%, lithium hypochlorite:Double (levulinics Ketone) beryllium weight ratio=1:1.5;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+ The 1.45g attapulgites of 400 mesh standard sieves, 1.65g diopsides, 1.85g potassium feldspars, 2.05g boromagnesites, 2.25g shepardites, The weight of 2.45g serpentinites, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(0.6g):The weight of porous material(11.7g)=1: 19.5,48 DEG C are warming up to, reaming modified support 11.5g is obtained after continuing stirring reaction 5.8h, filtering, 105 DEG C of dry constant weights; In 100ml ultrasound reactors, reaming modified support 11.5g is put into, 2.2g tri-n-octyl methyl ammonium chlorides is added and is dissolved in 26ml The aqueous solution of deionized water, the weight concentration of the aqueous solution is 7.8%, is uniformly mixed, tri-n-octyl methyl ammonium chloride (2.2g):Reaming modified support(11.5g )=1:5.2;It is 0.7W/m to control ultrasonic power density3, ultrasonic frequency 29kHz, 54 DEG C of temperature, sonic oscillation 4.7h;After the completion of ultrasonic activation, the ultrasonic surface activated carrier mixed liquor in ultrasound reactor It is transferred in 100ml hydrothermal reaction kettles, adds by 0.78g boraxs, 0.97g the potassium sulfates, (3- trifluoroacetyl groups-D- of 0.58g tri- Camphor) praseodymium (III), the cyclopentadiene promethiums of 0.67g tri-, 0.78g acetylacetone,2,4-pentanediones samarium, the water holmium oxalates of 0.87g ten, 1.48g fumaric acid be sub- Iron, 1.77g citric acids nickel, 0.68gL- lucid asparagus amino acid molybdenum, the ammino palladium of 0.87g dichloros four, 1.98g beta-hydroxyethyl dimethyl The aqueous solution that ammonium lauryl sulfate and 10ml deionized waters are prepared, the weight concentration of the aqueous solution is 53.3%, the aqueous solution Weight:Weight=21.43g of ultrasonic surface activated carrier mixed liquor:39.7g=1:1.9,175 DEG C of temperature is controlled, during hydro-thermal reaction Between be 15.5h, then dry to obtain fine silt thing for 105 DEG C;Fine silt thing is in Muffle furnace, 930 DEG C, calcination 7.5h, cooling down Afterwards, it can obtain the ozone Heterogeneous oxidation solid catalyst of fine particle shape.

Claims (2)

1. a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, it is characterized in that A groups can added in closed reactor Divide and deionized water stirring prepares the aqueous solution, the weight concentration for controlling component A is 2%~6%, after the completion of prepared by solution, in stirring Lower addition B component, is warming up to 35 DEG C~50 DEG C, continues stirring reaction 3h~6h, and filtering, reaction product is dry at 102 DEG C~106 DEG C Reaming modified support is obtained after dry constant weight, reaming modified support input ultrasound reactor, addition is matched somebody with somebody by component C and deionized water The aqueous solution of system, the weight concentration of component C is 3%~8%, is uniformly mixed, and it is 0.3~0.8W/ to control ultrasonic power density m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasonic surface activated carrier mixed liquor, transfer Into hydrothermal reaction kettle, the aqueous solution that D components and deionized water are prepared is added, the weight concentration of D components is 40%~55%, is pressed Weight meter, D component deionized water solutions:Weight ratio=1 of ultrasonic surface activated carrier mixed liquor:(1.5~2), control temperature 120 DEG C~180 DEG C, the hydro-thermal reaction time is 8h~16h, then dries to obtain fine silt thing, fine silt thing is in Muffle furnace, 600 DEG C~950 DEG C, calcination 3h~8h obtains ozone Heterogeneous oxidation solid catalyst;The component A by expanding agent lithium hypochlorite, Double (acetylacetone,2,4-pentanedione) beryllium compositions, by weight, lithium hypochlorite:Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B groups Divide and be made up of attapulgite, diopside, potassium feldspar, boromagnesite, shepardite, serpentinite, by weight, attapulgite:Diopside: Potassium feldspar:Boromagnesite:Shepardite:The weight ratio of serpentinite=(5~15):(7~17):(9~19):(11~21):(13~ 23):(15~25), by weight, component A:Weight ratio=1 of B component:(10~20), component C is tricaprylmethyl chlorination Ammonium, by weight, component C:Weight ratio=1 of reaming modified support:(5~10), D components are by composite mineralizer borax, sulfuric acid Potassium, catalytic activity auxiliary agent predecessor three (3- trifluoroacetyl group-D- camphors) praseodymium (III), three cyclopentadiene promethiums, acetylacetone,2,4-pentanedione samarium, Ten water holmium oxalate Rare-earth chemicals, catalytic active center predecessor normal transition metallo-organic compound fumaric acid is sub- Iron, citric acid nickel, L- lucid asparagus amino acid molybdenums and the ammino palladium of precious metal chemical complex dichloro four, emulsifying agent beta-hydroxyethyl dimethyl ten Dialkyl group ammonium sulfate is constituted, by weight, borax:Potassium sulfate:Three (3- trifluoroacetyl group-D- camphors) praseodymiums (III):Three rings penta 2 Alkene promethium:Acetylacetone,2,4-pentanedione samarium:Ten water holmium oxalates:Ferrous fumarate:Citric acid nickel:L- lucid asparagus amino acid molybdenums:The ammino palladium of dichloro four: The weight ratio of beta-hydroxyethyl dimethyl dodecyl base ammonium sulfate=(4~8):(6~10):(3~6):(4~7):(5~8):(6 ~9):(10~15):(12~18):(4~7):(6~9):(6~20).
2. B component is by attapulgite, diopside, potassium feldspar, boromagnesite, shepardite, serpentinite group according to claim 1 Into attapulgite, diopside, potassium feldspar, boromagnesite, shepardite, serpentinite are crushed respectively, and deionized water washing drying is removed Go after moisture, sieved through standard screen, it is 0.0370mm~0.0750mm to control particle diameter.
CN201710275640.7A 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst Withdrawn CN106984329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710275640.7A CN106984329A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710275640.7A CN106984329A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Publications (1)

Publication Number Publication Date
CN106984329A true CN106984329A (en) 2017-07-28

Family

ID=59417099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710275640.7A Withdrawn CN106984329A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Country Status (1)

Country Link
CN (1) CN106984329A (en)

Similar Documents

Publication Publication Date Title
CN106984330A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051486A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107042115A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008420A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008414A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107096534A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN106984329A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159254A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008439A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051533A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008398A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008435A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008438A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051521A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051506A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051511A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107138166A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020131A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008428A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051503A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008437A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159243A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008397A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107029747A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107029746A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170728