CN107029747A - The preparation method of ozone Heterogeneous oxidation solid catalyst - Google Patents

The preparation method of ozone Heterogeneous oxidation solid catalyst Download PDF

Info

Publication number
CN107029747A
CN107029747A CN201710276170.6A CN201710276170A CN107029747A CN 107029747 A CN107029747 A CN 107029747A CN 201710276170 A CN201710276170 A CN 201710276170A CN 107029747 A CN107029747 A CN 107029747A
Authority
CN
China
Prior art keywords
weight
component
double
solid catalyst
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710276170.6A
Other languages
Chinese (zh)
Inventor
朱明�
刘阳
宋佳柠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Normal University
Original Assignee
Sichuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Normal University filed Critical Sichuan Normal University
Priority to CN201710276170.6A priority Critical patent/CN107029747A/en
Publication of CN107029747A publication Critical patent/CN107029747A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Abstract

The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and technical field of chemical engineering catalysts.The preparation method is to use attapulgite, diopside, talcum, sal soda stone, cubric niter and dolomite porous material make carrier, carrier is modified through lithium hypochlorite and double (acetylacetone,2,4-pentanedione) beryllium reamings, add surfactant tri-n-octyl methyl ammonium chloride and surface activation process is carried out under ul-trasonic irradiation, then ultrasonic surface activated carrier in hydrothermal reaction kettle with composite mineralizer borax and potassium sulfate, catalytic activity auxiliary agent predecessor three (3 trifluoroacetyl group D camphors) praseodymium (III), three cyclopentadiene promethiums, it is hydrated three acetic acid terbiums, three [N, double (trimethyl silane) amine of N] erbium Rare-earth chemicals, catalytic active center component predecessor normal transition metallo-organic compound ferrous fumarate, citric acid nickel and the thiocyanato of precious metal chemical complex two silver(I)Sour potassium, six nitroso rhodium trisodiums, carry out hydro-thermal reaction under the effect of emulsifying agent stearic acid trimethylamine groups ethanol ester ammonium chloride, and reaction product drying is removed after moisture, and in Muffle furnace, calcination obtains ozone Heterogeneous oxidation solid catalyst under certain temperature.

Description

The preparation method of ozone Heterogeneous oxidation solid catalyst
Technical field
The present invention relates to a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, category environmental protection and chemical catalyst skill Art field.
Background technology
Ozonation technology using ozone oxidation ability it is strong the characteristics of, can be by many organic pollution oxidation Decompositions, extensively For wastewater treatment.Catalytic ozonation technology is divided into ozone homogeneous catalytic oxidation and ozone heterogeneous catalytic oxidation, and ozone is equal Phase catalysis oxidation has that the more difficult separation and recovery of catalyst is reused, ozone utilization rate is low causes water process operating cost higher, Organic pollutant removal rate is relatively low simultaneously and easily causing secondary pollution of water is limited to its application;Ozone heterogeneous catalysis oxygen There is change technology catalyst to be easily isolated and recycled and reusable, ozone utilization rate is high, organic pollutant removal rate is higher, drop Low water process operating cost and receive significant attention its application the advantages of do not result in secondary pollution.Ozone heterogeneous catalysis It is to reach local organic matter enrichment by catalyst surface absorption organic matter that oxidation of organic compounds, which is decomposed, while ozone molecule absorption exists The hydroxyl radical free radical that catalyst surface produces high activity under catalyst action decomposes organic matter.Ozone heterogeneous catalytic oxidation Handle in waste water technology, core technology is the preparation of ozone Heterogeneous oxidation solid catalyst.
Ozone Heterogeneous oxidation solid catalyst is generally made up of carrier, activated centre and auxiliary agent.Due to being polluted in waste water Species are various, complex chemical composition feature, can produce harmful effect to performance such as absorption, the mithridatism of catalyst. Prepare that the carrier structure that ozone Heterogeneous oxidation solid catalyst uses is more single at present, adsorptivity is relatively low;Activated centre is universal Using normal transition metal salt, mithridatism is poor;Preparation method mainly has infusion process, the precipitation method, mixing method and collosol and gel etc. Method attachment activity center and adjuvant component are easily liquated out in carrier surface, activated centre and adjuvant component, cause catalyst Easily lose catalytic activity.For exist in current ozone Heterogeneous oxidation solid catalyst preparation method Catalyst Adsorption compared with Low, mithridatism is poor and easily loses catalytic activity problem, and exploitation is strengthened using multicomponent porous carrier through reaming, surface active Catalyst Adsorption, makees catalytic activity auxiliary agent predecessor, normal transition Organometallic using Rare-earth chemicals and closes Thing and precious metal chemical complex are made catalytic active center predecessor and contained with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering preparation The ozone Heterogeneous oxidation solid catalyst of multi-element metal has to improve the preparation method of catalyst mithridatism and catalytic activity Larger environmental benefit and higher practical value.
The content of the invention
For existing in current ozone Heterogeneous oxidation solid catalyst preparation method, Catalyst Adsorption is relatively low, mithridatism Poor to lose catalytic activity problem with easy, exploitation strengthens catalyst using multicomponent porous carrier through reaming, surface active Adsorptivity, catalytic activity auxiliary agent predecessor, normal transition metallo-organic compound and expensive are made using Rare-earth chemicals Metallic compound is made catalytic active center predecessor and prepared with multicomponent porous carrier through hydro-thermal reaction, high temperature sintering containing polynary gold The ozone Heterogeneous oxidation solid catalyst of category to improve the preparation method of catalyst mithridatism and catalytic activity, it is characterized in that Component A can be added in closed reactor and deionized water stirring prepares the aqueous solution, the weight concentration for control component A is 2%~6%, After the completion of prepared by solution, B component is added under agitation, 35 DEG C~50 DEG C are warming up to, continues stirring reaction 3h~6h, is filtered, instead Product is answered to obtain reaming modified support after 102 DEG C~106 DEG C dry constant weights;Reaming modified support puts into ultrasound reactor, The aqueous solution prepared by component C and deionized water is added, the weight concentration of component C is 3%~8%, is uniformly mixed, and control is super Sound power density is 0.3~0.8W/m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasound Surface active carrier mixed liquor;Ultrasonic surface activated carrier mixed liquor is transferred in hydrothermal reaction kettle, add D components and go from The aqueous solution that sub- water is prepared, the weight concentration of D components is 40%~55%, by weight, D component deionized water solutions:Ultrasonic table Weight ratio=1 of face activated carrier mixed liquor:(1.5~2), control 120 DEG C~180 DEG C of temperature, the hydro-thermal reaction time be 8h~ 16h, then dries to obtain fine particle;Fine particle is in Muffle furnace, 600 DEG C~950 DEG C, and calcination 3h~8h obtains ozone non- Homogeneous oxidizing solid catalyst.The component A is made up of lithium hypochlorite, double (acetylacetone,2,4-pentanedione) berylliums, by weight, lithium hypochlorite: Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B component is by attapulgite, diopside, talcum, sal soda stone, saliter Stone, dolomite composition, by weight, attapulgite:Diopside:Talcum:Sal soda stone:Cubric niter:Dolomitic weight ratio=(5 ~15):(7~17):(9~19):(11~21):(13~23):(15~25), by weight, component A:The weight of B component it Than=1:(10~20), component C is tri-n-octyl methyl ammonium chloride, by weight, component C:The weight ratio of reaming modified support= 1:(5~10), D components are by composite mineralizer borax, the potassium sulfate, (3- trifluoroacetyl group-D- camphor trees of catalytic activity auxiliary agent predecessor three Brain) praseodymium (III), three cyclopentadiene promethiums, three acetic acid terbiums of hydration, three [N, N- double (trimethyl silane) amine] erbium rare earth metals organise Compound, catalytic active center predecessor normal transition metallo-organic compound ferrous fumarate, citric acid nickel and noble metal chemical combination The thiocyanato of thing two silver(I)Sour potassium, six nitroso rhodium trisodiums, emulsifying agent stearic acid trimethylamine groups ethanol ester ammonium chloride composition, By weight, borax:Potassium sulfate:Three (3- trifluoroacetyl group-D- camphors) praseodymiums (III):Three cyclopentadiene promethiums:It is hydrated three acetic acid Terbium:Three [double (trimethyl silane) amine of N, N-] erbiums:Ferrous fumarate:Citric acid nickel:Two thiocyanatos silver(I)Sour potassium:Six is sub- Nitro rhodium trisodium:The weight ratio of stearic acid trimethylamine groups ethanol ester ammonium chloride=(4~8):(6~10):(3~6):(4~7): (5~8):(6~9):(10~15):(12~18):(4~7):(6~9):(6~20).The attapulgite of the B component, thoroughly Pyroxene, talcum, sal soda stone, cubric niter, dolomite are crushed respectively, and deionized water washing, which is dried, to be removed after moisture, through standard Sieve carries out -200 mesh ,+400 mesh sieves point, and it is the mm of 0.0370mm~0.0750 control particle diameter.
What the technical method of the present invention was realized in:Lithium hypochlorite LiClO, double (second can be being added in closed reactor Acyl acetone) beryllium C10H14BeO4The aqueous solution is prepared with deionized water stirring, it is 0.0370mm~0.0750mm to add particle diameter after screening Attapulgite, diopside, talcum, sal soda stone, cubric niter and dolomite porous material carrier, in certain temperature and stirring condition Under, the small Be of aqueous solution Ionic Radius2+(0.31Å)、Li+(0.60Å)Displace part ion radius in porous material big Ca2+(0.99Å)、K+(1.33Å)、Ba2+(1.35Å)Plasma, the aperture of porous material carrier becomes big, surface roughness increase, Filtering, dries the reaming modified support input ultrasound reactor after constant weight, adds tri-n-octyl methyl ammonium chloride [(C8H17)3NCH3]+Cl-The aqueous solution, control ultrasonic power density, ultrasonic frequency, temperature and sonic oscillation time, is turned into ultrasonic air Under, tri-n-octyl methyl ammonium chloride [(C8H17)3NCH3]+Cl-It is easy to escape into reaming modified support duct or attached from the aqueous solution On reaming modified support surface, be beneficial to being interconnected and carrier surface activation for carrier duct, enhance adsorptivity;Ultrasound After the completion of activation, ultrasonic surface activated carrier mixed liquor is transferred in hydrothermal reaction kettle, with borax Na2B4O7·10H2O, sulfuric acid Potassium K2SO4Composite mineralizer, catalytic activity auxiliary agent predecessor three (3- trifluoroacetyl group-D- camphors) praseodymium (III) C36H42F9O6Pr、 Three cyclopentadiene promethium Pm (C5H5)3, hydration three acetic acid terbium C6H11O7Tb, three [double (trimethyl silane) amine of N, N-] erbiums C18H54ErN3Si6Rare-earth chemicals, catalytic active center component predecessor normal transition metallo-organic compound is rich Horse acid ferrous iron C4H2O4Fe, citric acid nickel C12H10O14Ni3With two thiocyanatos silver(I)Sour potassium K [Ag (SCN)2], six nitrosos Rhodium trisodium Na3Rh(NO2)6Precious metal chemical complex, in emulsifying agent stearic acid trimethylamine groups ethanol ester ammonium chloride C17H35COOCH2CH2N+(CH3)3Cl-Effect is lower to carry out hydro-thermal reaction, and mineralizer accelerates diffusion, activates reactant lattice, promotes solid phase anti- The progress answered, ultrasonic surface activated carrier and Rare-earth chemicals, normal transition metallo-organic compound, noble metal Compound Uniform Doped, emulsifying agent stearic acid trimethylamine groups ethanol ester ammonium chloride make reaction solution formed quasi-stationary emulsion prevent it is solid Liquid separation, sedimentation, while to the further surface active of porous carrier, by certain temperature, the hydro-thermal reaction of time, cooling down, Drying obtains the fine silt thing of Uniform Doped;The fine silt thing of Uniform Doped is in Muffle furnace, through high temperature sintering, therein organic Thing carbonization further enhances the microcellular structure of porous carrier, obtains porous carrier supported rare earth metal oxide, transition The ozone Heterogeneous oxidation solid catalyst of metal oxide and the catalytic active center of noble metal formation, improves catalyst Mithridatism and catalytic activity.
Relative to art methods, outstanding feature of the present invention is that attapulgite, diopside, cunning are used in technology of preparing Stone, sal soda stone, cubric niter, dolomite porous material make carrier, due to lithium hypochlorite LiClO and double (acetylacetone,2,4-pentanedione) berylliums C10H14BeO4Reaming effect, tri-n-octyl methyl ammonium chloride [(C8H17)3NCH3]+Cl-, stearic acid trimethylamine groups ethanol ester chlorination Ammonium C17H35COOCH2CH2N+(CH3)3Cl-The interconnected and surface activation in duct;Rare earth metal is made by hydro-thermal reaction Organic compound, normal transition metallo-organic compound and precious metal chemical complex reach Uniform Doped and be attached to carrier surface and In duct, high temperature sintering makes organic matter carbonization strengthen and form multi-level microcellular structure, porous carrier supported rare earth The multi-element metal catalytic active center of metal oxide, transition metal oxide and noble metal formation is combined more with porous carrier Firmly, the ozone Heterogeneous oxidation solid catalyst of preparation has a stronger adsorptivity, the cooperative effect of multi-element metal, particularly Stability and high activity that doped precious metal has, can suppress liquating out for metal catalytic activity component, improve catalyst Mithridatism and catalytic activity, with good environmental benefit and economic benefit.
Embodiment
Embodiment 1:1.35g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 1.65g, 140ml deionized waters, being added to volume is 500ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 2.1%, lithium hypochlorite:Double (levulinics Ketone) beryllium weight ratio=1:1.2;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+ The 2.75g attapulgites of 400 mesh standard sieves, 3.75g diopsides, 4.75g talcums, 5.75g sal soda stone, 6.75g cubric niters, The weight of 7.75g dolomites, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(3g):The weight of porous material(31.5g)=1:10.5, 36 DEG C are warming up to, reaming modified support 31g is obtained after continuing stirring reaction 3.2h, filtering, 103 DEG C of dry constant weights;It is super in 500ml In sound wave reactor, reaming modified support 31g is put into, 3.25g tri-n-octyl methyl ammonium chlorides is added and is dissolved in 100ml deionized waters The aqueous solution, the weight concentration of the aqueous solution is 3.1%, is uniformly mixed, tri-n-octyl methyl ammonium chloride(3.25g):Reaming changes Property carrier(31g )=1:9.5;It is 0.4 W/m to control ultrasonic power density3, ultrasonic frequency 21kHz, 41 DEG C of temperature, ultrasound is shaken Swing 2.2h;After the completion of ultrasonic activation, the ultrasonic surface activated carrier mixed liquor in ultrasound reactor is transferred to 500ml hydro-thermals In reactor, add by 2.1g boraxs, 3.05g potassium sulfates, 1.6g tri- (3- trifluoroacetyl group-D- camphors) praseodymium (III), The cyclopentadiene promethiums of 2.05g tri-, 2.6g are hydrated three acetic acid terbiums, 3.05g tri- [double (trimethyl silane) amine of N, N-] erbium, the rich horses of 5.05g Sour ferrous iron, 6.1g citric acids nickel, the thiocyanatos of 2.05g bis- silver(I)Sour potassium, the nitroso rhodium trisodiums of 3.1g six, 3.05g stearic acid The aqueous solution that trimethylamine groups ethanol ester ammonium chloride and 50ml deionized waters are prepared, the weight concentration of the aqueous solution is 40.3%, the water The weight of solution:Weight=83.8g of ultrasonic surface activated carrier mixed liquor:134.25g=1:1.6, control 125 DEG C of temperature, water The thermal response time is 8.3h, then dries to obtain fine silt thing for 105 DEG C;Fine silt thing is in Muffle furnace, 620 DEG C, calcination 3.2h, drop After temperature cooling, the ozone Heterogeneous oxidation solid catalyst of fine particle shape can obtain.
Embodiment 2:0.24g lithium hypochlorites, double (acetylacetone,2,4-pentanedione) berylliums of 0.36g, 10ml deionized waters, being added to volume is 100ml's can be uniformly mixed in closed reactor, and the weight concentration of the aqueous solution is 5.7%, lithium hypochlorite:Double (levulinics Ketone) beryllium weight ratio=1:1.5;Add deionized water wash to it is neutral, 103 DEG C dry remove -200 mesh of sieving after moisture~+ The 1.45g attapulgites of 400 mesh standard sieves, 1.65g diopsides, 1.85g talcums, 2.05g sal soda stone, 2.25g cubric niters, The weight of 2.45g dolomites, lithium hypochlorite and double (acetylacetone,2,4-pentanedione) berylliums(0.6g):The weight of porous material(11.7g)=1: 19.5,48 DEG C are warming up to, reaming modified support 11.5g is obtained after continuing stirring reaction 5.8h, filtering, 105 DEG C of dry constant weights; In 100ml ultrasound reactors, reaming modified support 11.5g is put into, 2.2g tri-n-octyl methyl ammonium chlorides is added and is dissolved in 26ml The aqueous solution of deionized water, the weight concentration of the aqueous solution is 7.8%, is uniformly mixed, tri-n-octyl methyl ammonium chloride (2.2g):Reaming modified support(11.5g )=1:5.2;It is 0.7 W/m to control ultrasonic power density3, ultrasonic frequency 29kHz, 54 DEG C of temperature, sonic oscillation 4.7h;After the completion of ultrasonic activation, the ultrasonic surface activated carrier mixed liquor in ultrasound reactor It is transferred in 100ml hydrothermal reaction kettles, adds by 0.78g boraxs, 0.97g the potassium sulfates, (3- trifluoroacetyl groups-D- of 0.58g tri- Camphor) praseodymium (III), the cyclopentadiene promethiums of 0.67g tri-, 0.78g be hydrated three acetic acid terbiums, 0.87g tri- [N, N- double (trimethyl silane) Amine] erbium, 1.48g ferrous fumarates, 1.77g citric acids nickel, the thiocyanatos of 0.68g bis- silver(I)Sour potassium, the nitrosos of 0.87g six The aqueous solution that rhodium trisodium, 1.98g stearic acid trimethylamine groups ethanol ester ammonium chlorides and 10ml deionized waters are prepared, the weight of the aqueous solution It is 53.3%, the weight of the aqueous solution to measure concentration:Weight=21.43g of ultrasonic surface activated carrier mixed liquor:39.7g=1:1.9, 175 DEG C of temperature is controlled, the hydro-thermal reaction time is 15.5h, then dries to obtain fine silt thing for 105 DEG C;Fine silt thing in Muffle furnace, 930 DEG C, calcination 7.5h after cooling down, can obtain the ozone Heterogeneous oxidation solid catalyst of fine particle shape.

Claims (2)

1. a kind of preparation method of ozone Heterogeneous oxidation solid catalyst, it is characterized in that A groups can added in closed reactor Divide and deionized water stirring prepares the aqueous solution, the weight concentration for controlling component A is 2%~6%, after the completion of prepared by solution, in stirring Lower addition B component, is warming up to 35 DEG C~50 DEG C, continues stirring reaction 3h~6h, and filtering, reaction product is dry at 102 DEG C~106 DEG C Reaming modified support is obtained after dry constant weight, reaming modified support input ultrasound reactor, addition is matched somebody with somebody by component C and deionized water The aqueous solution of system, the weight concentration of component C is 3%~8%, is uniformly mixed, and it is 0.3~0.8W/ to control ultrasonic power density m3, frequency 20kHz~30kHz, 40 DEG C~55 DEG C, sonic oscillation 2h~5h obtains ultrasonic surface activated carrier mixed liquor, transfer Into hydrothermal reaction kettle, the aqueous solution that D components and deionized water are prepared is added, the weight concentration of D components is 40%~55%, is pressed Weight meter, D component deionized water solutions:Weight ratio=1 of ultrasonic surface activated carrier mixed liquor:(1.5~2), control temperature 120 DEG C~180 DEG C, the hydro-thermal reaction time is 8h~16h, then dries to obtain fine silt thing, fine silt thing is in Muffle furnace, 600 DEG C~950 DEG C, calcination 3h~8h obtains ozone Heterogeneous oxidation solid catalyst;The component A by expanding agent lithium hypochlorite, Double (acetylacetone,2,4-pentanedione) beryllium compositions, by weight, lithium hypochlorite:Weight ratio=1 of double (acetylacetone,2,4-pentanedione) berylliums:(1~1.6), B groups Divide and be made up of attapulgite, diopside, talcum, sal soda stone, cubric niter, dolomite, by weight, attapulgite:Diopside:It is sliding Stone:Sal soda stone:Cubric niter:Dolomitic weight ratio=(5~15):(7~17):(9~19):(11~21):(13~23): (15~25), by weight, component A:Weight ratio=1 of B component:(10~20), component C is tri-n-octyl methyl ammonium chloride, is pressed Weight meter, component C:Weight ratio=1 of reaming modified support:(5~10), D components are urged by composite mineralizer borax, potassium sulfate Change (3- trifluoroacetyl group-D- camphors) praseodymium (III) of coagent predecessor three, three cyclopentadiene promethiums, three acetic acid terbiums of hydration, three [double (trimethyl silane) amine of N, N-] erbium Rare-earth chemicals, catalytic active center predecessor normal transition metal is organic Compound ferrous fumarate, citric acid nickel and the thiocyanato of precious metal chemical complex two silver(I)Sour potassium, six nitroso rhodium trisodiums, Emulsifying agent stearic acid trimethylamine groups ethanol ester ammonium chloride is constituted, by weight, borax:Potassium sulfate:Three (3- trifluoroacetyl groups-D- Camphor) praseodymium (III):Three cyclopentadiene promethiums:It is hydrated three acetic acid terbiums:Three [double (trimethyl silane) amine of N, N-] erbiums:Ferrous fumarate: Citric acid nickel:Two thiocyanatos silver(I)Sour potassium:Six nitroso rhodium trisodiums:The weight of stearic acid trimethylamine groups ethanol ester ammonium chloride The ratio between amount=(4~8):(6~10):(3~6):(4~7):(5~8):(6~9):(10~15):(12~18):(4~7):(6 ~9):(6~20).
2. B component is made up of attapulgite, diopside, talcum, sal soda stone, cubric niter, dolomite according to claim 1, Attapulgite, diopside, talcum, sal soda stone, cubric niter, dolomite are crushed respectively, and deionized water washing, which is dried, removes water After point, sieved through standard screen, it is 0.0370mm~0.0750mm to control particle diameter.
CN201710276170.6A 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst Withdrawn CN107029747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710276170.6A CN107029747A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710276170.6A CN107029747A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Publications (1)

Publication Number Publication Date
CN107029747A true CN107029747A (en) 2017-08-11

Family

ID=59536552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710276170.6A Withdrawn CN107029747A (en) 2017-04-25 2017-04-25 The preparation method of ozone Heterogeneous oxidation solid catalyst

Country Status (1)

Country Link
CN (1) CN107029747A (en)

Similar Documents

Publication Publication Date Title
CN106984330A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008414A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008420A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107029747A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159243A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051527A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159254A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008435A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159250A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107029746A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051503A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008387A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051504A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051533A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008439A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107159253A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051511A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051521A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107088419A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051522A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008428A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008437A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008396A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008436A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051514A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170811

WW01 Invention patent application withdrawn after publication