CN106950999B - 一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法 - Google Patents

一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法 Download PDF

Info

Publication number
CN106950999B
CN106950999B CN201710164093.5A CN201710164093A CN106950999B CN 106950999 B CN106950999 B CN 106950999B CN 201710164093 A CN201710164093 A CN 201710164093A CN 106950999 B CN106950999 B CN 106950999B
Authority
CN
China
Prior art keywords
control
track
disturbance rejection
stage
moving stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710164093.5A
Other languages
English (en)
Other versions
CN106950999A (zh
Inventor
黄光普
张文安
倪洪杰
杨佳琦
毛文勇
梁先鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710164093.5A priority Critical patent/CN106950999B/zh
Publication of CN106950999A publication Critical patent/CN106950999A/zh
Application granted granted Critical
Publication of CN106950999B publication Critical patent/CN106950999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,它采用自抗扰技术设计移动舞台的轨迹跟踪控制,设计自抗扰控制器,将多变量,强耦合的***解耦为三个子***,为子***分别设计自抗扰控制器,将非线性***做动态补偿线性化处理,提高***的控制性能,并设计扩张状态观测器有效地将***模型的不确定性量和***内外部扰动量来实时估计并补偿,此方法对***内外扰动以及模型不确定性均具有很强的抑制作用。

Description

一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法
技术领域
本发明属于舞台控制技术领域,涉及到移动舞台的轨迹跟踪控制,尤其是如何消除***内部参数摄动和存在外部干扰扰动对移动舞台轨迹跟踪性能的影响,实现一种有效的采用自抗扰控制技术的移动舞台轨迹跟踪控制方法。
背景技术
现代演出中,为了更好达到艺术效果,需要控制全向移动型舞台配合演员进行演出。全向移动舞台是一种四个全向轮耦合而成的全向移动平台,根据动力与转向控制需求共有八个电机组成,每个驱动轮上有独立的动力源,每个轴上均有独立的转向机构。这种结构的移动舞台具有转向半径小、转向稳定容易等特点,尤其适用于演出中复杂场景的布景需求。
但针对全向移动平台的四轮运动控制***,属于一个多变量、非线性、强耦合的复杂动态***,对其控制方法的研究一直是一个难点,尤其在全向移动平台的轨迹跟踪控制上,目前使用的方法主要有滑膜控制、反步控制、模糊控制等。滑模变结构方法具有响应快、良好的瞬态性能和鲁棒性,广泛应用于轨迹跟踪控制,但易于出现抖振现象,直接影响控制效果。反步控制是较早的基于运动学考虑的轨迹跟踪控制方法,被广泛应用于跟踪问题,但其控制结构和设计过程较复杂,同时***必须满足严格反馈控制结构,对***要求高,这在实际情况中是较难实现的。模糊控制方法具有一定的鲁棒性,但是模糊控制规则会受到人的主观因素的影响而不能完全归总,且因缺乏“自我学习”的能力。全向移动舞台在演出中需要实时满足现场智能化布景需求,并根据演员及其他道具的位置要求进行移动轨迹的跟踪控制,但由于受到本身复杂***内部的参数摄动,加上演出中各种外部干扰因素对移动舞台影响,导致移动舞台在现有控制方法下轨迹跟踪性能大大下降。
发明内容
本发明是为了克服现有技术下的移动舞台无法满足现代演出场景智能控制的需求,提供了一种移动舞台的轨迹跟踪控制方法,可有效提升现代演出艺术多样化效果。本发明采用自抗扰技术设计移动舞台的轨迹跟踪控制,并设计扩张状态观测器有效地将***模型的不确定性量和***内外部扰动量来实时估计并补偿,此方法对***内外扰动以及模型不确定性均具有很强的抑制作用。
所述的一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,其特征在于所述方法包括以下过程:
步骤1)建立移动舞台的运动学模型:
移动舞台的结构复杂,是一个多变量、高耦合、非线性的欠驱动***,要对其设计控制器,首先要建立合理的运动学模型,移动舞台的位姿由三量(x,y,θ)描述,建立移动舞台的运动学模型,如式(1)所示:
对驱动轮线速度的控制量U计算如式(2)所示:
其中:
x--移动舞台在世界坐标系X轴的坐标值,
y--移动舞台在世界坐标系Y轴的坐标值,
θ--移动舞台在世界坐标系中的旋转角,
θ0--车体对角边和侧边的夹角,对于结构固定的车体,θ0为某一定值,
R--车体质心到转向结构旋转中心的距离,
r--转向结构的旋转半径,
w1、2、3、4--四个转向机构的旋转角速度,
ρ1、2、3、4--四个转向机构与车体坐标系X轴的夹角;
步骤2)建立移动舞台的轨迹跟踪误差模型,其过程包括:
设在任意一个时刻,它在世界坐标系中的速度向量为取其在本体坐标系速度向量为记作[u v w]T,轨迹跟踪误差描述如式(3)所示:
其中ur,vr分别表示通过轨迹分解,t时刻移动舞台沿车体坐标系X,Y轴的速度分量的期望值,θr表示车体旋转角速度的期望值;
步骤3)多变量***的解耦,过程包括:
对于三输入-三输出***
x=[x1 x2 x3]T
f=[f1 f2 f3]T
u=[u1 u2 u3]T (5)
引入“虚拟控制量”式子(4)变为
***中第i个通道的输入输出关系为
在控制量U和输出量y之间并行的嵌入3个自抗扰控制器就能实现多变量的解耦控制;
其中x1,x2,x3--三输入-三输出***的状态量,
u1,u2,u3--三输入-三输出***的控制输入,
y1,y2,y3--三输入-三输出***的***输出,
f1,f2,f3--各通道扰动项,
b11,b12,b13,b21,b22,b23,b31,b32,b33--***增益因子;
步骤4)设计自抗扰控制器,过程包括:
根据轨迹跟踪误差模型,将轨迹跟踪控制器解耦为三个独立的子***,分为ex控制回路、ey控制回路和eθ控制回路,为每个子***分别设计自抗扰控制器;
由于***是一阶***,不需要跟踪微分器,自抗扰控制器包括扩张状态观测器以及状态反馈控制律两部分,具体如下;
(1)设计扩张状态观测器,对***的状态和扰动进行实时估计与补偿,扩张状态观测器方程如下给出:
其中,β01、β02为一组待整定的参数,
e--输出的估计值z1与输出y的差值,
u--***的控制输入值,
b0--补偿因子,
z2--扩张状态的估计值;
(2)线性状态误差反馈控制律
其中,k1为比例系数,
e1--参考输入v1与输出的估计值z1的差值,
u0--误差反馈控制量。
所述的一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,其特征在步骤3)中,具体过程如下:
通过式3)可知,***能看成三输入三输出***,以u(t),v(t),w(t)为间接控制量
令动态耦合部分为:
f1,f2,f3为扰动总和项,静态耦合部分为:
利用线性自抗扰控制技术,动态耦合部分被当做各自通道上的总和扰动来被估计并补偿掉,只要保证矩阵B可逆,就能实现***的解耦控制,在***中,B的行列式值恒为-1,能够实现解耦控制。
所述的一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,其特征在步骤4)中,具体过程如下:
以ex控制子***的自抗扰控制器设计为例,自抗扰控制器包括扩张状态观测器以及状态反馈控制律两部分:
(1)设计扩张状态观测器,对***的状态和扰动进行实时估计与补偿,扩张状态观测器方程如下给出:
其中,β01、β02为一组待整定的参数,
z1--ex的观测值,
z2--扩张状态量的观测值;
(2)状态误差反馈控制律
其中,k1为比例系数。
所述的一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,其特征在于移动舞台控制计算机上的实施过程由主要执行部分运行,主要包括以下步骤:
1)参数设置:在参数导入界面中,输入式(1)中r、R、θ0值,以及ρ1,ρ2,ρ3,ρ4的初始值;在自抗扰控制器参数设置界面中,输入扩张状态观测器增益β01、β02、β11、β12、β21、β22,以及k1、k2、k3的值,其中β11、β12为ey控制子***的观测器增益,β21、β22为eθ控制子***的观测器增益,k2,k3分别为ey,eθ状态误差反馈控制律比例系数,输入参数确认后,由控制计算机将设置数据送入计算机存储单元Flash中保存;
2)轨迹设置:在轨迹导入界面中,设定好运动轨迹,导入轨迹确认后,由控制计算机将预设轨迹数据存入Flash存储单元中,通过控制计算机将预设轨迹分解为[ur vr wr]T矩阵并将数据存入Flash存储单元中保存,其中ur,vr,wr均是时间t的函数;
3)离线调试:点击组态界面中的“调试”按钮,控制***进入控制器调试阶段,以直线轨迹为测试轨迹,调整参数设置界面中的β01、β02、β11、β12、β21、β22的值以及k1、k2、k3,观察移动舞台轨迹跟踪误差ex、ey、eθ,由此确定一组能快速有效实现移动舞台轨迹跟踪控制的参数;
4)在线运行:点击组态界面“运行”按钮,移动舞台的控制计算机从Flash存储中读取自抗扰控制器的最佳设置参数,并从Flash存储中读取经过轨迹分解之后矩阵[ur vr wr]T的数据,执行“移动舞台轨迹跟踪控制程序”,通过在线测量移动舞台的实时位姿[x y θ]T,控制驱动电机以及转向电机的转速,实现移动舞台位姿的自动调节,在下一个调节周期到达时,在线测量移动舞台的实时位姿,之后重复整个执行过程,如此周而复始,实现移动舞台轨迹跟踪的自动调节控制。
与现有技术相比,本发明的优点在于:
1)本发明针对***内部参数摄动和存在外部干扰等不确定性,引入扩张状态观测器对***的状态和内外扰动进行实时估计,并利用非线性误差反馈控制率进行补偿,消除了内外扰动的影响;
2)本发明根据移动舞台的自身结构特点,设计自抗扰控制器,将多变量,强耦合的***解耦为三个子***,为子***分别设计自抗扰控制器,将非线性***做动态补偿线性化处理,提高***的控制性能。
附图说明
图1是移动舞台结构示意图;
图2是移动舞台轨迹跟踪自抗扰控制框图;
图3是一阶线性自抗扰控制器结构图;
图4移动舞台轨迹跟踪x轴跟踪误差ex曲线;
图5移动舞台轨迹跟踪y轴跟踪误差ey曲线;
图6移动舞台轨迹跟踪θ轴跟踪误差eθ曲线。
具体实施方式
为了使本发明的技术方案、设计思路能更加清晰,下面结合附图再进行详尽的描述。
一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,所述方法包括以下过程:
步骤1)建立移动舞台的运动学模型:
移动舞台的结构比较复杂,是一个多变量、高耦合、非线性的欠驱动***,要对其设计控制器,首先要建立合理的运动学模型。移动舞台的位姿由三量(x,y,θ)描述。建立移动舞台的运动学模型,见表达式(1)
对驱动轮线速度的控制量U如下:
其中
x--移动舞台在世界坐标系X轴的坐标值
y--移动舞台在世界坐标系Y轴的坐标值
θ--移动舞台在世界坐标系中的旋转角
θ0--车体对角和侧边的夹角(对于结构固定的车体,θ0为某一定值)
R--车体质心到转向结构旋转中心的距离
r--转向结构的旋转半径
w1、2、3、4--四个转向机构的旋转角速度
ρ1、2、3、4--转向机构与车体坐标系X轴的夹角。
步骤2)建立移动舞台的轨迹跟踪误差模型,过程包括:
设在任意一个时刻,它在世界坐标系中的速度向量为取其在本体坐标系速度向量为记作[u v w]T,轨迹跟踪误差描述如式(3):
其中ur,vr分别表示通过轨迹分解,t时刻移动舞台沿车体坐标系X,Y轴的速度分量的期望值,θr表示车体旋转角速度的期望值。
步骤3)多变量***的解耦,过程包括:
对于三输入-三输出***
x=[x1 x2 x3]T
f=[f1 f2 f3]T
u=[u1 u2 u3]T (5)
引入“虚拟控制量”式子(4)变为
***中第i个通道的输入输出关系为
在控制量U和输出量y之间并行的嵌入3个自抗扰控制器就能实现多变量的解耦控制。
x1,x2,x3--三输入-三输出***的状态量
u1,u2,u3--三输入-三输出***的控制输入
y1,y2,y3--三输入-三输出***的***输出
f1,f2,f3--各通道扰动项
b11,b12,b13,b21,b22,b23,b31,b32,b33--***增益因子
步骤4)设计自抗扰控制器,过程包括:
根据轨迹跟踪误差模型,可以将轨迹跟踪控制器解耦为三个独立的子***,为每个子***分别设计自抗扰控制器。
通过解耦律将轨迹跟踪控制器解耦为三个子***,分为ex控制回路、ey控制回路和eθ控制回路。
由于***是一阶***,不需要跟踪微分器,这里自抗扰控制器包括扩张状态观测器以及状态反馈控制律两部分
(1)设计扩张状态观测器,对***的状态和扰动进行实时估计与补偿,扩张状态观测器方程如下给出:
其中,β01、β02为一组待整定的参数。
e--输出的估计值z1与输出y的差值
u--***的控制输入值
b0--补偿因子
z2--扩张状态的估计值
(2)线性状态误差反馈控制律
其中,k1为比例系数。
e1--参考输入v1与输出的估计值z1的差值
u0--误差反馈控制量
进一步,所述步骤3)中,具体过程如下:
通过式3)可知,***可以看成三输入三输出***,以u(t),v(t),w(t)为间接控制量
令动态耦合部分为:
f1,f2,f3为扰动总和项,静态耦合部分为:
利用线性自抗扰控制技术,动态耦合部分被当做各自通道上的总和扰动来被估计并补偿掉。只要保证矩阵B可逆,就可以实现***的解耦控制。对本***,B一定可逆,故一定能够实现解耦控制。
再进一步,所述步骤4)中,具体过程如下:
以ex控制子***的自抗扰控制器设计为例。自抗扰控制器包括扩张状态观测器以及状态反馈控制律两部分
(1)设计扩张状态观测器,对***的状态和扰动进行实时估计与补偿,扩张状态观测器方程如下给出:
其中,β01、β02为一组待整定的参数。
z1--ex的观测值
z2--扩张状态量的观测值
(2)状态误差反馈控制律
其中,k1为比例系数。
本实施例为移动舞台轨迹跟踪的过程,具体操作过程:
1、在参数设置界面中,输入移动舞台的运动学模型基本参数,如下:
r=0.2m,R=1.0m,
输入自抗扰控制器参数,如下:
β01=β02=β11=β12=β21=β22=1
k1=k2=k3=1
2、在轨迹导入界面中,设定好运动轨迹。本实例的设定轨迹为移动舞台沿世界坐标系y轴以1m/s速度做直线运动的同时移动舞台自身以0.2rad/s的角速度旋转。经过轨迹分解后得到[ur vr wr]T矩阵(ur,vr,wr均是时间t的函数),[ur vr wr]T矩阵参数如下:
[ur vr wr]T=[0 1.0t 0.2t]T,其中ur,vr的单位均为m/s,wr的单位为rad/s。
将轨迹分解得到的矩阵[ur vr wr]T数据存储在Flash存储中。
3、离线调试:点击组态界面中的“调试”按钮,控制***进入控制器调试阶段。以直线轨迹为测试轨迹,调整参数设置界面中的β01、β02、β11、β12、β21、β22的值以及k1、k2、k3,观察移动舞台轨迹跟踪误差ex、ey、eθ,由此确定一组能快速有效实现移动舞台轨迹跟踪控制的参数。通过调试得到的自抗扰控制器参数如下:
01 β02]T=[100 2500]T
11 β12]T=[90 2025]T
01 β02]T=[110 3025]T
k1=1.5,k2=2,k3=2
4、在线运行:点击组态界面“运行”按钮,移动舞台的控制计算机从Flash存储中读取自抗扰控制器的最佳设置参数,并从Flash存储中读取经过轨迹分解之后矩阵[ur vr wr]T的数据,执行“移动舞台轨迹跟踪控制程序”,通过在线测量移动舞台的实时位姿[x y θ]T,控制驱动电机以及转向电机的转速,实现移动舞台位姿的自动调节。在下一个调节周期到达时,在线测量移动舞台的实时位姿,之后重复整个执行过程。如此周而复始,实现移动舞台轨迹跟踪的自动调节控制。
以上阐述的是本发明给出的一个实施例所表现出优良性能的移动舞台轨迹跟踪效果。需要指出,上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改,都落入本发明的保护范围。

Claims (3)

1.一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,其特征在于所述方法包括以下过程:
步骤1)建立移动舞台的运动学模型:
移动舞台的结构复杂,是一个多变量、高耦合、非线性的欠驱动***,要对其设计控制器,首先要建立合理的运动学模型,移动舞台的位姿由三量(x,y,θ)描述,建立移动舞台的运动学模型,如式(1)所示:
对驱动轮线速度的控制量U计算如式(2)所示:
其中:
x--移动舞台在世界坐标系X轴的坐标值,
y--移动舞台在世界坐标系Y轴的坐标值,
θ--移动舞台在世界坐标系中的旋转角,
θ0--车体对角边和侧边的夹角,对于结构固定的车体,θ0为某一定值,
R--车体质心到转向结构旋转中心的距离,
r--转向结构的旋转半径,
w1、2、3、4--四个转向机构的旋转角速度,
ρ1、2、3、4--四个转向机构与车体坐标系X轴的夹角;
步骤2)建立移动舞台的轨迹跟踪误差模型,其过程包括:
设在任意一个时刻,它在世界坐标系中的速度向量为取其在本体坐标系速度向量为记作[u v w]T,轨迹跟踪误差描述如式(3)所示:
其中ur,vr分别表示通过轨迹分解,t时刻移动舞台沿车体坐标系X,Y轴的速度分量的期望值,θr表示车体旋转角度的期望值;
步骤3)多变量***的解耦,过程包括:
对于三输入-三输出***
xs=[x1 x2 x3]T
ys=[y1 y2 y3]T
f=[f1 f2 f3]T
uz=[u1 u2 u3]T (5)
引入虚拟控制量式子(4)变为
***中第i个通道的输入输出关系为
在控制量U和输出量ys之间并行的嵌入3个自抗扰控制器就能实现多变量的解耦控制;
其中x1,x2,x3--三输入-三输出***的状态量,
u1,u2,u3--三输入-三输出***的控制输入,
y1,y2,y3--三输入-三输出***的***输出,
f1,f2,f3--各通道扰动项,
b11,b12,b13,b21,b22,b23,b31,b32,b33--***增益因子;
步骤4)设计自抗扰控制器,过程包括:
根据轨迹跟踪误差模型,将轨迹跟踪控制器解耦为三个独立的子***,分为ex控制回路、ey控制回路和eθ控制回路,为每个子***分别设计自抗扰控制器;
由于***是一阶***,不需要跟踪微分器,自抗扰控制器包括扩张状态观测器以及状态反馈控制律两部分,具体如下;
(1)设计扩张状态观测器,对***的状态和扰动进行实时估计与补偿,扩张状态观测器方程如下给出:
其中,β01、β02为一组待整定的参数,
e--输出的估计值z1与输出yout的差值,
uz--***的控制输入值,
b0--补偿因子,
z2--扩张状态的估计值;
(2)线性状态误差反馈控制律
其中,k1为比例系数,
e1--参考输入v1与输出的估计值z1的差值,
u0--误差反馈控制量。
2.根据权利要求1所述的一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,其特征在步骤3)中,具体过程如下:
通过式3)可知,***能看成三输入三输出***,以u(t),v(t),w(t)为间接控制量
其中ur,vr分别表示通过轨迹分解,t时刻移动舞台沿车体坐标系X,Y轴的速度分量的期望值,θr表示车体旋转角度的期望值;
令动态耦合部分为:
f1,f2,f3为扰动总和项,静态耦合部分为:
利用线性自抗扰控制技术,动态耦合部分被当做各自通道上的总和扰动来被估计并补偿掉,只要保证矩阵B可逆,就能实现***的解耦控制; 在***中,B的行列式值恒为-1,能够实现解耦控制。
3.根据权利要求1所述的一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法,其特征在于移动舞台控制计算机上的实施过程由主要执行部分运行,主要包括以下步骤:
1)参数设置:在参数导入界面中,输入式(1)中r、R、θ0值,以及ρ1,ρ2,ρ3,ρ4的初始值;在自抗扰控制器参数设置界面中,输入扩张状态观测器增益β01、β02、β11、β12、β21、β22,以及k1、k2、k3的值,其中β11、β12为ey控制子***的观测器增益,β21、β22为eθ控制子***的观测器增益,k2,k3分别为ey,eθ状态误差反馈控制律比例系数,输入参数确认后,由控制计算机将设置数据送入计算机存储单元Flash中保存;
2)轨迹设置:在轨迹导入界面中,设定好运动轨迹,导入轨迹确认后,由控制计算机将预设轨迹数据存入Flash存储单元中,通过控制计算机将预设轨迹分解为[ur vr wr]T矩阵并将数据存入Flash存储单元中保存,其中ur,vr,wr均是时间t的函数;
3)离线调试:点击组态界面中的“调试”按钮,控制***进入控制器调试阶段,以直线轨迹为测试轨迹,调整参数设置界面中的β01、β02、β11、β12、β21、β22的值以及k1、k2、k3,观察移动舞台轨迹跟踪误差ex、ey、eθ,由此确定一组能快速有效实现移动舞台轨迹跟踪控制的参数;
4)在线运行:点击组态界面“运行”按钮,移动舞台的控制计算机从Flash存储中读取自抗扰控制器的最佳设置参数,并从Flash存储中读取经过轨迹分解之后矩阵[ur vr wr]T的数据,执行“移动舞台轨迹跟踪控制程序”,通过在线测量移动舞台的实时位姿[x y θ]T,控制驱动电机以及转向电机的转速,实现移动舞台位姿的自动调节,在下一个调节周期到达时,在线测量移动舞台的实时位姿,之后重复整个执行过程,如此周而复始,实现移动舞台轨迹跟踪的自动调节控制。
CN201710164093.5A 2017-03-20 2017-03-20 一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法 Active CN106950999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710164093.5A CN106950999B (zh) 2017-03-20 2017-03-20 一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710164093.5A CN106950999B (zh) 2017-03-20 2017-03-20 一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法

Publications (2)

Publication Number Publication Date
CN106950999A CN106950999A (zh) 2017-07-14
CN106950999B true CN106950999B (zh) 2019-12-10

Family

ID=59473293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710164093.5A Active CN106950999B (zh) 2017-03-20 2017-03-20 一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法

Country Status (1)

Country Link
CN (1) CN106950999B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107481284A (zh) 2017-08-25 2017-12-15 京东方科技集团股份有限公司 目标物跟踪轨迹精度测量的方法、装置、终端及***
CN108196545B (zh) * 2018-01-03 2021-06-25 浙江同筑科技有限公司 采用自抗扰控制技术的agv磁导航控制方法
CN109976150B (zh) * 2018-11-28 2020-12-18 中南大学 一类欠驱动多输入多输出***的集中式自抗扰控制方法
CN111409869A (zh) * 2020-04-10 2020-07-14 湖南云顶智能科技有限公司 可重复使用运载火箭一子级回收容错控制方法
CN113359462B (zh) * 2021-06-25 2022-12-20 北京理工大学 一种基于扰动解耦与补偿的仿生眼稳像***及方法
CN114167721B (zh) * 2021-11-08 2023-07-25 中国民航大学 一种载人机器人的线性自抗扰轨迹跟踪控制方法和控制器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135186A (ja) * 2003-10-30 2005-05-26 Toshiba Corp 規範モデル追従型制御システム及び規範モデル追従型制御方法
CN103529790B (zh) * 2013-10-17 2016-03-02 浙江工业大学 一种升降舞台控制装置及控制方法
CN103777641B (zh) * 2014-02-19 2017-08-11 北京理工大学 飞行器跟踪控制的复合自抗扰控制方法
CN104950917B (zh) * 2015-06-16 2017-09-19 浙江工业大学 一种位置自校准的升降舞台控制***及控制方法
CN105629729A (zh) * 2016-01-04 2016-06-01 浙江工业大学 一种基于线性自抗扰的网络化移动机器人轨迹跟踪控制方法
CN105781153B (zh) * 2016-04-23 2019-01-18 大连万达集团股份有限公司 多自由度协同运动的组合动感舞台

Also Published As

Publication number Publication date
CN106950999A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN106950999B (zh) 一种采用自抗扰控制技术的移动舞台轨迹跟踪控制方法
CN107992069B (zh) 一种无人机路径跟踪控制的制导律设计方法
CN105786024B (zh) 一种基于模型误差补偿的机载光电平台高精度跟踪控制器及其跟踪控制方法
CN110865641B (zh) 一种反演滑模控制的轮式移动机器人的轨迹跟踪方法
CN110221541B (zh) 伺服***中前馈控制器的前馈系数获取装置、方法
CN108638068B (zh) 一种携带冗余度机械臂的飞行机器人控制***设计方法
CN108594837A (zh) 基于pd-smc和rise的无模型四旋翼无人机轨迹跟踪控制器及方法
CN105159306A (zh) 一种基于全局稳定的四旋翼飞行器滑模控制方法
Wang et al. Based on robust sliding mode and linear active disturbance rejection control for attitude of quadrotor load UAV
CN114138010B (zh) 一种基于加权偏差的多智能体高阶滑模编队控制方法
CN112578671B (zh) 一种基于u模型优化smc的agv轨迹跟踪控制方法
CN108829123A (zh) 一种四旋翼飞行器控制方法、***和装置
CN111553239A (zh) 一种机器人关节视觉伺服控制方法、终端设备及存储介质
Kim et al. Performance recovery tracking-controller for quadcopters via invariant dynamic surface approach
CN108549398B (zh) 基于分数阶饱和函数幂次切换律的四旋翼飞行控制方法
CN113126623A (zh) 一种考虑输入饱和的自适应动态滑模自动驾驶车辆路径跟踪控制方法
CN110673623A (zh) 一种基于双环pd控制算法控制的四旋翼无人机着陆方法
CN113777932A (zh) 一种基于Delta算子的四旋翼自适应滑模容错控制方法
CN112631316A (zh) 变负载四旋翼无人机的有限时间控制方法
CN117452831B (zh) 一种四旋翼无人机控制方法、装置、***及存储介质
CN112198888A (zh) 一种考虑无人机在机动平台自主起降的自适应pid控制方法
CN116627156B (zh) 一种四旋翼无人机姿态抗扰控制方法
Zhang et al. High-order disturbance observer-based neural adaptive control for space unmanned systems with stochastic and high-dynamic uncertainties
CN111399500A (zh) 一种两轮自平衡车集中式编队控制方法
CN116301058A (zh) 一种无人飞行反馈非线性偏航控制方法、***和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant