CN106892685B - 一种陶瓷金属化薄膜及其制备方法 - Google Patents

一种陶瓷金属化薄膜及其制备方法 Download PDF

Info

Publication number
CN106892685B
CN106892685B CN201510958543.9A CN201510958543A CN106892685B CN 106892685 B CN106892685 B CN 106892685B CN 201510958543 A CN201510958543 A CN 201510958543A CN 106892685 B CN106892685 B CN 106892685B
Authority
CN
China
Prior art keywords
ceramic
metal
film
transition layer
composite transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510958543.9A
Other languages
English (en)
Other versions
CN106892685A (zh
Inventor
李帅
吕琴丽
何迪
张超
张华�
刘晓鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201510958543.9A priority Critical patent/CN106892685B/zh
Publication of CN106892685A publication Critical patent/CN106892685A/zh
Application granted granted Critical
Publication of CN106892685B publication Critical patent/CN106892685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种陶瓷金属化薄膜及其制备方法。该陶瓷金属化薄膜由依次施加在陶瓷基体上的陶瓷金属复合过渡层、第一金属薄膜和第二金属薄膜构成,其中,陶瓷金属复合过渡层由第一金属和与陶瓷基体相同的成分复合而成,第一金属在陶瓷金属复合过渡层中所占比例为20‑80at%;所述陶瓷基体由Al2O3、ZrO2、AlN、BN、SiC、Si3N4中的一种构成;所述第一金属为Nb、Ti、Cr、Zr、V、Ta中的一种;所述第二金属为Ni、Mo、Au、Cu、Pt、W中的一种或几种混合。其制备方法为:(1)在陶瓷基体上以溅射镀膜法沉积陶瓷金属复合过渡层;(2)在陶瓷金属复合过渡层上以溅射镀膜法依次沉积第一金属薄膜和第二金属薄膜。本发明的陶瓷金属化薄膜,陶瓷尺寸控制精确,抗拉强度高。

Description

一种陶瓷金属化薄膜及其制备方法
技术领域
本发明涉及一种陶瓷金属化薄膜及其制备方法,属陶瓷金属化应用技术领域。
背景技术
陶瓷具有优异的耐高温、耐腐蚀、耐磨损、抗辐射、耐高频高压绝缘等性能,在电子、核能、信息等现代工业中有广泛的应用。陶瓷与陶瓷、陶瓷与金属的连接可以更有效地、充分的发挥材料各自的特殊性能,陶瓷连接技术在陶瓷应用中占据及其重要的地位。
陶瓷的钎焊连接工艺需要对陶瓷表面进行金属化处理,以提高陶瓷表面对焊料的浸润性能。传统的陶瓷金属化多采用烧结金属粉末法,采用难熔金属粉(如W、Mo),混以少量低熔点金属粉(如Fe、Mn、Ti),涂覆在陶瓷表面后进行高温烧结。该方法烧结温度高、成本高,金属化层厚度大(20-60μm),不利于陶瓷件尺寸的精确控制。
发明内容
本发明的目的在于一种陶瓷金属化薄膜,该陶瓷金属化薄膜的金属化层的抗拉强度高,尺寸控制精确。
本发明的另一目的在于提供一种所述含陶瓷金属化薄膜的制备方法。
为实现上述目的,本发明采用以下技术方案:
一种陶瓷金属化薄膜,由依次施加在陶瓷基体上的陶瓷金属复合过渡层、第一金属薄膜和第二金属薄膜构成,其中,陶瓷金属复合过渡层由第一金属和与陶瓷基体相同的成分复合而成;所述陶瓷基体由Al2O3、ZrO2、AlN、BN、SiC、Si3N4中的一种构成;所述第一金属为Nb、Ti、Cr、Zr、V、Ta中的一种;所述第二金属为Ni、Mo、Au、Cu、Pt、W中的一种或几种混合。
其中,所述陶瓷金属复合过渡层的厚度为20-200nm,第一金属在陶瓷金属复合过渡层中所占比例为20-80at%。所述第一金属薄膜的厚度为20-200nm;所述第二金属薄膜的厚度为1-10μm。
一种所述陶瓷金属化薄膜的制备方法,包括以下步骤:
(1)在陶瓷基体上以溅射镀膜法沉积陶瓷金属复合过渡层;
(2)在陶瓷金属复合过渡层上以溅射镀膜法依次沉积第一金属薄膜和第二金属薄膜。
其中,所述陶瓷金属复合过渡层的制备采用共沉积溅射镀膜法,采用金属靶和陶瓷靶,通过调整溅射功率实现过渡层中金属成分、陶瓷成分的含量调整。
本发明的优点在于:
本发明采用薄膜金属化法通过气相工艺制备陶瓷金属化薄膜,陶瓷尺寸控制精确。采用的陶瓷金属复合过渡层可以有效降低金属薄膜与陶瓷基体的热膨胀系数失配,薄膜金属化层的抗拉强度较烧结金属粉末法有明显提高。
附图说明
图1为本发明陶瓷金属化薄膜的结构示意图。
具体实施方式
以下结合附图和实施例对本发明做进一步详细描述,但发明的实施方式不仅限于此。
如图1所示,本发明的陶瓷金属化薄膜由依次施加在陶瓷基体1上的陶瓷金属复合过渡层2、第一金属薄膜3和第二金属薄膜4构成。
实施例1
1)Al2O3基体经丙酮和酒精清洗,采用磁控共溅射法制备Ti/Al2O3过渡层。采用金属Ti靶和陶瓷Al2O3靶,真空腔体背底真空优于2.0×10-3pa,Ti靶功率为60W,Al2O3靶功率为100W,工作气压为1.5Pa,沉积时间为90分钟。该过渡层厚度为150nm,Ti含量为45at%。
2)在Ti/Al2O3过渡层上通过磁控溅射法制备Ti层,采用金属Ti靶,真空腔体背底真空优于2.0×10-3pa,Ti靶功率为100W,工作气压为1.5Pa,沉积时间为30分钟。Ti薄膜厚度为100nm。
3)在Ti层上通过磁控溅射法制备Ni层,采用金属Ni靶,真空腔体背底真空优于2.0×10-3pa,Ni靶功率为150W,沉积时间为350分钟,工作气压为2.0Pa。Ni薄膜厚度为3.5μm。
对采用此金属化薄膜的氧化铝标准陶瓷件进行抗拉强度测试(SJT3326-2001),平均抗拉强度为134MPa。
而采用一般金属粉末法所得到的抗拉强度在80MPa,最高100Mpa左右。
实施例2
1)Al2O3基体经丙酮和酒精清洗,采用磁控共溅射法制备Ti/Al2O3过渡层。采用金属Ti靶和陶瓷Al2O3靶,真空腔体背底真空优于2.0×10-3Pa,Ti靶功率为80W,Al2O3靶功率为100W,工作气压为1.5Pa,沉积时间为80分钟。该过渡层厚度为130nm,Ti含量为75at%。
2)在Ti/Al2O3过渡层上通过磁控溅射法制备Ti层,采用金属Ti靶,真空腔体背底真空优于2.0×10-3pa,Ti靶功率为100W,工作气压为1.5Pa,沉积时间为30分钟。Ti薄膜厚度为100nm。
3)在Ti层上通过磁控溅射法制备Ni/Mo层,采用Ni/Mo合金靶,真空腔体背底真空优于2.0×10-3pa,Ni/Mo合金靶功率为150W,沉积时间为350分钟,工作气压为2.0Pa。Ni/Mo薄膜厚度为3.5μm。
对采用此金属化薄膜的氧化铝标准陶瓷件进行抗拉强度测试(SJT3326-2001),平均抗拉强度为130MPa。
而采用一般金属粉末法所得到的抗拉强度在80MPa,最高100Mpa左右。
实施例3
1)SiC基体经丙酮和酒精清洗,采用磁控共溅射法制备Nb/SiC过渡层。采用金属Nb靶和陶瓷SiC靶,真空腔体背底真空优于2.0×10-3pa,Nb靶功率为50W,SiC靶功率为100W,工作气压为1.5Pa,沉积时间为70分钟。该过渡层厚度为120nm,Nb含量为25at%。
2)在Nb/SiC过渡层上通过磁控溅射法制备Nb层,采用金属Nb靶,真空腔体背底真空优于2.0×10-3pa,Nb靶功率为100W,工作气压为1.5Pa,沉积时间为24分钟。Nb薄膜厚度为80nm。
3)在Nb层上通过磁控溅射法制备Ni/Mo层,采用Ni/Mo合金靶,真空腔体背底真空优于2.0×10-3pa,Ni/Mo合金靶功率为150W,工作气压为2.0Pa,沉积时间为300分钟。Ni/Mo薄膜厚度为3μm。
对采用此金属化薄膜的碳化硅标准陶瓷件进行抗拉强度测试(SJT3326-2001),平均抗拉强度为145MPa。
而采用一般金属粉末法所得到的抗拉强度在80MPa,最高100Mpa左右。

Claims (7)

1.一种陶瓷金属化薄膜,其特征在于,由依次施加在陶瓷基体上的陶瓷金属复合过渡层、第一金属薄膜和第二金属薄膜构成,其中,陶瓷金属复合过渡层由第一金属和与陶瓷基体相同的成分以共沉积溅射镀膜法复合而成;所述陶瓷基体由Al2O3、ZrO2、BN、SiC、Si3N4中的一种构成;所述第一金属为Nb、Cr、Zr、V、Ta中的一种;所述第二金属为Ni、Mo、Au、Cu、Pt、W中的一种或几种混合。
2.根据权利要求1所述的陶瓷金属化薄膜,其特征在于,所述陶瓷金属复合过渡层的厚度为20-200nm。
3.根据权利要求1所述的陶瓷金属化薄膜,其特征在于,所述陶瓷金属复合过渡层中,第一金属所占比例为20-80at%。
4.根据权利要求1所述的陶瓷金属化薄膜,其特征在于,所述第一金属薄膜的厚度为20-200nm。
5.根据权利要求1所述的陶瓷金属化薄膜,其特征在于,所述第二金属薄膜的厚度为1-10μm。
6.一种权利要求1-5中任一项所述的陶瓷金属化薄膜的制备方法,其特征在于,包括以下步骤:
(1)在陶瓷基体上以溅射镀膜法沉积陶瓷金属复合过渡层;
(2)在陶瓷金属复合过渡层上以溅射镀膜法依次沉积第一金属薄膜和第二金属薄膜。
7.根据权利要求6所述的陶瓷金属化薄膜的制备方法,其特征在于,所述陶瓷金属复合过渡层的制备采用共沉积溅射镀膜法,采用金属靶和陶瓷靶,通过调整溅射功率实现过渡层中金属成分、陶瓷成分的含量调整。
CN201510958543.9A 2015-12-18 2015-12-18 一种陶瓷金属化薄膜及其制备方法 Active CN106892685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510958543.9A CN106892685B (zh) 2015-12-18 2015-12-18 一种陶瓷金属化薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510958543.9A CN106892685B (zh) 2015-12-18 2015-12-18 一种陶瓷金属化薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106892685A CN106892685A (zh) 2017-06-27
CN106892685B true CN106892685B (zh) 2020-04-28

Family

ID=59189753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510958543.9A Active CN106892685B (zh) 2015-12-18 2015-12-18 一种陶瓷金属化薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106892685B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136848B (zh) * 2018-07-17 2020-04-28 西安交通大学 一种基于pvd沉积方法的氮化铝陶瓷板和金属的连接方法
CN110370754B (zh) * 2019-06-28 2022-01-04 厦门理工学院 一种高损伤容限陶瓷金属复合材料及其制备方法
CN112479733B (zh) * 2020-11-25 2022-02-11 西安交通大学 一种适用于陶瓷/金属连接的陶瓷结合区表面改性方法
CN112975032B (zh) * 2021-02-23 2022-09-27 浙江浙能兰溪发电有限责任公司 一种碳化硅陶瓷的钎焊方法
CN113716978A (zh) * 2021-07-29 2021-11-30 富士新材(深圳)有限公司 一种金属化陶瓷板及其制备方法
CN113560110B (zh) * 2021-08-04 2023-04-14 湖南省美程陶瓷科技有限公司 一种陶瓷-金属复合雾化片及其制备方法
CN114000112B (zh) * 2021-10-21 2024-03-22 苏州玖凌光宇科技有限公司 一种氮化铝覆铜amb方法
CN114702335B (zh) * 2022-04-22 2022-12-13 湖南省新化县鑫星电子陶瓷有限责任公司 一种氧化铝陶瓷的金属化工艺
CN115124374A (zh) * 2022-06-15 2022-09-30 深圳元点真空装备有限公司 一种sbc陶瓷表面覆厚金属层技术及其陶瓷封装基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035469A (ja) * 2007-08-02 2009-02-19 Applied Materials Inc 制御された電気抵抗率を備えた耐プラズマ性セラミック
CN102515874A (zh) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 一种氮化铝陶瓷的表面金属化方法
CN104099576A (zh) * 2014-07-02 2014-10-15 江苏科技大学 一种硬质薄膜及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331978A (ja) * 2006-06-15 2007-12-27 Shin Etsu Chem Co Ltd 押出成形又は射出成形用の組成物及び成形体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035469A (ja) * 2007-08-02 2009-02-19 Applied Materials Inc 制御された電気抵抗率を備えた耐プラズマ性セラミック
CN102515874A (zh) * 2011-12-26 2012-06-27 中国电子科技集团公司第十二研究所 一种氮化铝陶瓷的表面金属化方法
CN104099576A (zh) * 2014-07-02 2014-10-15 江苏科技大学 一种硬质薄膜及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"铁氧体陶瓷无害金属化技术的研究";马元远;《中国优秀硕士学位论文全文数据库》;20080815;第19-31页 *

Also Published As

Publication number Publication date
CN106892685A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN106892685B (zh) 一种陶瓷金属化薄膜及其制备方法
CN109136848B (zh) 一种基于pvd沉积方法的氮化铝陶瓷板和金属的连接方法
JP6002769B2 (ja) 湿潤環境において安定な超耐熱材料及びその製造方法
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN110747378B (zh) 一种Ti3AlC2-Al3Ti双相增强Al基复合材料及其热压制备方法
CN116041051B (zh) 一种应用于3dp打印的造粒粉体及其打印成型方法
CN102049514B (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
KR20080055741A (ko) 활성 브레이징용 저열팽창 복합재료 및 세라믹/금속 간접합체 제조방법
CN101182212B (zh) 硼化物-氧化物复相陶瓷及其制备方法
CN103846438A (zh) 一种制造高铝钛金属陶瓷复合靶材的方法
Hmelov Development of oxide-free oxide materials under spark-plasma sintering conditions of a mixture of oxide-free components and various metal powder additives
CN114951656B (zh) 一种高熵合金-陶瓷涂层复合材料的制备方法
JP2019143179A (ja) スパッタリングターゲット
CN108070859A (zh) 难熔金属表面层状复合Ir/W高温抗氧化涂层及其制备方法
JPS60181269A (ja) スパツタ−タ−ゲツト
CN101544496A (zh) 一种硼化物-氮化物复相陶瓷及其制备工艺
CN106637082A (zh) 陶瓷金属化复合薄膜及其制备方法
CN106591747A (zh) 一种β‑Si3N4晶须和Ni3Al粘结相协同增韧的WC复合材料及其制备方法
CN110964967B (zh) 一种具有低热膨胀系数的背板及其制造方法
JP4976626B2 (ja) 焼結合金材料、その製造方法、およびそれらを用いた機械構造部材
CN108286039B (zh) 一种氮化钼基梯度多元纳米多层涂层及制备方法
RU90787U1 (ru) Теплоотводящий элемент
CN107225818A (zh) 一种陶瓷‑金属‑复合材料混杂多层材料
CN107379661A (zh) 一种多金属混杂陶瓷基复合材料
CN114892163B (zh) 一种高温抗氧化防护涂层材料、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190627

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Applicant after: Research Institute of engineering and Technology Co., Ltd.

Address before: No. 2, Xinjie street, Xicheng District, Beijing, Beijing

Applicant before: General Research Institute for Nonferrous Metals

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant