CN106876855A - 一种小型化微带宽带功合器 - Google Patents

一种小型化微带宽带功合器 Download PDF

Info

Publication number
CN106876855A
CN106876855A CN201510919707.7A CN201510919707A CN106876855A CN 106876855 A CN106876855 A CN 106876855A CN 201510919707 A CN201510919707 A CN 201510919707A CN 106876855 A CN106876855 A CN 106876855A
Authority
CN
China
Prior art keywords
micro
section
strip
line
microstrip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510919707.7A
Other languages
English (en)
Inventor
李军
方建洪
徐暑晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leihua Electronic Technology Research Institute Aviation Industry Corp of China
Original Assignee
Leihua Electronic Technology Research Institute Aviation Industry Corp of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leihua Electronic Technology Research Institute Aviation Industry Corp of China filed Critical Leihua Electronic Technology Research Institute Aviation Industry Corp of China
Priority to CN201510919707.7A priority Critical patent/CN106876855A/zh
Publication of CN106876855A publication Critical patent/CN106876855A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port

Landscapes

  • Waveguides (AREA)

Abstract

本发明涉及一种小型化微带宽带功合器,由50欧姆微带线(1)输入,通过两个第一节微带线阻抗变换段(2)将50欧姆微带线(1)分为两路微带,接着在第一节微带线阻抗变换段(2)的后部分别接入更为宽阔的第二节微带线阻抗变换段(3),并在两段第二节微带线阻抗变换段(3)之间跨接隔离电阻(4),在第二节微带线阻抗变换段(3)的后部引入拐角结构(5),在拐角结构(5)后部分别接入第二50欧姆微带线(6)。本发明具有体积小,插损小、合成效率高等优点。与普通的波导功分/功合器相比也具有体积小,重量轻,集成化高的优点。与未作改进的二级阶梯式威尔金森功分器相比可以明显增加带宽。

Description

一种小型化微带宽带功合器
技术领域
本发明属于射频与微波功率合成设计领域。
背景技术
微波功率分配器是一种多端口微波器件,它是将一路微波信号分配成等分或者不等分的多路微波信号,它在各种无线通信设备、各种雷达设备、遥控遥感设备、微波测量设备中受到广泛的应用。微波功率分配器也可以逆向使用作为功率合成器,它可以将不同设备或者不同器件传输过来的微波信号通过功率合成器合成一路信号用以信号的叠加或者信号功率的合成,因此又把功率分配器称之为功率分配合成器,以下简称功合器。
在当代微波***中要求微波功合器具有小的插损,微波功合器还要求具有足够大的功率容量,以满足大功率应用的场合;此外微波功合器的加工生产条件要容易满足,结构形式要简单,这样在功分器批量生产过程中保证微波功合器的一致性;小型化对微波功合器来说也是非常重要的,特别是在对设备尺寸有严格限制的场合,微波功合器的小型化有助于整个***的小型化;最后微波功合器宽频带特性也是非常重要的一项指标,特别是随着我国民用军用设备的发展,对宽频带功率合成器的需求也越来越大,因此小型化功合器的宽带设计也具有非常重大的意义。
而现有的威尔金森宽带功分器主要采用多节结构设计以满足带宽要求,这样设计导致体积较大,在适用于对体积有要求的情况受限较大,另外多节功合器导致微带线长度增加并产生更多的寄生参数也增大了插损。
如图1所示,一种传统的小型化微带宽带功合器,其为微带电路板,首先由50欧姆微带线1输入,通过两个第一节微带线阻抗变换段2将50欧姆微带线1分为两路微带,接着在第一节微带线阻抗变换段2的后部分别接入更为宽阔的第二节微带线阻抗变换段3,并在两段第二节微带线阻抗变换段3之间跨接隔离电阻4,在第二节微带线阻抗变换段3的后部引入拐角结构5,用来拉大两路微带间隔距离,且通过拐角结构可以有效减少微波传输的不连续性。在拐角结构5后部分别接入第二50欧姆微带线6。
发明内容
发明目的
针对现有技术存在体积大,插损较大的不足,本发明采用更小体积且更小插损的功合器满足了技术指标。
技术方案
针对现有的威尔金森宽带功分器主要采用多节结构设计以满足带宽要求,这样设计导致体积较大,在适用于对体积有要求的情况受限较大,另外多节功合器导致微带线长度增加并产生更多的寄生参数也增大了插损,本发明通过改进在较小体积下减小了插损实现了更高带宽的功合器。
如图2所示,一种小型化微带宽带功合器,其为微带电路板,首先由50欧姆微带线1输入,通过两个第一节微带线阻抗变换段2将50欧姆微带线1分为两路微带,接着在第一节微带线阻抗变换段2的后部分别接入更为宽阔的第二节微带线阻抗变换段3,并在两段第二节微带线阻抗变换段3之间跨接隔离电阻4,在第二节微带线阻抗变换段3的后部引入拐角结构5,用来拉大两路微带间隔距离,且通过拐角结构可以有效减少微波传输的不连续性。在拐角结构5后部分别接入第二50欧姆微带线6。
本发明通过在在第一节微带线阻抗变换段2采用渐变形式微带线过度结构7,其是以e为底的指数函数的曲线形式。渐变形式微带线过度结构7通过渐变的形式实现阻抗变换,由高阻抗微带线到低阻抗微带线逐渐变宽,通过渐变形式微带线过度结构7减小了第一节微带线阻抗变换段2和第二节微带线阻抗变换段3之间的不连续性,做了这样的改进从而减小了反射,增加了功合器工作带宽。
在第一节微带线阻抗变换段2和第二节微带线阻抗变换段3尺寸相差不大的情况下,渐变形式微带线过度结构7可近似为线性过渡结构,这样的结构更易实现并且减少了仿真优化的复杂度且对加工实物精度要求更低。
进一步的在第一节微带线阻抗变换段2和第二节微带线阻抗变换段3的连接处加入了高低阻抗微带线8,其分为两段,分别由一段径向高阻抗微带线与一段径向低阻抗微带线连接组成的高低阻抗线结构。高低阻抗微带线8用于在低阻抗匹配情况不激励高次模,同时适当调节高低阻抗微带线8的尺寸参数可以抵消微带宽带功合器在实现功率分配中产生的寄生电容与电感所造成的不良影响,以改善其宽带性能,通过这样的改进最终以较小的体积与插损更好的满足了宽带功合器的指标。
发明的优点
与传统的二级阶梯式威尔金森功分器相比,本发明具有体积小,插损小、合成效率高等优点。与普通的波导功分/功合器相比也具有体积小,重量轻,集成化高的优点。与未作改进的二级阶梯式威尔金森功分器相比可以明显增加带宽。
该功合器通用性强,电路结构简单,能广泛用于宽带功率合成与其它宽带微波电路中。
附图说明
图1是传统的二级阶梯式威尔金森功分器示意图。
图2是通过本发明结构示意图。
图3是传统的二级阶梯式威尔金森功分器实例仿真回波损耗曲线。
图4是传统的二级阶梯式威尔金森功分器实例仿真传输损耗曲线。
图5是通过本发明实施例仿真回波损耗曲线。
图6是通过本发明实施例仿真传输损耗曲线。
具体实施方式
下面结合说明书附图对本发明作进一步详细说明。
实施发明的优选具体实施方式和实施例。
一种小型化微带宽带功合器,其为微带电路板,首先由50欧姆微带线1输入,其中50欧姆微带线宽度由对应微带版介电常数与厚度决定。通过两个第一节微带线阻抗变换段2将50欧姆微带线1分为两路微带,接着在第一节微带线阻抗变换段2的后部分别接入更为宽阔的第二节微带线阻抗变换段3,并在两段第二节微带线阻抗变换段3之间跨接隔离电阻4各阻抗变换段的阻值由二级阶梯式威尔金森功分器理论值通过仿真优化获得,其宽度对应于阻值由微带板介电常数与厚度决定,在第二节微带线阻抗变换段3的后部引入拐角结构5,用来拉大两路微带间隔距离,且通过拐角结构可以有效减少微波传输的不连续性,其中拐角结构切角为45度,切角大小可以通过仿真优化具体获得。在拐角结构5后部分别接入第二50欧姆微带线6。
在第一节微带线阻抗变换段2采用渐变形式微带线过度结构7,其是以e为底的指数函数的曲线形式。渐变形式微带线过度结构7通过渐变的形式实现阻抗变换,由高阻抗微带线到低阻抗微带线逐渐变宽,通过渐变形式微带线过度结构7减小了第一节微带线阻抗变换段2和第二节微带线阻抗变换段3之间的不连续性,做了这样的改进从而减小了反射,增加了功合器工作带宽。
在第一节微带线阻抗变换段2和第二节微带线阻抗变换段3尺寸相差不大的情况下,渐变形式微带线过度结构7可近似为线性过渡结构,这样的结构更易实现并且减少了仿真优化的复杂度同时对加工实物精度要求更低。
进一步的在第一节微带线阻抗变换段2和第二节微带线阻抗变换段3的连接处加入了高低阻抗微带线8,其分为两段,分别由一段径向高阻抗微带线与一段径向低阻抗微带线连接组成的高低阻抗线结构其中高阻抗的阻值在50欧姆到120欧姆之间,低阻抗部分为5欧姆至45欧姆。高低阻抗微带线8用于在低阻抗匹配情况不激励高次模,同时适当调节高低阻抗微带线8的尺寸参数可以抵消微带宽带功合器在实现功率分配中产生的寄生电容与电感所造成的不良影响,以改善其宽带性能,通过这样的改进最终以较小的体积与插损更好的满足了宽带功合器的指标。
实施例
本发明以工作于Ku与Ka全波段的功合器作为实例,其介质基板为rogers6002,隔离电阻使用TaN,厚度为0.001mm的薄膜电阻。采用HFSS微波仿真软件进行仿真。
在如图1传统的二级阶梯式威尔金森功分器情况下,其仿真回波损耗曲线与传输损耗曲线如同图3、图4所示,工作带宽为14GHz,且S11最低点为-20dB,工作带宽内其***损耗最高为0.4dB。
在如图2所示的通过本发明改进后引入高低阻抗线与渐变形式微带线过度结构的宽带小型化功合器实例仿真回波损耗曲线与传输损耗曲线如同图5、图6所示。工作带宽为19GHz,且S11最低点为-40dB,工作带宽内其***损耗最高为0.2dB。
从中可以看出使用本设计方法可以使功合器的工作带宽提升百分之36,插损减少0.2dB,实现了更好的***损耗与回波损耗指标,最终得以较小的体积与插损满足了宽带功合器的设计。

Claims (5)

1.一种小型化微带宽带功合器,其为微带电路板,首先由50欧姆微带线(1)输入,通过两个第一节微带线阻抗变换段(2)将50欧姆微带线(1)分为两路微带,接着在第一节微带线阻抗变换段(2)的后部分别接入更为宽阔的第二节微带线阻抗变换段(3),并在两段第二节微带线阻抗变换段(3)之间跨接隔离电阻(4),在第二节微带线阻抗变换段(3)的后部引入拐角结构(5),用来拉大两路微带间隔距离,在拐角结构(5)后部分别接入第二50欧姆微带线(6),其特征在于:在第一节微带线阻抗变换段(2)采用渐变形式微带线过度结构(7),渐变形式微带线过度结构(7)是以e为底的指数函数的曲线形式。
2.根据权利要求1所述的功合器,其特征在于:微带线过度结构(7)通过渐变的形式实现阻抗变换,由高阻抗微带线到低阻抗微带线逐渐变宽,通过渐变形式微带线过度结构(7)减小微波传输的反射。
3.根据权利要求1或2所述的功合器,其特征在于:第一节微带线阻抗变换段(2)和第二节微带线阻抗变换段(3)尺寸相差不大的情况下,渐变形式微带线过渡结构(7)可近似为线性过渡结构。
4.如权利要求1所述的功合器,其特征在于:在第一节微带线阻抗变换段(2)和第二节微带线阻抗变换段(3)的连接处加入了与高低阻抗微带线(8),其分为两段,分别由一段径向高阻抗微带线与一段径向低阻抗微带线连接组成的高低阻抗线结构。
5.如权利要求4所述的功合器,其特征在于:高低阻抗微带线(8)用于在低阻抗匹配情况不激励高次模,同时适当调节高低阻抗微带线(8)的尺寸参数可以抵消微带宽带功合器在实现功率分配中产生的寄生电容与电感所造成的不良影响。
CN201510919707.7A 2015-12-11 2015-12-11 一种小型化微带宽带功合器 Pending CN106876855A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510919707.7A CN106876855A (zh) 2015-12-11 2015-12-11 一种小型化微带宽带功合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510919707.7A CN106876855A (zh) 2015-12-11 2015-12-11 一种小型化微带宽带功合器

Publications (1)

Publication Number Publication Date
CN106876855A true CN106876855A (zh) 2017-06-20

Family

ID=59177271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510919707.7A Pending CN106876855A (zh) 2015-12-11 2015-12-11 一种小型化微带宽带功合器

Country Status (1)

Country Link
CN (1) CN106876855A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012403A (zh) * 2017-11-28 2018-05-08 无锡市同步电子科技有限公司 一种微带线走线拐角的走线优化方法
CN109167142A (zh) * 2018-09-10 2019-01-08 北京无线电测量研究所 一种8-18GHz超宽带二路功率分配器、固态发射机
US10707827B2 (en) 2018-01-08 2020-07-07 Qualcomm Incorporated Wide-band Wilkinson divider
CN114497958A (zh) * 2021-12-23 2022-05-13 中国航天科工集团八五一一研究所 一种基于渐变带状线的超宽带8路威尔金森功分器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013544A (zh) * 2010-06-30 2011-04-13 上海杰盛无线通讯设备有限公司 双频威尔金森功分器
CN102956948A (zh) * 2011-08-29 2013-03-06 黄森 一种新型超宽带威尔金森功分器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013544A (zh) * 2010-06-30 2011-04-13 上海杰盛无线通讯设备有限公司 双频威尔金森功分器
CN102956948A (zh) * 2011-08-29 2013-03-06 黄森 一种新型超宽带威尔金森功分器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012403A (zh) * 2017-11-28 2018-05-08 无锡市同步电子科技有限公司 一种微带线走线拐角的走线优化方法
US10707827B2 (en) 2018-01-08 2020-07-07 Qualcomm Incorporated Wide-band Wilkinson divider
CN109167142A (zh) * 2018-09-10 2019-01-08 北京无线电测量研究所 一种8-18GHz超宽带二路功率分配器、固态发射机
CN114497958A (zh) * 2021-12-23 2022-05-13 中国航天科工集团八五一一研究所 一种基于渐变带状线的超宽带8路威尔金森功分器

Similar Documents

Publication Publication Date Title
Sun et al. A compact branch-line coupler using discontinuous microstrip lines
CN102763269B (zh) 使用衬底集成波导的移相器
US20150091667A1 (en) Wideband impedance transformer
CN106876855A (zh) 一种小型化微带宽带功合器
EP2984702A1 (en) Miniature radio frequency directional coupler for cellular applications
CN110474142B (zh) 一种端接频变复数阻抗的双频威尔金森功分器
CN204289663U (zh) 一种采用频率选择性耦合来抑制基波的毫米波滤波器
KR102289944B1 (ko) 2 대역 전력 분배기에서 거짓 대역을 억압하는 복합 l 타입 전송라인
WO2018218995A1 (zh) 单节威尔金森功分器
Jun-Yu et al. High-directivity single-and dual-band directional couplers based on substrate integrated coaxial line technology
CN203644921U (zh) 具有高功分比的Gysel功分滤波器
CN101662062A (zh) 一种包含可选隔离结构的双频带不等分功率分配器
Fang et al. A miniaturized dual-frequency Wilkinson power divider using planar artificial transmission lines
CN110750955B (zh) 一种高隔离度超宽带微波单片开关芯片及其设计方法
CN112864565A (zh) 一种宽带高隔离度的威尔金森功分器
CN111403882A (zh) 超宽带一分四功分器
CN104091993A (zh) 一种采用基片集成同轴线技术的双频枝节线耦合器
CN105244590A (zh) 一种超宽带功分器
CN104617366A (zh) 基于电容补偿技术的准平面高隔离四路功分器
CN208608341U (zh) 分支线耦合器及射频微波设备
CN205028994U (zh) 一种基于t型分支的超宽带功分器
CN103745029A (zh) 一种大功率微波功分器中隔离电阻及设计方法
CN104795612A (zh) 基于缺陷微带结构的三陷波超宽带滤波器
CN111682292A (zh) 一种基于四模谐振器的四通带功分滤波器
Peng et al. Design of an orthogonal power divider with reconfigurable power division ratio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170620

RJ01 Rejection of invention patent application after publication