CN106868458A - 一种宽带热调控红外吸波结构材料及其制备方法 - Google Patents

一种宽带热调控红外吸波结构材料及其制备方法 Download PDF

Info

Publication number
CN106868458A
CN106868458A CN201710019508.XA CN201710019508A CN106868458A CN 106868458 A CN106868458 A CN 106868458A CN 201710019508 A CN201710019508 A CN 201710019508A CN 106868458 A CN106868458 A CN 106868458A
Authority
CN
China
Prior art keywords
film
thickness
thin film
broadband
infrared wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710019508.XA
Other languages
English (en)
Other versions
CN106868458B (zh
Inventor
周佩珩
杨林
黄太星
甄国帅
毕磊
谢建良
邓龙江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710019508.XA priority Critical patent/CN106868458B/zh
Publication of CN106868458A publication Critical patent/CN106868458A/zh
Application granted granted Critical
Publication of CN106868458B publication Critical patent/CN106868458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Filters (AREA)

Abstract

发明属于红外人工电磁超材料领域,更具体的,涉及一种宽带热调控红外吸波结构材料及其制备方法。本发明是利用相变材料氧化钒的可逆金属‑半导体相变特性和高介电常数特性,合理地设计结构参数,使得“三明治”结构的磁谐振吸收峰和介质层的驻波吸收峰交叠耦合在一起,从而在中远红外波段实现宽带可调吸收。

Description

一种宽带热调控红外吸波结构材料及其制备方法
技术领域
本发明属于红外人工电磁超材料领域,更具体的,涉及一种宽带热调控红外吸波结构材料及其制备方法。
背景技术
随着人工电磁超材料的迅速发展,相比传统电磁材料,红外人工电磁超材料因其具有负折射率、完美吸收和选择吸收等特性而受到越来越多的关注。宽带吸收一直以来都是红外人工电磁超材料的研究重点,传统的电磁材料实现宽带吸收主要通过多层结构、几何渐变结构以及特殊的色散媒质等方式。然而,由于红外波段的电磁波波长处于微米级别,多层结构和几何渐变结构都对工艺有极高的要求,尤其是在薄膜的厚度控制和每层结构的图形制作方面,要求精度更高、工艺兼容性好,然而能够实现的带宽却往往有限。对于特殊色散媒质的宽带红外吸收的研究,由于对媒质色散特性要求较高,人为控制难度较大,因此大多数还停留在理论阶段。传统宽带红外人工电磁超材料的另外一个局限是,一旦结构确定后,其吸波性能也就确定了,这样的性能已经难以满足现在对新型人工电磁超材料的要求了,而且在其实际的应用价值也会因此降低。
因此,现有技术的红外人工电磁材料存在工艺复杂,吸波带宽不可调等缺陷。
发明内容
本发明的目的在于提供一种制备工艺简单,吸波带宽可调的一种宽带热调控红外吸波结构材料及其制备方法。
为解决上述技术问题,本发明提供的技术方案是,一种宽带热调控红外吸波结构材料,由下至上包括TiN薄膜、VO2薄膜、Al2O3薄膜和Al2O3薄膜上的图形层;所述TiN薄膜的厚度大于红外波段电磁波在TiN中的趋肤深度,VO2薄膜的厚度为500nm~700nm,Al2O3薄膜的厚度为100nm~200nm,所述超材料由超材料单元结构周期性排列而成,图形层的单元结构为金属圆柱,金属圆柱直径为2μm~2.4μm,高为50nm~100nm,每个单元结构与相邻最近的单元结构的几何中心距为5μm。
所述图形层的材料为铝、铜、金或银。
上述宽带热调控红外吸波结构材料的制备方法,包括如下步骤:
1)通过薄膜沉积技术在衬底上沉积一层TiN薄膜,TiN薄膜厚度大于红外波段电磁波在TiN中的趋肤深度;再在TiN薄膜上沉积一层厚度为500nm~700nm的VO2薄膜;
2)将沉积好TiN薄膜和VO2薄膜的衬底置于热处理设备中在480℃~500℃下热处理50~100分钟,热处理氧气压为150Pa~200Pa;热处理完成后自然冷却至室温;
3)将热处理后的衬底置于薄膜沉积设备中,在VO2薄膜再沉积一层厚度为100nm~200nm的Al2O3薄膜;
4)通过光刻技术,在Al2O3薄膜上制得一层厚度为0.5μm~1μm的光刻胶膜,光刻胶膜上具有周期排列的圆孔,圆孔直径为2μm~2.4μm,每个圆孔与相邻最近的圆孔的圆心距为5μm;
5)通过薄膜沉积技术,在胶膜上沉积一层厚度为50nm~100nm的金属薄膜,沉积完毕后将样品置于丙酮溶液中进行超声清洗将光刻胶剥离,得到目标宽带热调控红外吸波结构材料。
本发明的有益效果是:
本发明是利用相变材料氧化钒(VO2)的可逆金属-半导体相变特性(MIT)和高介电常数特性,合理地设计结构参数,使得“三明治”结构的磁谐振吸收峰和介质层的驻波吸收峰交叠耦合在一起,从而在中远红外波段实现宽带可调吸收。
附图说明
图1为宽带热调控红外吸波结构材料中一个周期单元的结构模型;
图2为宽带热调控红外吸波结构材料的俯视图;
图3为室温下通过FTIR测得的实施例1的反射率曲线;
图4为在温度从30℃升至85℃的过程中,样品在对应温度下的反射率曲线;
图5为变温测试结果,其中5(a)为升温和降温过程中磁谐振峰位置随温度的变化,图5(b)为升温和降温过程中,在驻波位置(λ=7.8μm)反射率随温度的变化。
具体实施方式
实施例1:
本发明提供的一种宽带热调控红外吸波结构材料,由下至上包括TiN薄膜、VO2薄膜、Al2O3薄膜和Al2O3薄膜上的图形层;所述TiN薄膜的厚度为500nm,VO2薄膜的厚度为550nm,Al2O3薄膜的厚度为200nm,所述超材料为超材料单元结构周期性排列而成,图形层的单元结构为铝圆柱,铝圆柱直径为2μm,高为50nm,每个单元结构与相邻最近单元结构的几何中心距为5μm。
宽带热调控红外吸波结构材料的制备
本实施例采用的是表面已制备好一层TiN薄膜的Si基片,TiN厚度为500nm;
1)将清洗过的基片通过脉冲激光沉积技术在TiN薄膜上沉积厚度为550nm的VO2薄膜。沉积工艺参数为:腔体真空度为5×10-5Pa,激光能量为500mJ,激光次数为30000次,靶基距为5cm,沉积氧气压为0.86Pa;
2)VO2薄膜沉积完成后,将样品置于热处理设备中,热处理温度为480℃,氧气压为180Pa,热处理时间为50分钟,热处理完毕后自然冷却至室温;
3)将热处理后的样品置于电子束蒸发镀膜机中,在VO2薄膜上沉积厚度为200nm的Al2O3薄膜;沉积工艺参数为:腔体真空度为6x 10-4Pa,束流70mA;
4)通过光刻技术,在Al2O3薄膜上制得一层光刻胶膜,光刻胶膜上具有周期排列的圆孔,圆孔直径为2μm,圆孔深度为50nm,每个圆孔与相邻最近的圆孔的圆心距为5μm;光刻胶采用AZ5214光刻胶,涂胶转速为3000r/min,甩胶完成后在100℃的温度下前烘60s,装载好掩膜版采用接触式曝光,曝光时间为2.5s,曝光后进行后烘,后烘90s,温度为120℃,后烘后进行120s的泛曝,最后进行显影,显影时间为40s;
5)在步骤5中光刻好图形的胶膜上通过电子束蒸发镀膜的方法沉积厚度为50nm的均匀Al薄膜。工艺参数为:腔体真空度为6×10-4Pa,束流230mA。
6)将经过步骤1)-5)制备的样品置于丙酮溶液中清洗掉光刻胶后用酒精冲洗后吹干,得到最终的宽带热调控红外吸波结构的样品。
测试流程:
将背景样品(Au薄膜)放置在恒温控制台中央,设置傅里叶红外光谱分析仪的测试条件为TEM波垂直入射,测试内容为反射,然后测试背景曲线。
取下背景样品,将上述所制得的样品放置在恒温控制台中央。首先测试样品不同区域的几个点的反射率,检查样品的均匀性是否良好。
然后开始逐渐升温,逐渐加热样品从30℃到85℃度(氧化钒的相变特征温度约为68℃)。待样品温度温度后,测试每一个温度点在2μm~15μm波段的反射率曲线。然后降温,采用同样的方式测试降温过程中的反射率曲线。
如图3所示,在室温下测试得到样品在6.8μm~9.8μm波段范围得吸收率在80%以上,即在中远红外波段存在一个带宽为2.9μm、吸收率80%以上的宽带吸收峰。图4和图5的变温测试结果显示,样品的吸收谱会随着温度的改变而改变,同时当温度降低后,样品的吸收谱又恢复到升温之前的状态,即该发明具还有可逆温度调控的效果。
综上,该发明设计方便、制作工艺简单,能够在中远红外波段实现宽带吸收,并且其吸收性能能够受外界温度的调控,在红外传感、红外成像等相关技术领域具有较大的潜在应用价值。

Claims (3)

1.一种宽带热调控红外吸波结构材料,其特征在于,由下至上包括TiN薄膜、VO2薄膜、Al2O3薄膜和Al2O3薄膜上的图形层;所述TiN薄膜的厚度大于红外波段电磁波在TiN中的趋肤深度,VO2薄膜的厚度为500nm~700nm,Al2O3薄膜的厚度为100nm~200nm,所述超材料由超材料单元结构周期性排列而成,图形层的单元结构为金属圆柱,金属圆柱直径为2μm~2.4μm,高为50nm~100nm,每个单元结构与相邻最近的单元结构的几何中心距为5μm。
2.如权利要求1所述的宽带热调控红外吸波结构材料,其特征在于,所述图形层的材料为铝、铜、金或银。
3.如权利要求1所述宽带热调控红外吸波结构材料的制备方法,其特征在于,包括如下步骤:
1)通过薄膜沉积技术在衬底上沉积一层TiN薄膜,TiN薄膜厚度大于红外波段电磁波在TiN中的趋肤深度;再在TiN薄膜上沉积一层厚度为500nm~700nm的VO2薄膜;
2)将沉积好TiN薄膜和VO2薄膜的衬底置于热处理设备中在480℃~500℃下热处理50~100分钟,热处理氧气压150Pa~200Pa;处理完成后自然冷却至室温;
3)将热处理后的衬底置于薄膜沉积设备中,在VO2薄膜再沉积一层厚度为100nm~200nm的Al2O3薄膜;
4)通过光刻技术,在Al2O3薄膜上制得一层厚度为0.5μm~1μm的光刻胶膜,光刻胶膜上具有周期排列的圆孔,圆孔直径为2μm~2.4μm,每个圆孔与相邻最近的圆孔的圆心距为5μm;
5)通过薄膜沉积技术,在胶膜上沉积一层厚度为50nm~100nm的金属薄膜,沉积完毕后将样品置于丙酮溶液中进行超声清洗将光刻胶剥离,得到目标宽带热调控红外吸波结构材料。
CN201710019508.XA 2017-01-10 2017-01-10 一种宽带热调控红外吸波结构材料及其制备方法 Active CN106868458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710019508.XA CN106868458B (zh) 2017-01-10 2017-01-10 一种宽带热调控红外吸波结构材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710019508.XA CN106868458B (zh) 2017-01-10 2017-01-10 一种宽带热调控红外吸波结构材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106868458A true CN106868458A (zh) 2017-06-20
CN106868458B CN106868458B (zh) 2019-06-21

Family

ID=59157472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710019508.XA Active CN106868458B (zh) 2017-01-10 2017-01-10 一种宽带热调控红外吸波结构材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106868458B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907237A (zh) * 2017-11-15 2018-04-13 江西师范大学 一种光学吸收型温度传感器
CN112850638A (zh) * 2020-12-31 2021-05-28 中国科学院微电子研究所 结构色功能纳米结构及其制备方法
CN112921273A (zh) * 2021-01-21 2021-06-08 电子科技大学 一种基于相变材料二氧化钒的动态热辐射制冷器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961488B1 (ko) * 2007-12-20 2010-06-08 한국과학기술연구원 금속 나노복합체 코팅층 및 이의 형성방법
CN102226719A (zh) * 2011-04-08 2011-10-26 华中科技大学 红外吸收结构及基于该结构的非致冷红外探测器
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
CN104792420A (zh) * 2014-01-22 2015-07-22 北京大学 光读出式焦平面阵列及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961488B1 (ko) * 2007-12-20 2010-06-08 한국과학기술연구원 금속 나노복합체 코팅층 및 이의 형성방법
CN102226719A (zh) * 2011-04-08 2011-10-26 华中科技大学 红外吸收结构及基于该结构的非致冷红外探测器
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
CN104792420A (zh) * 2014-01-22 2015-07-22 北京大学 光读出式焦平面阵列及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907237A (zh) * 2017-11-15 2018-04-13 江西师范大学 一种光学吸收型温度传感器
CN112850638A (zh) * 2020-12-31 2021-05-28 中国科学院微电子研究所 结构色功能纳米结构及其制备方法
CN112921273A (zh) * 2021-01-21 2021-06-08 电子科技大学 一种基于相变材料二氧化钒的动态热辐射制冷器件

Also Published As

Publication number Publication date
CN106868458B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN106868458B (zh) 一种宽带热调控红外吸波结构材料及其制备方法
KR101639686B1 (ko) 복수의 나노갭이 형성된 기판 및 이의 제조방법
CN108169171B (zh) 一种基于表面等离子激元共振的折射率测试及其制作方法
CN102868013B (zh) 一种新型太赫兹超宽通带滤波器的制造方法
CN109738975A (zh) 一种完美吸收体的制备方法及完美吸收体
CN106950631A (zh) 一种基于介质微柱阵列的红外吸波体及制备方法
CN112255715A (zh) 一种基于超薄金属薄膜实现宽带光吸收增强的方法及吸波装置
CN107275796B (zh) 一种太赫兹波吸波体、制备方法及应用
CN112269220B (zh) Co2激光增透膜及其制备方法
CN106768352A (zh) 一种红外窄带辐射源及其制备方法
CN108034927A (zh) 用于近红外多宽带吸收器的vo2薄膜复合结构制备方法
CN108470986A (zh) 一种基于DAST的Salisbury屏柔性太赫兹吸波器及其制备方法
CN103401053B (zh) 一种具有较厚Au电极的制备方法
CN110429387A (zh) 一种太赫兹吸波薄膜的制备方法
CN110261365B (zh) 一种周期月牙形纳米间隙阵列及其制备方法
CN105048103A (zh) 一种用于吸收太赫兹波的超薄金属膜的制备方法
CN207586633U (zh) 一种制作表面拉曼增强基底的正交全息干涉光刻***
Zhou et al. Optical properties and surface morphology of thin silver films deposited by thermal evaporation
CN108732672A (zh) 一种光学滤波器结构及其制备方法和透射特性的调节方法
CN109991691A (zh) 一种三波段激光增透膜及其制备方法
Xie et al. Enhancing trace terahertz fingerprint sensing by the lossy silicon metagrating with a gold mirror
CN113341488A (zh) 基于过渡金属膜层的可见光宽带完美吸收器及制备方法
CN107359217A (zh) 一种快速响应紫外光探测器及制备方法
CN108415116A (zh) 一种强吸收圆二色性的单层三折孔纳米薄膜及其制备方法
CN105158828B (zh) 红外波段光学薄膜自由随形方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant