CN106856241A - A kind of multiphase composite nanostructure negative material and preparation method thereof - Google Patents
A kind of multiphase composite nanostructure negative material and preparation method thereof Download PDFInfo
- Publication number
- CN106856241A CN106856241A CN201611244053.3A CN201611244053A CN106856241A CN 106856241 A CN106856241 A CN 106856241A CN 201611244053 A CN201611244053 A CN 201611244053A CN 106856241 A CN106856241 A CN 106856241A
- Authority
- CN
- China
- Prior art keywords
- negative electrode
- dispersion
- electrode material
- preparation
- composite nanostructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 28
- 239000000463 material Substances 0.000 title abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 109
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 71
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 68
- 239000006185 dispersion Substances 0.000 claims abstract description 55
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 47
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 46
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 35
- 239000007773 negative electrode material Substances 0.000 claims abstract description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 23
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 22
- 239000008103 glucose Substances 0.000 claims abstract description 22
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 13
- 229930006000 Sucrose Natural products 0.000 claims abstract description 13
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 13
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 13
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 13
- 239000005720 sucrose Substances 0.000 claims abstract description 13
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 12
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims abstract description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 104
- 238000003756 stirring Methods 0.000 claims description 45
- 239000000725 suspension Substances 0.000 claims description 38
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 24
- 150000003376 silicon Chemical class 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 14
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 14
- -1 TEOS surface-modified silicon Chemical class 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000004094 surface-active agent Substances 0.000 claims description 9
- 239000007795 chemical reaction product Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 5
- 238000006722 reduction reaction Methods 0.000 claims description 4
- 238000004381 surface treatment Methods 0.000 claims description 3
- 238000003763 carbonization Methods 0.000 claims description 2
- 238000003760 magnetic stirring Methods 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 18
- 229910052710 silicon Inorganic materials 0.000 abstract description 15
- 239000010703 silicon Substances 0.000 abstract description 15
- 239000010405 anode material Substances 0.000 abstract description 14
- 239000004567 concrete Substances 0.000 abstract description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002270 dispersing agent Substances 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 150000003609 titanium compounds Chemical class 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 239000011259 mixed solution Substances 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 239000002243 precursor Substances 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000000084 colloidal system Substances 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 239000002114 nanocomposite Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000011863 silicon-based powder Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000011258 core-shell material Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- ADMWVBXCJSMQLF-UHFFFAOYSA-N C(C)O.[Si] Chemical compound C(C)O.[Si] ADMWVBXCJSMQLF-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 229910020084 (NixCoyMnz)O2 Inorganic materials 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
本发明公开了一种多相复合纳米结构负极材料及其制备方法,属于锂离子电池负极材料及其制备方法领域。该多相复合纳米结构负极材料为类“混凝土”结构,以表面活性剂修饰的纳米硅颗粒作为SiO2源,以有机钛化合物作为TiO2源,以氧化石墨烯分散液作为分散剂、沉淀剂,以葡萄糖、蔗糖或聚乙烯吡咯烷酮为有机碳源,再通过水热反应一次制备Si/SiO2/TiO2/石墨烯/C多相复合类“混凝土”纳米结构负极材料。该材料能够有效克服硅基负极材料循环稳定性差,倍率性能差的缺点,作为负极制备的离子电池具有高容量、寿命长的优点,同时其制备方法简便适合产业化制备,且原材料廉价易得,具有巨大的产业化应用价值。
The invention discloses a multiphase composite nanostructure negative electrode material and a preparation method thereof, belonging to the field of lithium ion battery negative electrode materials and preparation methods thereof. The heterogeneous composite nanostructured anode material is a "concrete" structure, using surfactant-modified nano-silicon particles as the SiO2 source, organic titanium compounds as the TiO2 source, and graphene oxide dispersion as the dispersant and precipitant , using glucose, sucrose or polyvinylpyrrolidone as an organic carbon source, and then preparing Si/SiO 2 /TiO 2 /graphene/C multiphase composite "concrete" nanostructure anode materials through a hydrothermal reaction. The material can effectively overcome the shortcomings of poor cycle stability and poor rate performance of silicon-based negative electrode materials. The ion battery prepared as a negative electrode has the advantages of high capacity and long life. At the same time, its preparation method is simple and suitable for industrial production, and the raw materials are cheap and easy to obtain. It has great industrial application value.
Description
技术领域technical field
本发明属于锂离子电池负极材料及其制备方法领域,更具体地说,涉及一种多相复合纳米结构负极材料及其制备方法。The invention belongs to the field of lithium-ion battery negative electrode materials and preparation methods thereof, and more specifically relates to a multiphase composite nanostructure negative electrode material and a preparation method thereof.
背景技术Background technique
随着石油、天然气等化石能源快速枯竭,而页岩气的大量开采也对地球的大气和海洋环境带来巨大的冲击,因此当今人类社会太阳能、风能、生物质能源和潮汐能等环境友好新能源技术备受关注。但是由于太阳能、风能和潮汐能发电量随发电环境的变化而变化,极不稳定,而无法通过并入国家公共供电网络进入千家万户和各企事业单位,最终导致大量新能源发电厂及相关设备和材料生产商亏损甚至关停。如何解决这一关键问题、以稳定、廉价、方便快捷的方式成功将新能源电力进行调峰并网并将其应用于移动电子设备和电动运输工具等,一直是科学和产业界关注的热点和研究的焦点。锂离子电池因具有体积能量密度高,功率密度高、安全,成本低,环境友好等特性,被视作高性能的绿色储能装置,可有效解决以上新能源的并网使用问题,并促进电动汽车和高性能移动电子设备的发展与应用。With the rapid depletion of fossil energy such as oil and natural gas, and the large-scale exploitation of shale gas has also brought a huge impact on the earth's atmosphere and marine environment, so environmentally friendly new technologies such as solar energy, wind energy, biomass energy and tidal energy in today's human society Energy technology has attracted much attention. However, since the power generation of solar energy, wind energy and tidal energy changes with the change of the power generation environment, it is extremely unstable, and cannot enter thousands of households and various enterprises and institutions by merging into the national public power supply network, which eventually leads to a large number of new energy power plants and related Manufacturers of equipment and materials lost money or even shut down. How to solve this key problem, successfully connect new energy power to the grid in a stable, cheap, convenient and quick way, and apply it to mobile electronic devices and electric vehicles, etc., has always been a focus of scientific and industrial attention. focus of research. Lithium-ion batteries are regarded as high-performance green energy storage devices because of their high volumetric energy density, high power density, safety, low cost, and environmental friendliness. Development and application of automobiles and high-performance mobile electronic devices.
锂离子电池正、负极材料是电池的重要组成部分,电极材料的实际容量、倍率和堆积密度一直制约着锂离子电池的功率与能量密度。随着大容量储能设备和动力型锂离子电池的发展,市场对高性能负极材料提出了更高、更严格的要求。目前,高性能锂离子电池负极材料的研究应用和主要集中在锡(Sn)、硅(Si)及其氧化物,镍、钴和锰等组成的一元及二元系[(NixCoyMnz)O2]等过渡金属氧化物。这主要是以上过渡金属及过渡金属氧化物拥有较大的理论和实际容量。其中Si拥有最高的理论容量(4200mAhg-1),被认为是最富前景、也是目前最受工业界期待的锂离子电池负极材料。然而硅基复合负极材料充放电过程中的本征缺陷,即充放电过程中巨大的体积膨胀和缓慢的离子迁移速率等问题,较大地降低了其库伦效率、能量及功率密度,制约了硅基复合负极材料在大容量电池和大型动力电源领域的商业化推广应用。尽管近年来在高容量硅基复合负极方面取得了一定的进展,但是硅基负极的堆积密度和循环稳定性仍然无法满足实际应用的需求,还有较大的提升空间,故而也成为锂电池专家学者研究的重点和热点之一。The positive and negative electrode materials of lithium-ion batteries are an important part of the battery. The actual capacity, rate and stacking density of electrode materials have always restricted the power and energy density of lithium-ion batteries. With the development of large-capacity energy storage equipment and power lithium-ion batteries, the market has put forward higher and stricter requirements for high-performance anode materials. At present, the research and application of high-performance lithium-ion battery anode materials mainly focus on the mono- and binary systems composed of tin (Sn), silicon (Si) and their oxides, nickel, cobalt and manganese [(NixCoyMnz)O 2 ] and other transition metal oxides. This is mainly because the above transition metals and transition metal oxides have relatively large theoretical and practical capacities. Among them, Si has the highest theoretical capacity (4200mAhg -1 ), and is considered to be the most promising anode material for lithium-ion batteries that is currently the most anticipated by the industry. However, the intrinsic defects in the charging and discharging process of silicon-based composite anode materials, that is, the huge volume expansion and slow ion migration rate during the charging and discharging process, greatly reduce its Coulombic efficiency, energy and power density, and restrict the silicon-based composite anode materials. Commercial promotion and application of composite anode materials in the fields of large-capacity batteries and large-scale power supplies. Although some progress has been made in high-capacity silicon-based composite negative electrodes in recent years, the bulk density and cycle stability of silicon-based negative electrodes still cannot meet the needs of practical applications, and there is still a lot of room for improvement, so it has become a lithium battery expert. It is one of the key points and hotspots of scholars' research.
现阶段硅负极材料提升循环稳定性和倍率性能的途径主要通过以下三大措施来实现,具体如下:(1)通过硅一次颗粒的纳米化和硅纳米颗粒的定向生长,从而缩短锂离子迁移的距离提升硅负极的倍率性能,并利用纳米尺度效应从一定程度缓解充放电过程中引起的体积变化导致电极性能的衰退,另外可以通过控制硅纳米颗粒的生长方向亦可进一步提升硅纳米负极的循环稳定性。然而过渡考虑纳米化将大大降低材料的堆积密度,降低硅负极的能量密度;另外硅纳米颗粒的定向可控制备虽然有助于提升材料的循环稳定性,但是制备工艺复杂,产率低,成本高,不利于产业化应用;(2)通过合理设计硅基纳米材料的微观结构,可控制备碳包覆、SiO2或TiO2等包覆的硅纳米颗粒核壳及空心结构,通过给硅纳米核心施加一定的压应力,一定程度上抑制充放电过程中的硅核心的体积变化,稳定固体电解质界面相,从而较好的提升硅纳米材料的循环稳定性;但是该类材料制备工艺复杂、效率相对较低而成本相对较高,因而该类材料及其制备工艺不适合未来大规模生产和产业化应用的要求。(3)利用碳纳米管和石墨烯构建三维导电网络,同时利用三维导电网络框架内的空间缓解充放电过程中产生的体积变化,从而获得倍率性能和循环稳定性较好的硅碳负极材料。然而现阶段碳纳米管和石墨烯的价格仍然较高,不适合商业化大规模应用。At present, the way to improve the cycle stability and rate performance of silicon anode materials is mainly achieved through the following three measures, as follows: (1) through the nanonization of silicon primary particles and the directional growth of silicon nanoparticles, thereby shortening the time for lithium ion migration The distance improves the rate performance of the silicon anode, and the nanoscale effect is used to alleviate the volume change caused by the charging and discharging process to a certain extent, which leads to the decline of the electrode performance. In addition, the growth direction of the silicon nanoparticle can be controlled to further improve the cycle of the silicon nano-anode. stability. However, transitional consideration of nanonization will greatly reduce the packing density of materials and reduce the energy density of silicon anodes; in addition, although the directional and controllable preparation of silicon nanoparticles helps to improve the cycle stability of materials, the preparation process is complicated, the yield is low, and the cost high, which is not conducive to industrial application; (2) by rationally designing the microstructure of silicon-based nanomaterials, it is possible to control the preparation of carbon-coated, SiO 2 or TiO 2 -coated silicon nanoparticle core-shell and hollow structures. Applying a certain compressive stress to the nano-core can suppress the volume change of the silicon core during charging and discharging to a certain extent, stabilize the solid electrolyte interface phase, and improve the cycle stability of the silicon nano-material; however, the preparation process of this type of material is complex and The efficiency is relatively low and the cost is relatively high, so this type of material and its preparation process are not suitable for the requirements of large-scale production and industrial application in the future. (3) Use carbon nanotubes and graphene to construct a three-dimensional conductive network, and at the same time use the space in the three-dimensional conductive network framework to alleviate the volume change during charge and discharge, thereby obtaining silicon-carbon anode materials with better rate performance and cycle stability. However, the price of carbon nanotubes and graphene is still high at this stage, which is not suitable for commercial large-scale application.
目前主要是通过多步法、多种措施协同的办法设计制备高性能的硅碳负极材料。典型的例子如首先利用静电纺丝技术制备碳纳米纤维硬模板,再利用CVD方法在纤维表面沉积纳米硅材料,随后利用溶液法在硅碳核壳表面制备一层TiO2纳米层,最后经过热处理后获得C/Si/TiO2多层核壳结构。该类材料具有较好的倍率性能和循环稳定性,但是该类材料制备工艺复杂,周期长,成本高,产率低,故不利于材料的商业化应用。因此开发工艺简单、周期短、成本低,适合商业大规模生产的合成方法制备高性能的硅碳负极材料成为研究的重点和热点之一。At present, high-performance silicon-carbon anode materials are designed and prepared mainly through multi-step methods and multiple measures. A typical example is to first prepare carbon nanofiber hard template by electrospinning technology, then deposit nano-silicon material on the fiber surface by CVD method, and then prepare a layer of TiO2 nano-layer on the surface of silicon carbon core-shell by solution method, and finally heat-treat After that, a C/Si/TiO 2 multilayer core-shell structure is obtained. This type of material has good rate performance and cycle stability, but the preparation process of this type of material is complicated, the cycle is long, the cost is high, and the yield is low, so it is not conducive to the commercial application of the material. Therefore, the development process is simple, the cycle is short, the cost is low, and the synthesis method suitable for commercial large-scale production to prepare high-performance silicon-carbon anode materials has become one of the focus and hotspots of research.
发明内容Contents of the invention
针对现有技术中存在的硅基负极材料循环稳定性差,倍率性能差、制备方法复杂、低效和高成本等问题,本发明提供了一种多相复合纳米结构负极材料及其制备方法,它具有类“混凝土”结构,可以解决锂离子电池用高容量硅碳负极材料循环稳定性差、倍率性能差、制备工艺复杂和成本高等问题。Aiming at the problems of poor cycle stability, poor rate performance, complex preparation method, low efficiency and high cost of silicon-based negative electrode materials existing in the prior art, the present invention provides a multiphase composite nanostructured negative electrode material and a preparation method thereof, which It has a "concrete" structure, which can solve the problems of poor cycle stability, poor rate performance, complex preparation process and high cost of high-capacity silicon-carbon anode materials for lithium-ion batteries.
本发明的目的通过以下技术方案实现。The purpose of the present invention is achieved through the following technical solutions.
多相复合纳米结构负极材料,其特征在于,所述多相复合纳米结构负极材料结构为Si/SiO2/TiO2/石墨烯/C多相复合。The multiphase composite nanostructure negative electrode material is characterized in that the structure of the multiphase composite nanostructure negative electrode material is Si/SiO 2 /TiO 2 /graphene/C multiphase composite.
多相复合纳米结构负极材料的制备方法,制备步骤如下:The preparation method of the heterogeneous composite nanostructure negative electrode material, the preparation steps are as follows:
S1硅纳米颗粒的分散与表面处理;S1 Dispersion and surface treatment of silicon nanoparticles;
S2硅纳米颗粒的共修饰;Co-modification of S2 silicon nanoparticles;
S3共修饰硅纳米颗粒悬浮液的分散;Dispersion of S3 co-modified silicon nanoparticle suspension;
S4添加葡萄糖、蔗糖或聚乙烯吡咯烷酮有机碳源;S4 adds glucose, sucrose or polyvinylpyrrolidone organic carbon source;
S5葡萄糖、蔗糖或聚乙烯吡咯烷酮有机碳源的碳化还原反应;Carbonation reduction reaction of S5 glucose, sucrose or polyvinylpyrrolidone organic carbon source;
S6低温退火。S6 low temperature annealing.
更进一步的,步骤S1中硅纳米颗粒直径为30~100nm。Furthermore, the diameter of the silicon nanoparticles in step S1 is 30-100 nm.
更进一步的,步骤S1中硅纳米颗粒的分散与表面处理的步骤为:称量1g纳米硅粉置于50~150mL乙醇中,经过15~30min超声分散处理后,在磁力搅拌的条件下加入0.2~2mL正硅酸乙酯(TEOS)作为表面活性剂,经过15~30min超声分散。Furthermore, the step of dispersing and surface treating silicon nanoparticles in step S1 is as follows: Weigh 1 g of nano-silicon powder and place it in 50-150 mL of ethanol, and after 15-30 minutes of ultrasonic dispersion treatment, add 0.2 ~2mL tetraethyl orthosilicate (TEOS) was used as surfactant, and dispersed by ultrasonic for 15~30min.
更进一步的,步骤S2中硅纳米颗粒的共修饰的步骤为:将0.1~1mL钛酸四丁脂在磁力搅拌的辅助下逐滴加入到按步骤S1所得到的TEOS表面修饰的硅纳米颗粒乙醇分散液中,匀速搅拌0.5~1h。Furthermore, the co-modification step of silicon nanoparticles in step S2 is: add 0.1-1mL tetrabutyl titanate dropwise with the assistance of magnetic stirring to the TEOS surface-modified silicon nanoparticles ethanol obtained in step S1 In the dispersion, stir at a constant speed for 0.5 to 1 hour.
更进一步的,步骤S3中共修饰硅纳米颗粒悬浮液的分散的步骤为:将步骤S2所获得的共修饰硅纳米颗粒悬浮液在匀速搅拌的情况下逐滴添加到20~50mL氧化石墨烯(GO)分散液中,匀速搅拌添加完毕后,再持续搅拌0.5~3h。Furthermore, the step of dispersing the co-modified silicon nanoparticle suspension in step S3 is: adding the co-modified silicon nanoparticle suspension obtained in step S2 dropwise to 20-50 mL graphene oxide (GO ) in the dispersion liquid, after the uniform stirring is added, the stirring is continued for 0.5 to 3 hours.
更进一步的,所述氧化石墨烯(GO)分散液浓度为0.5~0.1mg/mL。Furthermore, the concentration of the graphene oxide (GO) dispersion is 0.5-0.1 mg/mL.
更进一步的,步骤S4添加葡萄糖、蔗糖或聚乙烯吡咯烷酮等有机碳源步骤为:将0.05g~0.5g葡萄糖、蔗糖或聚乙烯吡咯烷酮粉末添加到步骤S3所获得的共修饰硅纳米颗粒悬浮液中,匀速搅拌0.5~3h。Furthermore, the step of adding an organic carbon source such as glucose, sucrose or polyvinylpyrrolidone in step S4 is: adding 0.05g to 0.5g of glucose, sucrose or polyvinylpyrrolidone powder to the co-modified silicon nanoparticle suspension obtained in step S3 , stirring at a constant speed for 0.5-3 hours.
更进一步的,步骤S5葡萄糖、蔗糖或聚乙烯吡咯烷酮等有机碳源的碳化还原反应步骤为:将步骤S4所获溶液置于水热反应釜内,在160~220℃下水热反应2~10h,随后将反应产物先水洗3次,后乙醇洗三次,80℃下烘干。Furthermore, the step S5 of carbonization and reduction reaction of organic carbon sources such as glucose, sucrose or polyvinylpyrrolidone is as follows: the solution obtained in step S4 is placed in a hydrothermal reaction kettle, and the hydrothermal reaction is carried out at 160-220° C. for 2-10 hours, Subsequently, the reaction product was washed three times with water, then washed three times with ethanol, and dried at 80°C.
更进一步的,步骤S6中退火温度为350~600℃,退火时间为2~6h。Furthermore, the annealing temperature in step S6 is 350-600° C., and the annealing time is 2-6 hours.
相比于现有技术,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
(1)本发明中的多相复合纳米结构负极材料中SiO2和TiO2起到有效抑制Si的体积膨胀的作用,而石墨烯和多孔碳起到水泥的作用,一边把SiO2和TiO2包覆的Si纳米颗粒粘结在一起,形成三维类“混凝土”结构,一边缓冲Si纳米颗粒充放电过程中体积变化引起的内应力,进一步提升硅纳米颗粒的循环性能;(1) SiO 2 and TiO 2 play the effect of effectively suppressing the volume expansion of Si in the heterogeneous composite nanostructure negative electrode material among the present invention, and graphene and porous carbon play the effect of cement, while SiO 2 and TiO 2 The coated Si nanoparticles are bonded together to form a three-dimensional "concrete" structure, which buffers the internal stress caused by the volume change of the Si nanoparticles during charging and discharging, and further improves the cycle performance of the Si nanoparticles;
(2)本发明中的多相复合纳米结构负极材料石墨烯和多孔碳材料一起形成三位互联的导电网络有效提升Si负极的倍率性能;(2) The multiphase composite nanostructure negative electrode material graphene and the porous carbon material in the present invention form a three-bit interconnected conductive network to effectively improve the rate performance of the Si negative electrode;
(3)本发明中的多相复合纳米结构负极材料Si/SiO2/TiO2/石墨烯/C多相复合类“混凝土”纳米结构负极材料具有高容量(500~1000mAh/g),长寿命(经两圈充放电活化后,300圈容量保持100%以上);(3) The multiphase composite nanostructure negative electrode material Si/SiO 2 /TiO 2 /graphene/C multiphase composite “concrete” nanostructure negative electrode material in the present invention has high capacity (500~1000mAh/g), long life (After two cycles of charging and discharging activation, the capacity of 300 cycles remains above 100%);
(4)本发明中的多相复合纳米结构负极材料制备方法简便适合产业化制备,且原材料廉价易得,具有巨大的产业化应用价值,是未来大容量、高功率锂离子电池重要的负极材料之一。(4) The preparation method of the multi-phase composite nanostructure negative electrode material in the present invention is simple and suitable for industrial production, and the raw materials are cheap and easy to obtain, which has huge industrial application value and is an important negative electrode material for future large-capacity and high-power lithium-ion batteries one.
附图说明Description of drawings
图1为为SSTGC-1的扫描电镜照片;Figure 1 is a scanning electron microscope photo of SSTGC-1;
图2为SSTGC-1和前驱体SSTGC-1-P的X-射线衍射图谱;Fig. 2 is the X-ray diffraction pattern of SSTGC-1 and precursor SSTGC-1-P;
图3为SSTGC-1在0.1C的电流密度下的首圈充放电曲线;Figure 3 is the first cycle charge and discharge curve of SSTGC-1 at a current density of 0.1C;
图4为SSTGC-1在0.1C和0.5C下充放电循环曲线。Figure 4 is the charge-discharge cycle curves of SSTGC-1 at 0.1C and 0.5C.
具体实施方式detailed description
下面结合说明书附图和具体的实施例,对本发明作详细描述。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
本发明为类“混凝土”结构纳米复合负极材料及其制备方法,属于高容量、长寿命动力型和储能型锂离子电池Si/SiO2/TiO2/石墨烯/C多相复合类“混凝土”纳米结构负极材料及其低成本规模化一次制备方法。The invention is a nano-composite negative electrode material with a "concrete" structure and a preparation method thereof, belonging to the Si/SiO 2 /TiO 2 /graphene/C multiphase composite "concrete" type of high-capacity, long-life power type and energy storage lithium-ion battery "Nanostructured anode materials and their low-cost, large-scale, one-time preparation methods.
本发明的技术方案利用含硅类有机物为表面活性剂修饰纳米硅颗粒,以有机钛化合物作为TiO2源,以氧化石墨烯分散液作为分散剂、沉淀剂,再以葡萄糖、蔗糖或聚乙烯吡咯烷酮等为有机碳源,再通过水热反应一次制备Si/SiO2/TiO2/石墨烯/C多相复合类混凝土纳米结构负极材料。其制备步骤如下:The technical scheme of the present invention uses silicon-containing organic matter as a surfactant to modify nano-silicon particles, uses an organic titanium compound as a source of TiO , uses a graphene oxide dispersion as a dispersant and a precipitant, and then uses glucose, sucrose or polyvinylpyrrolidone etc. as the organic carbon source, and then prepare the Si/SiO 2 /TiO 2 /graphene/C multiphase composite concrete nanostructure negative electrode material through a hydrothermal reaction. Its preparation steps are as follows:
(1)称量1g50纳米硅粉置于100mL乙醇中,经过15min超声分散处理后获得初步分散的纳米硅乙醇悬浊液。(1) Weigh 1g of 50nm silicon powder and place it in 100mL of ethanol, and obtain a preliminary dispersed nanosilicon ethanol suspension after 15min of ultrasonic dispersion treatment.
(2)在匀速搅拌的条件下,将2mL正硅酸乙酯(TEOS)作为表面活性剂逐滴加入步骤1所制纳米硅乙醇悬浊液中,随后经30min超声分散处理后获得TEOS表面修饰的硅纳米颗粒乙醇分散液。(2) Under the condition of uniform stirring, add 2mL tetraethyl orthosilicate (TEOS) as a surfactant dropwise into the nano-silicon ethanol suspension prepared in step 1, and then obtain TEOS surface modification after 30min ultrasonic dispersion treatment ethanol dispersion of silicon nanoparticles.
(3)将0.5mL钛酸四丁脂在匀速搅拌情况下逐滴加入到按步骤(2)所得到的TEOS表面修饰的硅纳米颗粒乙醇分散液中,匀速搅拌30min后,获得共修饰的硅纳米颗粒乙醇分散液。(3) Add 0.5mL tetrabutyl titanate dropwise to the ethanol dispersion of TEOS surface-modified silicon nanoparticles obtained in step (2) under constant stirring, and stir at a constant speed for 30 minutes to obtain co-modified silicon nanoparticles. Nanoparticle ethanol dispersion.
(4)取50mL1mg/mL的氧化石墨烯(GO)分散液,加入50mL去离子水,摇匀后获得0.5mg/mL氧化石墨烯稀释溶液。(4) Take 50 mL of 1 mg/mL graphene oxide (GO) dispersion, add 50 mL of deionized water, and shake well to obtain a 0.5 mg/mL graphene oxide diluted solution.
(5)将按照步骤(3)所获得的共修饰硅纳米颗粒悬浮液在匀速搅拌的情况下逐滴添加到40mL按步骤(4)所获得的GO分散液中,匀速搅拌添加完毕后,再持续搅拌1h,待钛酸四丁脂和正硅酸乙酯充分水解,形成均匀稳定的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液。(5) Add the co-modified silicon nanoparticle suspension obtained in step (3) dropwise to 40 mL of the GO dispersion obtained in step (4) while stirring at a constant speed. Stirring was continued for 1 hour, and tetrabutyl titanate and ethyl orthosilicate were fully hydrolyzed to form a uniform and stable Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion.
(6)将0.2g葡萄糖粉末添加到按步骤5所获得的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液中,持续匀速搅拌1h后获得乙醇和水的混合溶剂中的Si/SiO2/TiO2/氧化石墨烯/葡萄糖混合溶液。(6) Add 0.2g of glucose powder to the Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion obtained in step 5, and continue to stir at a constant speed for 1h to obtain the Si/Si in the mixed solvent of ethanol and water SiO 2 /TiO 2 /graphene oxide/glucose mixed solution.
(7)将步骤(6)所获混合溶液置于水热反应釜内,在200℃下水热反应6h。随后将反应产物先水洗3次,后乙醇洗3次,于80℃下烘干后获得Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料前躯体。(7) The mixed solution obtained in step (6) was placed in a hydrothermal reaction kettle, and hydrothermally reacted at 200° C. for 6 hours. Subsequently, the reaction product was washed with water for 3 times and then with ethanol for 3 times, and dried at 80° C. to obtain the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material precursor.
(8)最后将步骤(7)所获Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料前躯体于450℃下低温退火5h以进一步去除还原石墨烯和水热多孔碳中的含氧官能团,最终获得导电性能优良的Si/SiO2/TiO2/石墨烯/多孔碳(SSTGC-1)多相复合材料,如图1所示,SiO2和TiO2包覆的硅纳米颗粒弥散分布于石墨烯和碳组成的类“混凝土”结构的多相复合纳米结构材料。(8) Finally, the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite precursor obtained in step (7) was annealed at 450°C for 5 h at low temperature to further remove the reduced graphene and hydrothermal porous carbon Oxygen-containing functional groups in, and finally obtain Si/SiO 2 /TiO 2 /graphene/porous carbon (SSTGC-1) multiphase composite material with excellent electrical conductivity, as shown in Figure 1, SiO 2 and TiO 2 coated silicon Nanoparticles are dispersed in a multiphase composite nanostructure material with a "concrete" structure composed of graphene and carbon.
SSTGC-1电极制备:SSTGC-1 electrode preparation:
将如图1所示的SSTGC-1类“混凝土”结构多相纳米复合材料(80%)与导电炭黑(10%)和粘结剂(PVDF,10%)均匀混合制得均一浆料,再将所得胶体涂覆于铜箔表面,在70℃下干燥3h后,继续在90℃下真空干燥5h,最终获得SSTGC-1电极。The SSTGC-1 class "concrete" structure heterogeneous nanocomposite material (80%) as shown in Figure 1 is uniformly mixed with conductive carbon black (10%) and binder (PVDF, 10%) to make a homogeneous slurry, The obtained colloid was then coated on the surface of the copper foil, dried at 70°C for 3 hours, and then vacuum-dried at 90°C for 5 hours to finally obtain the SSTGC-1 electrode.
扣式电池组装:以锂片为对电极和参比电极,以1mol/L LiPF6的EC+DEC溶液为电解液,将所制的SSTGC-1电极为工作电极在真空手套箱中组装成扣式锂离子半电池。Assembling of button cell: Lithium sheet is used as counter electrode and reference electrode, EC+DEC solution of 1mol/L LiPF 6 is used as electrolyte, the prepared SSTGC-1 electrode is used as working electrode and assembled into a button cell in a vacuum glove box. lithium-ion half-cell.
电化学性能特征:将装好的扣式电池用蓝电电池测试***进行电化学性能测试。图3为SSTGC-1电极在0.1C(1C=4200mA/g)电流密度下的恒流充放电曲线,在0.1C下电池首圈放电和充电容量可达到2176和1250mAh/g。尤其是在0.1C和0.5C的电流密度下经过100圈充放电循环测试后比容量分别仍可保持在881mAh/g和760mAh/g,如图4所示。Electrochemical performance characteristics: use the blue battery test system to test the electrochemical performance of the installed button battery. Figure 3 is the constant current charge and discharge curve of the SSTGC-1 electrode at a current density of 0.1C (1C=4200mA/g). At 0.1C, the first discharge and charge capacities of the battery can reach 2176 and 1250mAh/g. In particular, the specific capacity can still be maintained at 881mAh/g and 760mAh/g after 100 cycles of charge and discharge cycles at the current density of 0.1C and 0.5C, respectively, as shown in Figure 4.
实施例2Example 2
(1)称量1g30纳米硅粉置于100mL乙醇中,经过15min超声分散处理后获得初步分散的纳米硅乙醇悬浊液。(1) Weigh 1g of 30nm silicon powder and place it in 100mL of ethanol, and obtain a preliminary dispersed nanosilicon ethanol suspension after 15min of ultrasonic dispersion treatment.
(2)在匀速搅拌的条件下,将1mL正硅酸乙酯(TEOS)作为表面活性剂逐滴加入步骤(1)所制纳米硅乙醇悬浊液中,随后经15min超声分散处理后获得TEOS表面修饰的硅纳米颗粒乙醇分散液。(2) Under the condition of constant stirring, add 1mL tetraethyl orthosilicate (TEOS) as a surfactant dropwise into the nano-silicon ethanol suspension prepared in step (1), and then obtain TEOS after 15min ultrasonic dispersion treatment Ethanol dispersion of surface-modified silicon nanoparticles.
(3)将0.4mL钛酸四丁脂在匀速搅拌情况下逐滴加入到按步骤(2)所得到的TEOS表面修饰的硅纳米颗粒乙醇分散液中,匀速搅拌1h后,获得共修饰的硅纳米颗粒乙醇分散。(3) Add 0.4mL tetrabutyl titanate dropwise to the ethanol dispersion of TEOS surface-modified silicon nanoparticles obtained in step (2) under constant stirring, and after stirring at a constant speed for 1 hour, co-modified silicon nanoparticles are obtained. Nanoparticle ethanol dispersion.
(4)取50mL1mg/mL的氧化石墨烯(GO)分散液,加入50mL去离子水,摇匀后获得0.5mg/mL氧化石墨烯稀释溶液。(4) Take 50 mL of 1 mg/mL graphene oxide (GO) dispersion, add 50 mL of deionized water, and shake well to obtain a 0.5 mg/mL graphene oxide diluted solution.
(5)将按照步骤(3)所获得的共修饰硅纳米颗粒悬浮液在匀速搅拌的情况下逐滴添加到40mL按步骤(4)所获得的GO分散液中,匀速搅拌添加完毕后,再持续搅拌1h,待钛酸四丁脂和正硅酸乙酯充分水解,形成均匀稳定的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液。(5) Add the co-modified silicon nanoparticle suspension obtained in step (3) dropwise to 40 mL of the GO dispersion obtained in step (4) while stirring at a constant speed. Stirring was continued for 1 hour, and tetrabutyl titanate and ethyl orthosilicate were fully hydrolyzed to form a uniform and stable Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion.
(6)将0.4g葡萄糖粉末添加到按步骤(5)所获得的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液中,持续匀速搅拌2h后获得乙醇和水的混合溶剂中的Si/SiO2/TiO2/氧化石墨烯/葡萄糖混合溶液。(6) Add 0.4g of glucose powder to the Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion obtained in step (5), and continue to stir at a constant speed for 2 hours to obtain the mixed solvent of ethanol and water Si/SiO 2 /TiO 2 /graphene oxide/glucose mixed solution.
(7)将步骤(6)所获混合溶液置于水热反应釜内,在180℃下水热反应10h。随后将反应产物先水洗3次,后乙醇洗3次,于80℃下烘干后获得Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料前躯体。(7) The mixed solution obtained in step (6) was placed in a hydrothermal reaction kettle, and hydrothermally reacted at 180° C. for 10 h. Subsequently, the reaction product was washed three times with water and then washed three times with ethanol, and dried at 80° C. to obtain the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material precursor.
(8)最后将步骤(7)所获Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料于500℃下低温退火3h以进一步去除还原石墨烯和水热多孔碳中的含氧官能团,最终获得导电性能优良的Si/SiO2/TiO2/石墨烯/多孔碳(SSTGC-2)多相复合材料。(8) Finally, the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material obtained in step (7) was annealed at 500°C for 3 h at low temperature to further remove the reduced graphene and hydrothermal porous carbon. Oxygen-containing functional groups, finally obtain Si/SiO 2 /TiO 2 /graphene/porous carbon (SSTGC-2) multiphase composite material with excellent electrical conductivity.
SSTGC-2电极制备:将SSTGC-2多相纳米复合材料(80%)与导电炭黑(10%)和粘结剂(PVDF,10%)均匀混合制得均一浆料,再将所得胶体涂覆于铜箔表面,在70℃下干燥3h后,继续在90℃下真空干燥5h,最终获得SSTGC-2电极。Preparation of SSTGC-2 electrode: uniformly mix SSTGC-2 multiphase nanocomposite material (80%) with conductive carbon black (10%) and binder (PVDF, 10%) to obtain a uniform slurry, and then coat the obtained colloid Cover the surface of copper foil, dry at 70°C for 3h, and then continue vacuum drying at 90°C for 5h, and finally obtain the SSTGC-2 electrode.
扣式电池组装:以锂片为对电极和参比电极,以1mol/L LiPF6的EC+DEC溶液为电解液,所制得SSTGC-2电极为工作电极在真空手套箱中组装成扣式锂离子半电池。Assembling button cells: Lithium sheets are used as the counter electrode and reference electrode, the EC+DEC solution of 1mol/L LiPF 6 is used as the electrolyte, and the prepared SSTGC-2 electrode is used as the working electrode and assembled into a button cell in a vacuum glove box. Lithium-ion half-cell.
电化学性能特征:将装好的扣式电池用蓝电电池测试***进行电化学性能测试,在0.1C和0.5C(1C=4200mA/g)的电流密度下经过100圈充放电循环测试后比容量分别可保持在863mAh/g和752mAh/g。在0.1C的电流密度下,电池首圈放电比容量可达到2150mAh/g。Electrochemical performance characteristics: The installed button battery is tested for electrochemical performance with the blue battery test system, and after 100 cycles of charge and discharge cycles at the current density of 0.1C and 0.5C (1C=4200mA/g) The capacity can be maintained at 863mAh/g and 752mAh/g respectively. Under the current density of 0.1C, the specific capacity of the first discharge cycle of the battery can reach 2150mAh/g.
实施例3Example 3
(1)称量1g90纳米硅粉置于100mL乙醇中,经过15min超声分散处理后获得初步分散的纳米硅乙醇悬浊液。(1) Weigh 1 g of 90 nanometer silicon powder and place it in 100 mL of ethanol, and obtain a preliminary dispersed nano silicon ethanol suspension after 15 minutes of ultrasonic dispersion treatment.
(2)在匀速搅拌的条件下,将0.4mL正硅酸乙酯(TEOS)作为表面活性剂逐滴加入步骤(1)所制纳米硅乙醇悬浊液中,随后经30min超声分散处理后获得TEOS表面修饰的硅纳米颗粒乙醇分散液。(2) Under the condition of uniform stirring, add 0.4mL tetraethyl orthosilicate (TEOS) as a surfactant dropwise into the nano-silicon ethanol suspension prepared in step (1), followed by 30min ultrasonic dispersion treatment to obtain Ethanol dispersion of TEOS surface-modified silicon nanoparticles.
(3)将0.2mL钛酸四丁脂在匀速搅拌情况下逐滴加入到按步骤(2)所得到的TEOS表面修饰的硅纳米颗粒乙醇分散液中,匀速搅拌30min后,获得共修饰的硅纳米颗粒乙醇分散液。(3) Add 0.2mL tetrabutyl titanate dropwise to the ethanol dispersion of TEOS surface-modified silicon nanoparticles obtained in step (2) under constant stirring, and stir at a constant speed for 30 minutes to obtain co-modified silicon nanoparticles. Nanoparticle ethanol dispersion.
(4)取50mL1mg/mL的氧化石墨烯(GO)分散液,加入200mL去离子水,摇匀后获得0.2mg/mL氧化石墨烯稀释溶液。(4) Take 50 mL of 1 mg/mL graphene oxide (GO) dispersion, add 200 mL of deionized water, and shake to obtain a 0.2 mg/mL graphene oxide diluted solution.
(5)将按照步骤(3)所获得的共修饰硅纳米颗粒悬浮液在匀速搅拌的情况下逐滴添加到30mL按步骤(4)所获得的GO分散液中,匀速搅拌添加完毕后,再持续搅拌2h,待钛酸四丁脂和正硅酸乙酯充分水解,形成均匀稳定的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液。(5) Add the co-modified silicon nanoparticle suspension obtained in step (3) dropwise to 30 mL of the GO dispersion obtained in step (4) while stirring at a constant speed. Stirring was continued for 2 hours until tetrabutyl titanate and ethyl orthosilicate were fully hydrolyzed to form a uniform and stable Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion.
(6)将0.1g聚乙烯吡咯烷酮粉末添加到按步骤(5)所获得的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液中,持续匀速搅拌1h后获得乙醇和水的混合溶剂中的Si/SiO2/TiO2/氧化石墨烯/葡萄糖混合溶液。(6) Add 0.1 g of polyvinylpyrrolidone powder to the Si/SiO 2 /TiO 2 /graphene oxide mixed colloid suspension dispersion obtained in step (5), and continue stirring at a constant speed for 1 hour to obtain a mixed solvent of ethanol and water Si/SiO 2 /TiO 2 /graphene oxide/glucose mixed solution in .
(7)将步骤(6)所获混合溶液置于水热反应釜内,在220℃下水热反应2h。随后将反应产物先水洗3次,后乙醇洗3次,于80℃下烘干后获得Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料前躯体。(7) The mixed solution obtained in step (6) was placed in a hydrothermal reaction kettle, and hydrothermally reacted at 220° C. for 2 hours. Subsequently, the reaction product was washed three times with water and then washed three times with ethanol, and dried at 80° C. to obtain the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material precursor.
(8)最后将步骤7所获Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料于600℃下低温退火3h以进一步去除还原石墨烯和水热多孔碳中的含氧官能团,最终获得导电性能优良的Si/SiO2/TiO2/石墨烯/多孔碳(SSTGC-3)多相复合材料。(8) Finally, the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite obtained in step 7 was annealed at 600°C for 3 hours at low temperature to further remove the oxygen contained in the reduced graphene and hydrothermal porous carbon functional groups, and finally obtain Si/SiO 2 /TiO 2 /graphene/porous carbon (SSTGC-3) multiphase composite material with excellent electrical conductivity.
SSTGC-3电极制备:将SSTGC-3多相纳米复合材料(80%)与导电炭黑(10%)和粘结剂(PVDF,10%)均匀混合制得均一浆料,再将所得胶体涂覆于铜箔表面,在70℃下干燥3h后,继续在90℃下真空干燥5h,最终获得SSTGC-1电极。Preparation of SSTGC-3 electrode: uniformly mix SSTGC-3 multiphase nanocomposite material (80%) with conductive carbon black (10%) and binder (PVDF, 10%) to prepare a uniform slurry, and then coat the obtained colloid Cover the surface of copper foil, dry at 70°C for 3h, and then continue vacuum drying at 90°C for 5h, and finally obtain the SSTGC-1 electrode.
扣式电池组装:以锂片为对电极和参比电极,以1mol/L LiPF6的EC+DEC溶液为电解液,以上述所制得的SSTGC-3电极为工作电极在真空手套箱中组装成扣式锂离子半电池。Coin cell assembly: Assemble in a vacuum glove box with lithium sheet as the counter electrode and reference electrode, 1mol/L LiPF 6 EC+DEC solution as the electrolyte, and the SSTGC-3 electrode prepared above as the working electrode into a button lithium-ion half-cell.
电化学性能特征:将装好的扣式电池用蓝电电池测试***进行电化学性能测试,在0.1C和0.5C(1C=4200mA/g)的电流密度下经过100圈充放电循环测试后比容量分别可保持在842mAh/g和714mAh/g。在0.1C的电流密度下,电池首圈放电比容量可达到2205mAh/g。Electrochemical performance characteristics: The installed button battery is tested for electrochemical performance with the blue battery test system, and after 100 cycles of charge and discharge cycles at the current density of 0.1C and 0.5C (1C=4200mA/g) The capacity can be maintained at 842mAh/g and 714mAh/g, respectively. Under the current density of 0.1C, the specific capacity of the first discharge cycle of the battery can reach 2205mAh/g.
实施例4Example 4
(1)称量1g50纳米硅粉置于100mL乙醇中,经过15min超声分散处理后获得初步分散的纳米硅乙醇悬浊液。(1) Weigh 1g of 50nm silicon powder and place it in 100mL of ethanol, and obtain a preliminary dispersed nanosilicon ethanol suspension after 15min of ultrasonic dispersion treatment.
(2)在匀速搅拌的条件下,将0.5mL正硅酸乙酯(TEOS)作为表面活性剂逐滴加入步骤(1)所制纳米硅乙醇悬浊液中,随后经30min超声分散处理后获得TEOS表面修饰的硅纳米颗粒乙醇分散液。(2) Under the condition of uniform stirring, add 0.5mL tetraethyl orthosilicate (TEOS) as a surfactant dropwise into the nano-silicon ethanol suspension prepared in step (1), followed by 30min ultrasonic dispersion treatment to obtain Ethanol dispersion of TEOS surface-modified silicon nanoparticles.
(3)将1mL钛酸四丁脂在匀速搅拌情况下逐滴加入到按步骤(2)所得到的TEOS表面修饰的硅纳米颗粒乙醇分散液中,匀速搅拌1.5小时后,获得共修饰的硅纳米颗粒乙醇分散液。(3) Add 1 mL of tetrabutyl titanate dropwise to the ethanol dispersion of TEOS surface-modified silicon nanoparticles obtained in step (2) under constant stirring, and stir at a constant speed for 1.5 hours to obtain co-modified silicon nanoparticles. Nanoparticle ethanol dispersion.
(4)取50mL1mg/mL的氧化石墨烯(GO)分散液,加入50mL去离子水,摇匀后获得0.5mg/mL氧化石墨烯稀释溶液。(4) Take 50 mL of 1 mg/mL graphene oxide (GO) dispersion, add 50 mL of deionized water, and shake well to obtain a 0.5 mg/mL graphene oxide diluted solution.
(5)将按照步骤(3)所获得的共修饰硅纳米颗粒悬浮液在匀速搅拌的情况下逐滴添加到40mL按步骤(4)所获得的GO分散液中,匀速搅拌添加完毕后再持续搅拌1h,待钛酸四丁脂和正硅酸乙酯充分水解,形成均匀稳定的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液。(5) Add the co-modified silicon nanoparticle suspension obtained in step (3) dropwise to 40 mL of the GO dispersion obtained in step (4) while stirring at a constant speed, and then continue After stirring for 1 hour, tetrabutyl titanate and ethyl orthosilicate are fully hydrolyzed to form a uniform and stable Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion.
(6)将0.2g蔗糖粉末添加到按步骤(5)所获得的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液中,持续匀速搅拌1h后获得乙醇和水的混合溶剂中的Si/SiO2/TiO2/氧化石墨烯/葡萄糖混合溶液。(6) Add 0.2g sucrose powder to the obtained Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion liquid obtained in step (5), and continue to stir at a constant speed for 1h to obtain the mixed solvent of ethanol and water Si/SiO 2 /TiO 2 /graphene oxide/glucose mixed solution.
(7)将步骤(6)所获混合溶液置于水热反应釜内,在200℃下水热反应6h。随后将反应产物先水洗3次,后乙醇洗3次,于80℃下烘干后获得Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料前躯体。(7) The mixed solution obtained in step (6) was placed in a hydrothermal reaction kettle, and hydrothermally reacted at 200° C. for 6 hours. Subsequently, the reaction product was washed three times with water and then washed three times with ethanol, and dried at 80° C. to obtain the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material precursor.
(8)最后将步骤(7)所获Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料于450℃下低温退火5h以进一步去除还原石墨烯和水热多孔碳中的含氧官能团,最终获得导电性能优良的Si/SiO2/TiO2/石墨烯/多孔碳(SSTGC-4)多相复合材料。(8) Finally, the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material obtained in step (7) was annealed at 450°C for 5 h at a low temperature to further remove the reduced graphene and hydrothermal porous carbon. Oxygen-containing functional groups, finally obtain Si/SiO 2 /TiO 2 /graphene/porous carbon (SSTGC-4) multiphase composite material with excellent electrical conductivity.
SSTGC-4电极制备:将SSTGC-4多相纳米复合材料(80%)与导电炭黑(10%)和粘结剂(PVDF,10%)均匀混合制得均一浆料,再将所得胶体涂覆于铜箔表面,在70℃下干燥3h后,继续在90℃下真空干燥5h,最终获得SSTGC-4电极。Preparation of SSTGC-4 electrode: uniformly mix SSTGC-4 multiphase nanocomposite material (80%) with conductive carbon black (10%) and binder (PVDF, 10%) to obtain a uniform slurry, and then coat the obtained colloid Cover the surface of copper foil, dry at 70°C for 3h, and then continue vacuum drying at 90°C for 5h, and finally obtain the SSTGC-4 electrode.
扣式电池组装:以锂片为对电极和参比电极,以1mol/L LiPF6的EC+DEC溶液为电解液,以所制得的SSTGC-4电极为工作电极在真空手套箱中组装成扣式锂离子半电池。Button battery assembly: use lithium sheet as counter electrode and reference electrode, use 1mol/L LiPF 6 EC+DEC solution as electrolyte, and use the prepared SSTGC-4 electrode as working electrode to assemble in a vacuum glove box. Coin-type lithium-ion half-cell.
电化学性能特征:将装好的扣式电池用蓝电电池测试***进行电化学性能测试,在0.1C和0.5C(1C=4200mA/g)的电流密度下经过100圈充放电循环测试后比容量分别可保持在821mAh/g和752mAh/g。在0.1C的电流密度下,电池首圈放电比容量可达到2105mAh/g。Electrochemical performance characteristics: The installed button battery is tested for electrochemical performance with the blue battery test system, and after 100 cycles of charge and discharge cycles at the current density of 0.1C and 0.5C (1C=4200mA/g) The capacity can be maintained at 821mAh/g and 752mAh/g respectively. Under the current density of 0.1C, the specific capacity of the first discharge cycle of the battery can reach 2105mAh/g.
实施例5Example 5
(1)称量1g30纳米硅粉置于100mL乙醇中,经过15min超声分散处理后获得初步分散的纳米硅乙醇悬浊液。(1) Weigh 1g of 30nm silicon powder and place it in 100mL of ethanol, and obtain a preliminary dispersed nanosilicon ethanol suspension after 15min of ultrasonic dispersion treatment.
(2)在匀速搅拌的条件下,将0.2mL正硅酸乙酯(TEOS)作为表面活性剂逐滴加入步骤(1)所制纳米硅乙醇悬浊液中,随后经30min超声分散处理后获得TEOS表面修饰的硅纳米颗粒乙醇分散液。(2) Under the condition of constant stirring, add 0.2mL tetraethyl orthosilicate (TEOS) as a surfactant dropwise into the nano-silicon ethanol suspension prepared in step (1), followed by 30min ultrasonic dispersion treatment to obtain Ethanol dispersion of TEOS surface-modified silicon nanoparticles.
(3)将0.1mL钛酸四丁脂在匀速搅拌情况下逐滴加入到按步骤(2)所得到的TEOS表面修饰的硅纳米颗粒乙醇分散液中,匀速搅拌30min后,获得共修饰的硅纳米颗粒乙醇分散液。(3) Add 0.1mL tetrabutyl titanate dropwise to the ethanol dispersion of TEOS surface-modified silicon nanoparticles obtained in step (2) under constant stirring, and stir at a constant speed for 30 minutes to obtain co-modified silicon nanoparticles. Nanoparticle ethanol dispersion.
(4)取50mL1mg/mL的氧化石墨烯(GO)分散液,加入450mL去离子水,摇匀后获得0.1mg/mL氧化石墨烯稀释溶液。(4) Take 50 mL of 1 mg/mL graphene oxide (GO) dispersion, add 450 mL of deionized water, and shake to obtain a 0.1 mg/mL graphene oxide diluted solution.
(5)将按照步骤(3)所获得的共修饰硅纳米颗粒悬浮液在匀速搅拌的情况下逐滴添加到40mL按步骤(4)所获得的GO分散液中,匀速搅拌添加完毕后,再持续搅拌1h,待钛酸四丁脂和正硅酸乙酯充分水解,形成均匀稳定的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液。(5) Add the co-modified silicon nanoparticle suspension obtained in step (3) dropwise to 40 mL of the GO dispersion obtained in step (4) while stirring at a constant speed. Stirring was continued for 1 hour, and tetrabutyl titanate and ethyl orthosilicate were fully hydrolyzed to form a uniform and stable Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion.
(6)将0.1g葡萄糖粉末添加到按步骤(5)所获得的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液中,持续匀速搅拌1h后获得乙醇和水的混合溶剂中的Si/SiO2/TiO2/氧化石墨烯/葡萄糖混合溶液。(6) Add 0.1g of glucose powder to the Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion obtained in step (5), and continue to stir at a constant speed for 1h to obtain the mixed solvent of ethanol and water Si/SiO 2 /TiO 2 /graphene oxide/glucose mixed solution.
(7)将步骤(6)所获混合溶液置于水热反应釜内,在160℃下水热反应12h。随后将反应产物先水洗3次,后乙醇洗3次,于80℃下烘干后获得Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料前躯体。(7) The mixed solution obtained in step (6) was placed in a hydrothermal reaction kettle, and hydrothermally reacted at 160° C. for 12 hours. Subsequently, the reaction product was washed three times with water and then washed three times with ethanol, and dried at 80° C. to obtain the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material precursor.
(8)最后将步骤(7)所获Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料于550℃下低温退火3h以进一步去除还原石墨烯和水热多孔碳中的含氧官能团,最终获得导电性能优良的Si/SiO2/TiO2/石墨烯/多孔碳(SSTGC-5)多相复合材料。(8) Finally, the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite obtained in step (7) was annealed at 550°C for 3 h at low temperature to further remove the reduced graphene and hydrothermal porous carbon. Oxygen-containing functional groups, finally obtain Si/SiO 2 /TiO 2 /graphene/porous carbon (SSTGC-5) multiphase composite material with excellent electrical conductivity.
SSTGC-5电极制备:将SSTGC-5多相纳米复合材料(80%)与导电炭黑(10%)和粘结剂(PVDF,10%)均匀混合制得均一浆料,再将所得胶体涂覆于铜箔表面,在70℃下干燥3h后,继续在90℃下真空干燥5h,最终获得SSTGC-5电极。Preparation of SSTGC-5 electrode: uniformly mix SSTGC-5 multiphase nanocomposite material (80%) with conductive carbon black (10%) and binder (PVDF, 10%) to prepare a uniform slurry, and then coat the obtained colloid Cover the surface of copper foil, dry at 70°C for 3h, and then continue vacuum drying at 90°C for 5h, and finally obtain the SSTGC-5 electrode.
扣式电池组装:以锂片为对电极和参比电极,以1mol/L LiPF6的EC+DEC溶液为电解液,以所制得的SSTGC-5电极为工作电极在真空手套箱中组装成扣式锂离子电池。Button battery assembly: use lithium sheet as counter electrode and reference electrode, use 1mol/L LiPF 6 EC+DEC solution as electrolyte, and use the prepared SSTGC-5 electrode as working electrode to assemble in a vacuum glove box. Button lithium-ion battery.
电化学性能特征:将装好的扣式电池用蓝电电池测试***进行电化学性能测试,在0.1C和0.5C(1C=4200mA/g)的电流密度下经过100圈充放电循环测试后比容量分别可保持在801mAh/g和683mAh/g。在0.1C的电流密度下,电池首圈放电比容量可达到2355mAh/g。Electrochemical performance characteristics: The installed button battery is tested for electrochemical performance with the blue battery test system, and after 100 cycles of charge and discharge cycles at the current density of 0.1C and 0.5C (1C=4200mA/g) The capacity can be maintained at 801mAh/g and 683mAh/g respectively. Under the current density of 0.1C, the specific capacity of the first discharge cycle of the battery can reach 2355mAh/g.
实施例6Example 6
(1)称量1g70纳米硅粉置于100mL乙醇中,经过15min超声分散处理后获得初步分散的纳米硅乙醇悬浊液。(1) Weigh 1g of 70 nanometer silicon powder and place it in 100mL of ethanol, and obtain a preliminary dispersed nano silicon ethanol suspension after 15 minutes of ultrasonic dispersion treatment.
(2)在匀速搅拌的条件下,将0.5mL正硅酸乙酯(TEOS)作为表面活性剂逐滴加入步骤(1)所制纳米硅乙醇悬浊液中,随后经1h超声分散处理后获得TEOS表面修饰的硅纳米颗粒乙醇分散液。(2) Under the condition of uniform stirring, add 0.5mL tetraethyl orthosilicate (TEOS) as a surfactant dropwise into the nano-silicon ethanol suspension prepared in step (1), followed by 1h ultrasonic dispersion treatment to obtain Ethanol dispersion of TEOS surface-modified silicon nanoparticles.
(3)将1mL钛酸四丁脂在匀速搅拌情况下逐滴加入到按步骤(2)所得到的TEOS表面修饰的硅纳米颗粒乙醇分散液中,匀速搅拌1h后,获得共修饰的硅纳米颗粒乙醇分散液。(3) Add 1 mL of tetrabutyl titanate dropwise to the TEOS surface-modified silicon nanoparticle ethanol dispersion obtained in step (2) under constant stirring, and after stirring for 1 hour, co-modified silicon nanoparticle Ethanol dispersion of particles.
(4)取50mL1mg/mL的氧化石墨烯(GO)分散液,加入50mL去离子水,摇匀后获得0.5mg/mL氧化石墨烯稀释溶液。(4) Take 50 mL of 1 mg/mL graphene oxide (GO) dispersion, add 50 mL of deionized water, and shake well to obtain a 0.5 mg/mL graphene oxide diluted solution.
(5)将按照步骤3所获得的共修饰硅纳米颗粒悬浮液在匀速搅拌的情况下逐滴添加到40mL按步骤(4)所获得的GO分散液中,匀速搅拌添加完毕后,再持续搅拌1h,待钛酸四丁脂和正硅酸乙酯充分水解,形成均匀稳定的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液。(5) Add the co-modified silicon nanoparticle suspension obtained in step 3 to 40 mL of the GO dispersion obtained in step (4) dropwise under constant stirring, and continue stirring after the addition of constant stirring After 1 hour, tetrabutyl titanate and tetraethyl orthosilicate are fully hydrolyzed to form a uniform and stable Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion.
(6)将0.5g葡萄糖粉末添加到按步骤(5)所获得的Si/SiO2/TiO2/氧化石墨烯混合胶体悬浮分散液中,持续匀速搅拌1.5h后获得乙醇和水的混合溶剂中的Si/SiO2/TiO2/氧化石墨烯/葡萄糖混合溶液。(6) Add 0.5g of glucose powder to the Si/SiO 2 /TiO 2 /graphene oxide mixed colloidal suspension dispersion obtained in step (5), and continue stirring at a constant speed for 1.5h to obtain a mixed solvent of ethanol and water Si/SiO 2 /TiO 2 /graphene oxide/glucose mixed solution.
(7)将步骤(6)所获混合溶液置于水热反应釜内,在200℃下水热反应6h。随后将反应产物先水洗3次,后乙醇洗3次,于80℃下烘干后获得Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料前躯体。(7) The mixed solution obtained in step (6) was placed in a hydrothermal reaction kettle, and hydrothermally reacted at 200° C. for 6 hours. Subsequently, the reaction product was washed three times with water and then washed three times with ethanol, and dried at 80° C. to obtain the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material precursor.
(8)最后将步骤(7)所获Si/SiO2/TiO2/还原氧化石墨烯/多孔碳多相复合材料于400℃下低温退火6h以进一步去除还原石墨烯和水热多孔碳中的含氧官能团,最终获得导电性能优良的Si/SiO2/TiO2/石墨烯/多孔碳(SSTGC-6)多相复合材料。(8) Finally, the Si/SiO 2 /TiO 2 /reduced graphene oxide/porous carbon multiphase composite material obtained in step (7) was annealed at 400°C for 6 hours at low temperature to further remove the reduced graphene and hydrothermal porous carbon. Oxygen-containing functional groups finally obtain Si/SiO 2 /TiO 2 /graphene/porous carbon (SSTGC-6) multiphase composite material with excellent electrical conductivity.
SSTGC-6电极制备:将SSTGC-1多相纳米复合材料(80%)与导电炭黑(10%)和粘结剂(PVDF,10%)均匀混合制得均一浆料,再将所得胶体涂覆于铜箔表面,在70℃下干燥3h后,继续在90℃下真空干燥5h,最终获得SSTGC-6电极。Preparation of SSTGC-6 electrode: uniformly mix SSTGC-1 multiphase nanocomposite material (80%) with conductive carbon black (10%) and binder (PVDF, 10%) to prepare a uniform slurry, and then coat the obtained colloid Cover the surface of copper foil, dry at 70°C for 3h, and then continue vacuum drying at 90°C for 5h, and finally obtain the SSTGC-6 electrode.
扣式电池组装:以锂片为对电极和参比电极,以1mol/L LiPF6的EC+DEC溶液为电解液,以所制得的SSTGC-6电极为工作电极在真空手套箱中组装成扣式锂离子半电池。Button battery assembly: use lithium sheet as counter electrode and reference electrode, use 1mol/L LiPF 6 EC+DEC solution as electrolyte, and use the prepared SSTGC-6 electrode as working electrode to assemble in a vacuum glove box. Coin-type lithium-ion half-cell.
电化学性能特征:将装好的扣式电池用蓝电电池测试***进行电化学性能测试,在0.1C和0.5C(1C=4200mA/g)的电流密度下经过100圈充放电循环测试后比容量分别可保持在875mAh/g和747mAh/g。在0.1C的电流密度下,电池首圈放电比容量可达到2143mAh/g。Electrochemical performance characteristics: The installed button battery is tested for electrochemical performance with the blue battery test system, and after 100 cycles of charge and discharge cycles at the current density of 0.1C and 0.5C (1C=4200mA/g) The capacity can be maintained at 875mAh/g and 747mAh/g, respectively. Under the current density of 0.1C, the specific capacity of the first discharge cycle of the battery can reach 2143mAh/g.
以上示意性地对本发明创造及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明创造的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本专利的保护范围。The above schematically describes the present invention and its implementation, which is not restrictive, and what is shown in the drawings is only one of the implementations of the present invention, and the actual structure is not limited thereto. Therefore, if a person of ordinary skill in the art is inspired by it, and without departing from the purpose of the invention, without creatively designing a structure and an embodiment similar to the technical solution, it shall fall within the scope of protection of this patent.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611244053.3A CN106856241B (en) | 2016-12-29 | 2016-12-29 | Multiphase composite nano-structure cathode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611244053.3A CN106856241B (en) | 2016-12-29 | 2016-12-29 | Multiphase composite nano-structure cathode material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106856241A true CN106856241A (en) | 2017-06-16 |
CN106856241B CN106856241B (en) | 2020-08-11 |
Family
ID=59126981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611244053.3A Active CN106856241B (en) | 2016-12-29 | 2016-12-29 | Multiphase composite nano-structure cathode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106856241B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107986380A (en) * | 2017-12-02 | 2018-05-04 | 延海平 | A kind of N doping coateds TiO2The technique of photocatalyst for degrading waste water |
CN108923027A (en) * | 2018-06-26 | 2018-11-30 | 华南师范大学 | A kind of organic acid modified Si/TiO2/ rGO@C lithium ion battery negative material and the preparation method and application thereof |
CN109713242A (en) * | 2017-10-26 | 2019-05-03 | 银隆新能源股份有限公司 | Titanium silicon-carbon cathode material and preparation method thereof with nucleocapsid pomegranate structure |
CN111441107A (en) * | 2020-03-23 | 2020-07-24 | 江苏师范大学 | Spinning solution for preparing carbon fiber material, flexible electrode material and preparation method |
CN111646473A (en) * | 2020-06-04 | 2020-09-11 | 松山湖材料实验室 | Si-TiO2Preparation method of-C composite nanowire, product and application thereof |
CN114039032A (en) * | 2021-11-08 | 2022-02-11 | 深圳市翔丰华科技股份有限公司 | Titanium dioxide (B) negative electrode material with improved performance and preparation method thereof |
CN114284479A (en) * | 2021-12-22 | 2022-04-05 | 博路天成新能源科技有限公司 | Preparation method of novel carbon-silicon negative electrode material |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569750A (en) * | 2012-03-21 | 2012-07-11 | 中国科学院宁波材料技术与工程研究所 | Cathode composite material of lithium ion battery and preparation method thereof |
CN102903930A (en) * | 2012-10-23 | 2013-01-30 | 中国科学院过程工程研究所 | A kind of lithium ion secondary battery and preparation method thereof |
CN103031724A (en) * | 2013-01-17 | 2013-04-10 | 哈尔滨工业大学 | Preparation method for carbon fiber surface composite coating |
CN103311506A (en) * | 2013-06-25 | 2013-09-18 | 蒋涛 | Preparation method of silicon graphene-coated lithium titanate composite negative electrode material |
CN103346307A (en) * | 2013-07-09 | 2013-10-09 | 中山大学 | Lithium-ion battery negative material and preparation method thereof |
CN103531754A (en) * | 2013-10-17 | 2014-01-22 | 宁波卡尔新材料科技有限公司 | Preparation method of graphene/silicon dioxide/copper/silicon/soft carbon laminated composite negative pole material |
CN103833032A (en) * | 2014-03-11 | 2014-06-04 | 中国第一汽车股份有限公司 | Graphene-based composite cathode material |
CN104900851A (en) * | 2015-06-24 | 2015-09-09 | 湖北骆驼蓄电池研究院有限公司 | Cathode for lead-carbon batteries, production method of cathode and battery made with cathode |
CN105063556A (en) * | 2015-07-17 | 2015-11-18 | 中国科学院合肥物质科学研究院 | Method for preparing nano metal particle array on graphene |
EP3047905A1 (en) * | 2015-01-21 | 2016-07-27 | Université de Strasbourg | Method for preparing highly nitrogen-doped mesoporous carbon composites |
-
2016
- 2016-12-29 CN CN201611244053.3A patent/CN106856241B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569750A (en) * | 2012-03-21 | 2012-07-11 | 中国科学院宁波材料技术与工程研究所 | Cathode composite material of lithium ion battery and preparation method thereof |
CN102903930A (en) * | 2012-10-23 | 2013-01-30 | 中国科学院过程工程研究所 | A kind of lithium ion secondary battery and preparation method thereof |
CN103031724A (en) * | 2013-01-17 | 2013-04-10 | 哈尔滨工业大学 | Preparation method for carbon fiber surface composite coating |
CN103311506A (en) * | 2013-06-25 | 2013-09-18 | 蒋涛 | Preparation method of silicon graphene-coated lithium titanate composite negative electrode material |
CN103346307A (en) * | 2013-07-09 | 2013-10-09 | 中山大学 | Lithium-ion battery negative material and preparation method thereof |
CN103531754A (en) * | 2013-10-17 | 2014-01-22 | 宁波卡尔新材料科技有限公司 | Preparation method of graphene/silicon dioxide/copper/silicon/soft carbon laminated composite negative pole material |
CN103833032A (en) * | 2014-03-11 | 2014-06-04 | 中国第一汽车股份有限公司 | Graphene-based composite cathode material |
EP3047905A1 (en) * | 2015-01-21 | 2016-07-27 | Université de Strasbourg | Method for preparing highly nitrogen-doped mesoporous carbon composites |
CN104900851A (en) * | 2015-06-24 | 2015-09-09 | 湖北骆驼蓄电池研究院有限公司 | Cathode for lead-carbon batteries, production method of cathode and battery made with cathode |
CN105063556A (en) * | 2015-07-17 | 2015-11-18 | 中国科学院合肥物质科学研究院 | Method for preparing nano metal particle array on graphene |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109713242A (en) * | 2017-10-26 | 2019-05-03 | 银隆新能源股份有限公司 | Titanium silicon-carbon cathode material and preparation method thereof with nucleocapsid pomegranate structure |
CN109713242B (en) * | 2017-10-26 | 2022-02-18 | 银隆新能源股份有限公司 | Titanium silicon carbon negative electrode material with core-shell pomegranate structure and preparation method thereof |
CN107986380A (en) * | 2017-12-02 | 2018-05-04 | 延海平 | A kind of N doping coateds TiO2The technique of photocatalyst for degrading waste water |
CN107986380B (en) * | 2017-12-02 | 2021-08-27 | 黄建勇 | N-doped wrapped TiO2Process for degrading wastewater by using photocatalyst |
CN108923027A (en) * | 2018-06-26 | 2018-11-30 | 华南师范大学 | A kind of organic acid modified Si/TiO2/ rGO@C lithium ion battery negative material and the preparation method and application thereof |
CN111441107A (en) * | 2020-03-23 | 2020-07-24 | 江苏师范大学 | Spinning solution for preparing carbon fiber material, flexible electrode material and preparation method |
CN111646473A (en) * | 2020-06-04 | 2020-09-11 | 松山湖材料实验室 | Si-TiO2Preparation method of-C composite nanowire, product and application thereof |
CN111646473B (en) * | 2020-06-04 | 2022-02-11 | 松山湖材料实验室 | Preparation method, product and application of Si-TiO2-C composite nanowire |
CN114039032A (en) * | 2021-11-08 | 2022-02-11 | 深圳市翔丰华科技股份有限公司 | Titanium dioxide (B) negative electrode material with improved performance and preparation method thereof |
CN114284479A (en) * | 2021-12-22 | 2022-04-05 | 博路天成新能源科技有限公司 | Preparation method of novel carbon-silicon negative electrode material |
Also Published As
Publication number | Publication date |
---|---|
CN106856241B (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106856241B (en) | Multiphase composite nano-structure cathode material and preparation method thereof | |
Qiu et al. | MXenes nanocomposites for energy storage and conversion | |
CN101924211A (en) | A kind of graphene/silicon lithium ion battery negative electrode material and preparation method | |
He et al. | Construction of cobalt sulfide/molybdenum disulfide heterostructure as the anode material for sodium ion batteries | |
CN110311092B (en) | SnO (stannic oxide)2carbon/V2O5Application of/graphene composite nano material as battery negative electrode material | |
CN105702958B (en) | Preparation method and application of tin dioxide quantum dot solution and composite material thereof | |
CN111193014B (en) | Cobalt tetroxide-nitrogen-doped carbon/carbon nanocage composite material with eggshell-yolk structure and its preparation method and application | |
CN102163711B (en) | Method for preparing lithium ion battery negative material by utilizing mesoporous carbon supported nano particles | |
CN104934573A (en) | In-situ solid-phase synthesis method of silicon-graphene spheroidal composite material with multilevel structure and application thereof | |
CN102969501A (en) | Application method of binary metal sulfides in chargeable magnesium battery | |
CN106058181A (en) | Preparation method of graphene-supported carbon-coated silicone nanoparticle composite electrode material | |
CN106207155A (en) | One class integrates nano-hybrid material of positive/negative cyclical effect and preparation method thereof | |
CN110534738A (en) | A kind of dianion cobalt-based selenium sulfide and preparation method thereof | |
CN110854366B (en) | Novel lithium ion battery CsPbBr3/CNT perovskite composite material and preparation method thereof | |
CN107591522A (en) | A kind of preparation method of the spherical V2O3/C materials of sodium-ion battery negative pole | |
CN107464938A (en) | A kind of molybdenum carbide/carbon composite with core shell structure and preparation method thereof and the application in lithium-air battery | |
CN110323440A (en) | A kind of preparation method of graphene/carbon-silicon nano composite anode material | |
GB2616799A (en) | Silicon-doped graphene composite material, preparation method for same, and applications thereof | |
CN105702938B (en) | A kind of iron-based oxide lithium ion battery negative material and preparation method and application | |
CN104868118A (en) | A kind of preparation method of sodium ion battery cathode FePO4/Graphene composite material | |
CN114551874A (en) | Cobalt-doped manganese dioxide cathode material for zinc ion battery and preparation method thereof | |
CN102969493A (en) | Cathode material for non-aqueous secondary battery and preparation method thereof as well as non-aqueous secondary battery cathode and non-aqueous secondary battery | |
CN109786769B (en) | A kind of carbon-supported noble metal oxide bifunctional catalyst and its preparation method and application | |
CN113611854B (en) | A kind of Prussian blue-derived core-shell cube material and preparation method and application | |
CN111986931B (en) | Manganese oxide nano-structure electrode material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |