CN1067667C - 压电陶瓷-压电性聚合物复合材料及其制造方法 - Google Patents

压电陶瓷-压电性聚合物复合材料及其制造方法 Download PDF

Info

Publication number
CN1067667C
CN1067667C CN98119504A CN98119504A CN1067667C CN 1067667 C CN1067667 C CN 1067667C CN 98119504 A CN98119504 A CN 98119504A CN 98119504 A CN98119504 A CN 98119504A CN 1067667 C CN1067667 C CN 1067667C
Authority
CN
China
Prior art keywords
piezoelectric
polymer compound
compound material
polymkeric substance
piezoelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98119504A
Other languages
English (en)
Other versions
CN1248558A (zh
Inventor
陈王丽华
周歧发
蔡忠龙
张清琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong Polytechnic University HKPU
Original Assignee
Hong Kong Polytechnic University HKPU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong Polytechnic University HKPU filed Critical Hong Kong Polytechnic University HKPU
Priority to CN98119504A priority Critical patent/CN1067667C/zh
Publication of CN1248558A publication Critical patent/CN1248558A/zh
Application granted granted Critical
Publication of CN1067667C publication Critical patent/CN1067667C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明涉及一种用于超声换能器、水声换能器和医用超声探测器的具有增强的压电性能的0-3型压电复合材料,本发明还涉及制造这种复合材料的方法。本发明方法的特征在于采用在不同的温度下多段极化方法极化0-3型压电复合材料。即,先在高于聚合物的居理温度下极化0-3型压电复合材料中的压电陶瓷,然后在低于聚合物的居理温度下反相极化0-3型压电复合材料中的压电性聚合物,从而实现两相复合后的压电性能的增强。

Description

压电陶瓷-压电性聚合物复合材料及其制造方法
本发明涉及一种用于超声换能器和水声换能器的压电性的陶瓷-聚合物复合材料、特别是具有增强的压电性能的压电陶瓷-压电性聚合物复合材料,本发明还涉及这种压电性复合材料的制造方法。
压电陶瓷微粉与聚合物的复合材料由于其在热释电传感器、超声换能器和水声换能器方面潜在的应用前景而越来越引起人们的极大兴趣。其构成如图1所示,在图中黑点代表压电陶瓷颗粒,其余为聚合物。早期人们主要是研究压电陶瓷微粉与非压电性聚合物(例如,环氧树脂)的复合材料。后来人们开始研究将压电陶瓷微粉分散于压电性聚合物,例如,偏二氟乙烯与三氟乙烯的共聚物[P(VDF-TrFE)]中。当三氟乙烯的含量超过20mol%时,P(VDF-TrFE)共聚物可从其溶解的溶液中结晶而形成β相,并且能够在无须拉伸的条件下被极化。其极化装置如图2所示。在图2中1为硅油,2为极化试样,3为试样夹具,4为加热台,5为热电偶,6为温度控制器,7为电流计,8为高压电源。当这种共聚物被用作压电陶瓷-压电性聚合物复合材料的基料时,有可能通过陶瓷和聚合物两相的复合而产生协同效应。但是,在现有的此类型复合材料,即,在本技术领域中所谓的“0-3型压电复合材料“(在下文为了符合本技术领域的惯称将“压电陶瓷-压电性聚合物复合材料”与“0-3型压电复合材料”二词混用)中压电陶瓷与压电性聚合物二者是沿同一方向被极化的,从而使陶瓷的压电性与聚合物的压电性部分地相抵消,由此降低了此类型复合材料的压电性。
本发明的目的是提供一种具有增强的压电性的压电陶瓷-压电性聚合物复合材料,与现有技术的压电陶瓷-压电性聚合物复合材料相比它具有高得多的压电性,因此,它不仅适用于超声换能器和水声换能器中而且还适用于医用的超声探测器中。
本发明的另一个目的是提供一种制造具有增强的压电性的压电陶瓷-压电性聚合物复合材料的方法。
由于在现有技术的压电陶瓷-压电性聚合物复合体系中,压电陶瓷的压电性与压电性聚合物的压电性其极化方向相反,因此两相材料的压电性部分地相抵销,从而导致复合材料的压电性能的降低。为了增强压电陶瓷-压电性聚合物复合材料的压电性能,使陶瓷和聚合物二者充分极化是十分重要的。本发明人等经过深入的研究后发现一种制造具有增强的压电性的压电陶瓷-压电性聚合物复合材料的方法。该方法的特征在于采用在不同的温度下多段极化压电陶瓷-压电性聚合物复合材料取代现有技术的一段极化压电陶瓷-压电性聚合物复合材料,而将沿同一方向极化0-3型压电复合材料中压电陶瓷与压电性聚合物改变为在高于聚合物的居理温度下极化0-3型压电复合材料中的压电陶瓷,然后在低于聚合物的居理温度下极化0-3型压电复合材料中的压电性聚合物使它以与陶瓷相的反相极化,从而实现两相复合后的压电性能的增强。
本发明人等是通过以下技术方案来实现增强压电陶瓷-压电性聚合物复合材料的压电性的。在高于聚合物的Tc(即,居理温度)的温度下对复合材料施加电埸使其中的压电陶瓷极化而不使其中的压电性聚合物极化。为了使复合材料中的聚合物的压电性在极化后得到增强,还必须在低于聚合物的Tc下施加电埸,我们发现,此时如果施加反向电埸可以使聚合物极化而对复合材料中的陶瓷相的压电性能没有影响,从而达到只极化聚合物而不极化陶瓷的目的。用此方法单独极化聚合物也会使聚合物显示较好的压电特性。结果表明:通过控制交变电埸的频率和位相可以使所说的复合材料由于其中的聚合物的压电性与陶瓷的压电性相叠加之故而得到增强。由于采用上述方案,即,采用不同温度的分步极化法并以不同方向极化的方式可以克服现有技术在同一方向施加电埸来极化压电陶瓷-压电性共聚物复合材料时所出现的压电性降低的趋向,从而获得具有增强的压电性能的压电陶瓷-压电性聚合物复合材料。
本发明的制造具有增强的压电性能的陶瓷-聚合物压电复合材料的方法包括以下步骤:
一、制备压电陶瓷-压电性聚合物复合材料坯料
根据所需的尺寸与形状制备压电陶瓷-压电性聚合物复合材料坯料。首先制备压电陶瓷微粉,如锆钛酸铅(PZT)微粉,微粉颗粒的大小要求细而均匀,通常可采用物理法或化学法来制备。就物理法来说,一般包括将氧化物粉末混合球磨、预烧结、再球磨等,但是由物理法所制得的颗粒较大,粒径通常为1-3微米。化学法一般采用溶胶-凝胶法,它是通过溶液的分子级混合而成的,所制备的粉末之粒径较小,通常为0.3微米以下,而平均粒径为0.1微米以下。然后,先将P(VDF-TrFE)共聚物在常温下溶解于丁酮中,接着向该溶液加入适量的上述制备的陶瓷粉末并进行超声分散以形成复合物。将复合物在室温下放置一天。然后将其放入到烘箱中加热使溶剂完全挥发。将已去除溶剂的复合物按成品所需的量切成小块,然后放入到模具中在一定的温度和压力下而压制成所想望的大小与形状的陶瓷-聚合物压电复合材料。其中,陶瓷相(陶瓷微粒)的体积比Φ可由下列方程式求得:ρ =Φρc + (1-Φ) ρp
式中ρ为复合材料成品的密度,ρc为陶瓷的密度,ρp为共聚物的密度。
最后,在理想形状的复合材料的两面上通过真空蒸发镀上铝电极或金电极,也可涂上低温银浆涂作为电极。
该陶瓷-聚合物压电复合材料坯料也可被制成膜状,其制备工艺如下:将压电性聚合物,此处为P(VDF-TrFE)共聚物,在常温下溶解在丁酮中,然后加入所需量的陶瓷粉末到溶液中,然后进行超声分散使其混合均匀。视情况可随意地用溶剂调整混合物的粘度,然后在有底电极的玻璃或硅片上旋转涂膜,并且可根据需要采取多次涂膜的方式而获得所需厚度的陶瓷-聚合物压电复合材料坯料膜;
二、在压电陶瓷-压电性聚合物复合材料坯料表面设置电极
先将步骤一中所得的坯料之二面抛光,然后通过真空蒸发等方式镀上铝电极或金电极,也可低温涂刷银浆作为上下面的电极。而就陶瓷-聚合物压电复合材料坯料膜而言,应将其放入到烘箱内通过加热而挥发掉溶剂,并使膜与基底材料(即上述的玻璃或硅片)和电极之间有良好的接触,最后在其上如前述那样地镀上电极;
三、在不同温度下分段极化表面已设置电极的压电陶瓷-压电性聚合物复合材料坯料,使陶瓷及聚合物极化方向相反,从而增强压电性能。
步骤一)和二)仅是本发明的制造具有增强的压电性能的压电陶瓷-压电性聚合物复合材料方法的一部分,并且它与现有技术中的相同,而本发明的制造具有增强的压电性能的压电陶瓷-压电性聚合物复合材料的方法还包括在不同温度下分段极化表面已设置电极的压电陶瓷-压电性聚合物复合材料坯料的步骤。如以VDF比TrFE为70摩尔%比30摩尔%的P(VDF-TrFE)的PZT-P(VDF-TrFE)复合材料为例,首先将表面已设置电极的压电陶瓷-压电性聚合物复合材料坯料加热到聚合物的Tc以上,由于共聚物的Tc依赖于三氟乙烯的摩尔比,所以可以用DSC来测量Tc,然后将所施加的直流电埸从E0增加到E1,并在E1处保持一段时间,关掉所施加的电埸,再将复合材料的两面短路数分钟。依照此程序继续进行‘渐增施加电埸-放电’处理直至接近击穿电埸时为止。电埸强度由小到大,通常为10kV/mm~50kV/mm,极化时间为10~100分钟。此后关闭电埸并让复合材料冷却到室温。以上处理步骤仅导致陶瓷相被极化。为了使复合材料中的共聚物的压电性能能在极化后得到增强,必须在共聚物的Tc以下施加反相电埸使压电性共聚物极化而不影响复合材料中的陶瓷相的压电性能。此极化共聚物相的步骤与以上所述的极化陶瓷相步骤相类似,唯电埸的方向相反,反相电埸的大小为30kV/mm~40kV/mm,极化时间为20-120分钟。然后关闭电埸并让复合材料冷却到室温。从而达到只极化共聚物而不极化陶瓷相的目的。结果表明:通过控制直流电埸或交变电埸的频率和位相可以使该压电性复合材料由于其中的聚合物的压电性与陶瓷的压电性相叠加之故而得到增强。
在下述的不同极化条件下制造不同体积比(Φ)的PZT-P(VDF-TrFE)复合材料[在P(VDF-TrFE)共聚物中VDF∶TrFE为70摩尔%∶30摩尔%]并测定其压电常数(d33),其结果被示于下表中:
表:陶瓷体积比、不同的极化方法与所得的压电常数
陶瓷体积比(Φ) 极化电埸范围(kV/mm) 用现有技术极化方法所得的压电常数d33(PC/N) 用本发明方法所得的压电常数d33(PC/N)
     0.4     36~48      -10     28
     0.6     32-37      32     43
从上表中可见,用本发明方法极化的PZT-P(VDF-TrFE)复合材料,可以使复合材料的压电常数明显地提高,从而使所得的复合材料不仅适用于超声换能器和水声换能器方面的应用,而且还适用于医用超声探测器的应用中。
以上已对本发明作了详细的介绍,对本领域的技术人员来说在不背离本发明精神的前提下作出种种的变化与改进是显而易见的。因此,本发明的请求保护的范围应以权利要求书中所述的为准。

Claims (4)

1.一种制造具有增强的压电性的压电陶瓷-压电性聚合物复合材料的方法,包括以下步骤:
一、制备压电陶瓷-压电性聚合物复合材料坯料;
二、在压电陶瓷-压电性聚合物复合材料坯料表面设置电极;
三、极化在表面上已设置电极的压电陶瓷-压电性聚合物复合材料坯料,其特征在于:步骤三)是以在不同温度下的分段极化方式进行的,而将陶瓷与聚合物沿相反方向极化,从而增强其压电性能。
2.根据权利要求1的方法,其中所述的陶瓷微粉包括所有的压电陶瓷材料,其中步骤三)包括先在所述的聚合物的居理温度以上分段极化所述的复合材料,然后在所述的聚合物的居理温度以下分段反向极化所述的复合材料。
3.根据权利要求2的方法,其中,所述的在所述的聚合物的居理温度以上分段极化时所施加的电埸强度为为10kV/mm~50kV/mm、时间为10~100分钟,所述的在聚合物的居理温度以下分段反向极化时所施加的反相电埸强度为30kV/mm~40kV/mm,时间为20~120分钟。
4.根据前述权利要求中任何一项权利要求方法所制造的的具有增强的压电性能的压电陶瓷-压电性聚合物复合材料。
CN98119504A 1998-09-18 1998-09-18 压电陶瓷-压电性聚合物复合材料及其制造方法 Expired - Fee Related CN1067667C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98119504A CN1067667C (zh) 1998-09-18 1998-09-18 压电陶瓷-压电性聚合物复合材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98119504A CN1067667C (zh) 1998-09-18 1998-09-18 压电陶瓷-压电性聚合物复合材料及其制造方法

Publications (2)

Publication Number Publication Date
CN1248558A CN1248558A (zh) 2000-03-29
CN1067667C true CN1067667C (zh) 2001-06-27

Family

ID=5226403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98119504A Expired - Fee Related CN1067667C (zh) 1998-09-18 1998-09-18 压电陶瓷-压电性聚合物复合材料及其制造方法

Country Status (1)

Country Link
CN (1) CN1067667C (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402466C (zh) * 2005-01-24 2008-07-16 四川大学 一种高居里点铌酸钾钠锂系无铅压电陶瓷及其制备方法
CN103072343B (zh) * 2012-12-28 2015-03-04 江苏大学 一种高柔韧的pzt/纤维织物压电复合材料的制备方法
CN106537623A (zh) * 2014-04-16 2017-03-22 帝人株式会社 使用了纤维的将电信号作为输出或输入的换能器
CN105842348B (zh) * 2016-04-07 2018-08-10 北京大学 用于激励和接收非弥散超声导波的压电换能器及制备方法
CN106478149A (zh) * 2016-09-12 2017-03-08 华南理工大学 一种具有抗菌性能的压电材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061111A (zh) * 1990-10-29 1992-05-13 湖北大学 一种大功率压电陶瓷材料
CN1136225A (zh) * 1995-01-20 1996-11-20 株式会社村田制作所 压电陶瓷组合物
CN1161314A (zh) * 1995-11-08 1997-10-08 株式会社村田制作所 压电陶瓷

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061111A (zh) * 1990-10-29 1992-05-13 湖北大学 一种大功率压电陶瓷材料
CN1136225A (zh) * 1995-01-20 1996-11-20 株式会社村田制作所 压电陶瓷组合物
CN1161314A (zh) * 1995-11-08 1997-10-08 株式会社村田制作所 压电陶瓷

Also Published As

Publication number Publication date
CN1248558A (zh) 2000-03-29

Similar Documents

Publication Publication Date Title
US5702629A (en) Piezeoelectric ceramic-polymer composites
EP0131231B1 (en) Process for producing a piezo- and pyro-electric film
Rianyoi et al. Poling effects and piezoelectric properties of PVDF-modified 0–3 connectivity cement-based/lead-free 0.94 (Bi 0.5 Na 0.5) TiO 3–0.06 BaTiO 3 piezoelectric ceramic composites
CN101609744A (zh) 制造电容器的方法和电容器
WO1990013149A1 (en) SOL GEL PROCESS FOR PREPARING Pb(Zr,Ti)O3 THIN FILMS
JP2008258183A (ja) 製法及び応用を含む圧電セラミック材料
JPH07297461A (ja) 圧電セラミックス−高分子複合材料及びその製造方法
CN1067667C (zh) 压电陶瓷-压电性聚合物复合材料及其制造方法
JP3104550B2 (ja) 圧電アクチュエータおよびその製造方法
US20060079619A1 (en) Piezoelectric transducing sheet
CN108373329A (zh) 一种基于PLZST/P(VDF-co-TrFE)的复合薄膜的制备方法
Du et al. High piezoelectricity in PFN–PNN–PZT quaternary ceramics achieved via composition optimization near morphotropic phase boundary
Xia et al. Fabrication and electrical properties of lead zirconate titanate thick films by the new sol–gel method
CN100530737C (zh) 一种高频3-3型复合压电陶瓷元件的制作方法
Gaskey et al. “Square” hysteresis loops in phase-switching Nb-doped lead zirconate stannate titanate thin films
CN110372372B (zh) 高温下低介电损耗的钛酸铋钠基无铅压电陶瓷的制备方法
CN1562877A (zh) 一种掺杂改性钛酸铋钠钾压电陶瓷及其制备方法
CN109265925B (zh) 一种聚合物基复合柔性压电传感器的制备方法
Liu et al. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium
Chen et al. Lead Zirconate Titanate Films on Nickel–Titanium Shape Memory Alloys: SMARTIES
CN111366275A (zh) 一种纳米压力传感器及其制备方法
CN105645957B (zh) 一种高机电耦合性能锆钛酸铅细晶压电陶瓷及其制备方法
Yu et al. Preparation, structure, and properties of 0.3 Pb (Zn1/3Nb2/3) O3-0.7 PbTiO3 thin films on LaNiO3/YSZ/Si substrates
Li et al. Preparation of thick PZT films on stainless steel substrates
JPH0196368A (ja) 強誘電体薄膜の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010627

Termination date: 20100918