CN106732356A - 一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用 - Google Patents

一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用 Download PDF

Info

Publication number
CN106732356A
CN106732356A CN201611177958.3A CN201611177958A CN106732356A CN 106732356 A CN106732356 A CN 106732356A CN 201611177958 A CN201611177958 A CN 201611177958A CN 106732356 A CN106732356 A CN 106732356A
Authority
CN
China
Prior art keywords
graphene oxide
titanium dioxide
coupling material
mass concentration
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611177958.3A
Other languages
English (en)
Inventor
胡新将
赵运林
王平
王慧
杨远秀
徐正刚
谭小飞
江卢华
方威
王晓雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University of Forestry and Technology
Original Assignee
Central South University of Forestry and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University of Forestry and Technology filed Critical Central South University of Forestry and Technology
Priority to CN201611177958.3A priority Critical patent/CN106732356A/zh
Publication of CN106732356A publication Critical patent/CN106732356A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用。该耦合材料的制备步骤为:将石墨粉经过预氧化和深度氧化后再超声处理得到单层氧化石墨烯,然后通过溶胶凝胶法制备二氧化钛并将其与氧化石墨烯耦合。该材料的制备工艺简单,易于实现工业化生产。制备的耦合材料既具备二氧化钛的光催化活性,又具备氧化石墨烯的吸附性能,能有效去除废水中的六价铬。该产品能用于电镀、皮革鞣制、印染等废水的处理。

Description

一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用
技术领域
本发明属于环保新材料和水处理新技术领域,具体涉及一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用。
背景技术
铬是电镀、皮革鞣制、印染、金属加工、以及纺织生产等工业排出废水中的常见污染成分。铬在天然水和废水中以六价和三价两种稳定的价态存在。六价铬由于其高度迁移性和不可生物降解的性质而对人类和水环境危害较大。相比之下,三价铬容易沉淀,其毒性较小。因此,将高毒性的六价铬还原为低毒的三价铬是处理六价铬废水的有效方式。光催化还原被认为是用于将六价铬还原为三价铬的最环境友好的方法之一。在这个过程中,光催化效率主要由光催化剂的性能决定。因此,开发具有优异光催化活性的光催化剂是非常迫切和必要的。
由于二氧化钛(TiO2)具有优异的光化学性能,其常被用作环境修复的半导体,并且通常应用于将六价铬光催化还原为三价铬。尽管光还原产物三价铬比六价铬毒性低,但是与高浓度三价铬的长期接触也可能对环境和人类健康造成危害,并且在一些氧化条件下三价铬可以转化为高毒性的六价铬。由于其独特的物理化学性质,氧化石墨烯最近受到了全世界的关注。氧化石墨烯含有大量含氧官能团,如羟基,环氧基,羰基和羧基。将TiO2和氧化石墨烯进行耦合具有很大的优点。TiO2可以将六价铬还原为三价铬,并且氧化石墨烯可以吸附去除六价铬和三价铬。
发明内容
本发明所要解决的技术问题是:针对现有技术存在的不足,提供工艺简单、操作方便、易于实现工业化生产的氧化石墨烯负载二氧化钛耦合材料的制备方法,以及一种将氧化石墨烯负载二氧化钛耦合材料应用于去除水体中六价铬的方法。
为解决上述技术问题,本发明提供一种氧化石墨烯负载二氧化钛耦合材料的制备方法,具体步骤如下:
(1)将石墨粉、K2S2O8和P2O5加入到10~50 mL浓硫酸中在50~100 ℃下反应2~8小时,所述石墨粉、K2S2O8与P2O5的质量比为1:(0.5~2):(0.5~2),所述浓硫酸的质量浓度为90~98%,然后冷却至20~40 ℃,加入800~1200 mL超纯水,放置8~12小时,将产物洗涤至中性后在40~80 ℃下干燥后得到预氧化石墨;
(2)将步骤(1)得到的预氧化石墨加入到200~300 mL浓硫酸中,再加入NaNO3和KMnO4,所述浓硫酸的质量浓度为90~98%,所述预氧化石墨、NaNO3与KMnO4的质量比为1:(0.5~2):(10~50),在0~5 ℃下反应2~6小时,升温到30~40 ℃下反应1~4小时,加入200~800mL超纯水,在80~100 ℃条件下反应1~6小时,然后加入800~1200 mL超纯水和20~60 mLH2O2,所述H2O2质量浓度为20~30%,继续反应1~6小时,将得到的产物用质量浓度为5~15%的HCl溶液洗涤,用大量水洗涤至中性,并在30~60 ℃下超声分散1~4小时得到质量浓度为1~10 mg/mL的氧化石墨烯水悬液;
(3)将10~1000 mL乙醇加入到10~1000 mL步骤(2)得到的氧化石墨烯悬浮液中,将混合物转移到水浴中并在温度为5~60 ℃下搅拌约1~100分钟,然后,将5~60 mL钛酸四异丙酯和1~500 mL乙醇的混合溶液缓慢加入到上述混合物中,并在5~60 ℃下搅拌0.5~10小时,接着,在50~100 ℃下蒸发凝胶中的乙醇和水,得到浅灰色粉末,最后,将所得粉末在10~100 ℃下干燥2~24小时,然后研磨,得到氧化石墨烯负载二氧化钛耦合材料。
本发明还提供一种上述的氧化石墨烯负载二氧化钛耦合材料去除水体中六价铬的方法,包括以下步骤:
取一定体积的六价铬废水,质量浓度为1~200 mg/L,用体积可以忽略的氢氧化钠或盐酸将六价铬废水的pH值调节为1~11,向上述六价铬废水中加入一定量的氧化石墨烯负载二氧化钛耦合材料,使得该耦合材料在溶液中的质量浓度为0.1~10 g/L,在无光照射条件下让氧化石墨烯负载二氧化钛耦合材料与六价铬废水充分接触反应0.5~5小时,反应温度为10~50 ℃,然后将套有石英玻璃的紫外灯置于六价铬废水中,并将废水充分搅拌反应1~24小时,反应完全后用滤膜将氧化石墨烯负载二氧化钛耦合材料与溶液分离,剩余在溶液中的六价铬通过紫外分光光度法测定。
与现有技术相比,本发明的优点在于:
1.本发明的方法中使用的氧化石墨烯负载二氧化钛耦合材料,其原材料来源广泛,制备工艺简单,操作方便,易于实现工业化生产。
2.本发明的方法中使用的氧化石墨烯负载二氧化钛耦合材料,结合了二氧化钛的光催化活性和氧化石墨烯的吸附性能。
3.本发明的方法能有效而彻底地去除水体中的铬,处理过程操作简单,为含铬废水的处理提供了新的技术方法。
附图说明
图1是本发明实施例1的氧化石墨烯负载二氧化钛耦合材料的场发射扫描电镜照片。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
实施例1:
一种本发明所述的氧化石墨烯负载二氧化钛耦合材料的制备方法,具体步骤如下:
将6 g石墨粉、5 g K2S2O8和5 g P2O5加入到24 mL质量浓度为98%的浓硫酸中,在80 ℃下反应4.5小时,冷却至室温后加入1000 mL超纯水,放置12小时后将得到的产物洗涤至中性后在60 ℃下干燥得到预氧化石墨烯;将得到的预氧化石墨加入到240 mL质量浓度为98%的浓硫酸中,再加入5 g NaNO3和30 g KMnO4,在0 ℃下反应4小时,升温到35 ℃下反应2小时,加入500 mL超纯水,在98 ℃条件下反应1小时,然后在室温下加入1000 mL超纯水和40mL 浓H2O2,继续反应2小时,将得到的产物用质量浓度为10%的HCl溶液洗涤,用大量水洗涤至中性并加水定容,在50 ℃下超声分散2小时得到质量浓度为4.98 mg/mL的氧化石墨烯水悬液。
将100 mL乙醇加入到100 mL步骤(2)所述氧化石墨烯悬浮液中,将混合物转移到水浴中并在温度为30 ℃下搅拌约10分钟,然后,将15 mL钛酸四异丙酯和50 mL乙醇的混合液缓慢加入到上述混合物中,并在30 ℃下搅拌1小时,接着,在90 ℃下蒸发凝胶中的乙醇和水,得到浅灰色粉末,最后,将所得粉末在60 ℃下干燥12小时,然后研磨,得到氧化石墨烯负载二氧化钛耦合材料。
上述制得的氧化石墨烯负载二氧化钛耦合材料的场发射扫描电镜图片如图1所示,二氧化钛与氧化石墨烯充分耦合,且材料具有较多孔隙。
实施例2:
本发明的氧化石墨烯负载二氧化钛耦合材料用于光催化去除废水中的六价铬,包括以下步骤:
取1000 mL六价铬废水,质量浓度为10 mg/L,用体积可以忽略的氢氧化钠或盐酸将六价铬废水的pH值调节为1~8,向上述六价铬废水中加入0.5 g氧化石墨烯负载二氧化钛耦合材料,使得该耦合材料在溶液中的质量浓度为0.5 g/L,在无光照射条件下让氧化石墨烯负载二氧化钛耦合材料与六价铬废水充分接触反应1小时,反应温度为25 ℃,然后将套有石英玻璃的紫外灯置于六价铬废水中,并将废水充分搅拌反应7小时,反应完全后用滤膜将氧化石墨烯负载二氧化钛耦合材料与溶液分离,剩余在溶液中的六价铬通过紫外分光光度法测定。计算的六价铬去除率结果如表1所示:
表1:pH值对氧化石墨烯负载二氧化钛耦合材料去除水中六价铬的影响
pH值 1 2 4 6 8
六价铬去除率(%) 100 100 66 40 29
由表1可知,在pH值为1~8范围内,pH值为1和2时氧化石墨烯负载二氧化钛耦合材料能全部去除水中六价铬,此后随着pH值升高六价铬的去除率不断下降。
实施例3:
本发明的氧化石墨烯负载二氧化钛耦合材料用于光催化去除废水中的六价铬,包括以下步骤:
取1000 mL六价铬废水,质量浓度为10 mg/L,用体积可以忽略的氢氧化钠或盐酸将六价铬废水的pH值调节为2,向上述六价铬废水中分别加入0.1、0.5、1 g氧化石墨烯负载二氧化钛耦合材料,使得该耦合材料在溶液中的质量浓度分别为0.1、0.5、1 g/L,在无光照射条件下让氧化石墨烯负载二氧化钛耦合材料与六价铬废水充分接触反应1小时,反应温度为25 ℃,然后将套有石英玻璃的紫外灯置于六价铬废水中,并将废水充分搅拌反应7小时,反应完全后用滤膜将氧化石墨烯负载二氧化钛耦合材料与溶液分离,剩余在溶液中的六价铬通过紫外分光光度法测定。计算的六价铬去除率结果如表2所示:
表2:氧化石墨烯负载二氧化钛耦合材料投加量对六价铬去除效率的影响
投加量(g) 0.1 0.5 1
六价铬去除率(%) 78 100 100
由表2可知,在光照射下7小时后,氧化石墨烯负载二氧化钛耦合材料投加量为0.1、0.5、1 g时的去除率分别为78%、100%和100%。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,与本发明构思无实质性差异的各种工艺方案均在本发明的保护范围。

Claims (2)

1.一种氧化石墨烯负载二氧化钛耦合材料的制备方法,具体步骤如下:
(1)将石墨粉、K2S2O8和P2O5加入到10~50 mL浓硫酸中在50~100 ℃下反应2~8小时,所述石墨粉、K2S2O8与P2O5的质量比为1:(0.5~2):(0.5~2),所述浓硫酸的质量浓度为90~98%,然后冷却至20~40 ℃,加入800~1200 mL超纯水,放置8~12小时,将产物洗涤至中性后在40~80 ℃下干燥后得到预氧化石墨;
(2)将步骤(1)得到的预氧化石墨加入到200~300 mL浓硫酸中,再加入NaNO3和KMnO4,所述浓硫酸的质量浓度为90~98%,所述预氧化石墨、NaNO3与KMnO4的质量比为1:(0.5~2):(10~50),在0~5 ℃下反应2~6小时,升温到30~40 ℃下反应1~4小时,加入200~800mL超纯水,在80~100 ℃条件下反应1~6小时,然后加入800~1200 mL超纯水和20~60 mLH2O2,所述H2O2质量浓度为20~30%,继续反应1~6小时,将得到的产物用质量浓度为5~15%的HCl溶液洗涤,用大量水洗涤至中性,并在30~60 ℃下超声分散1~4小时得到质量浓度为1~10 mg/mL的氧化石墨烯水悬液;
(3)将10~1000 mL乙醇加入到10~1000 mL步骤(2)得到的氧化石墨烯悬浮液中,将混合物转移到水浴中并在温度为5~60 ℃下搅拌约1~100分钟,然后,将5~60 mL钛酸四异丙酯和1~500 mL乙醇的混合溶液缓慢加入到上述混合物中,并在5~60 ℃下搅拌0.5~10小时,接着,在50~100 ℃下蒸发凝胶中的乙醇和水,得到浅灰色粉末,最后,将所得粉末在10~100 ℃下干燥2~24小时,然后研磨,得到氧化石墨烯负载二氧化钛耦合材料。
2.一种如权利要求1所述的氧化石墨烯负载二氧化钛耦合材料去除水体中六价铬的方法,包括以下步骤:
取一定体积的六价铬废水,质量浓度为1~200 mg/L,用体积可以忽略的氢氧化钠或盐酸将六价铬废水的pH值调节为1~11,向上述六价铬废水中加入一定量的氧化石墨烯负载二氧化钛耦合材料,使得该耦合材料在溶液中的质量浓度为0.1~10 g/L,在无光照射条件下让氧化石墨烯负载二氧化钛耦合材料与六价铬废水充分接触反应0.5~5小时,反应温度为10~50 ℃,然后将套有石英玻璃的紫外灯置于六价铬废水中,并将废水充分搅拌反应1~24小时,反应完全后用滤膜将氧化石墨烯负载二氧化钛耦合材料与溶液分离,剩余在溶液中的六价铬通过紫外分光光度法测定。
CN201611177958.3A 2016-12-19 2016-12-19 一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用 Pending CN106732356A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611177958.3A CN106732356A (zh) 2016-12-19 2016-12-19 一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611177958.3A CN106732356A (zh) 2016-12-19 2016-12-19 一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN106732356A true CN106732356A (zh) 2017-05-31

Family

ID=58890297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611177958.3A Pending CN106732356A (zh) 2016-12-19 2016-12-19 一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106732356A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246334A (zh) * 2018-01-30 2018-07-06 中南林业科技大学 一种功能化三元复合光催化材料及其制备方法与用途
CN109433178A (zh) * 2018-10-22 2019-03-08 南京稞之朗环保科技有限公司 一种二氧化钛-氧化石墨烯的载体光催化剂及其制备方法
CN110064346A (zh) * 2019-05-21 2019-07-30 华南理工大学 一种二氧化钛/硫化锌镉石墨烯气凝胶及其制备方法与应用
CN111992179A (zh) * 2020-07-22 2020-11-27 山东尚科环境工程有限公司 一种化学改性氧化石墨烯离子型污水处理剂及制备方法
CN113398916A (zh) * 2021-06-28 2021-09-17 四川大学 以废弃含铬革屑制备过硫酸盐催化剂的方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500350A (zh) * 2011-11-09 2012-06-20 中国科学院过程工程研究所 高效二氧化钛复合光催化剂及其制备方法
CN104128183A (zh) * 2014-06-27 2014-11-05 南开大学 一种高效降解微囊藻毒素的纳米级磁性石墨烯复合材料及其制备和应用
CN104888750A (zh) * 2015-04-24 2015-09-09 北京理工大学 一种活性炭纤维负载二氧化钛复合光催化材料及其制备方法与应用
CN106179247A (zh) * 2016-08-08 2016-12-07 东北农业大学 一种六价铬吸附剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500350A (zh) * 2011-11-09 2012-06-20 中国科学院过程工程研究所 高效二氧化钛复合光催化剂及其制备方法
CN104128183A (zh) * 2014-06-27 2014-11-05 南开大学 一种高效降解微囊藻毒素的纳米级磁性石墨烯复合材料及其制备和应用
CN104888750A (zh) * 2015-04-24 2015-09-09 北京理工大学 一种活性炭纤维负载二氧化钛复合光催化材料及其制备方法与应用
CN106179247A (zh) * 2016-08-08 2016-12-07 东北农业大学 一种六价铬吸附剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUVARAJ HALDORAI ET AL.: "Fabrication of nano TiO2 @graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants", 《SYNTHETIC METALS》 *
张立德等: "《纳米材料和纳米结构》", 28 February 2001 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108246334A (zh) * 2018-01-30 2018-07-06 中南林业科技大学 一种功能化三元复合光催化材料及其制备方法与用途
CN108246334B (zh) * 2018-01-30 2021-04-09 中南林业科技大学 一种功能化三元复合光催化材料及其制备方法与用途
CN109433178A (zh) * 2018-10-22 2019-03-08 南京稞之朗环保科技有限公司 一种二氧化钛-氧化石墨烯的载体光催化剂及其制备方法
CN110064346A (zh) * 2019-05-21 2019-07-30 华南理工大学 一种二氧化钛/硫化锌镉石墨烯气凝胶及其制备方法与应用
CN111992179A (zh) * 2020-07-22 2020-11-27 山东尚科环境工程有限公司 一种化学改性氧化石墨烯离子型污水处理剂及制备方法
CN113398916A (zh) * 2021-06-28 2021-09-17 四川大学 以废弃含铬革屑制备过硫酸盐催化剂的方法及应用
CN113398916B (zh) * 2021-06-28 2023-04-11 四川大学 以废弃含铬革屑制备过硫酸盐催化剂的方法及应用

Similar Documents

Publication Publication Date Title
CN106732356A (zh) 一种氧化石墨烯负载二氧化钛耦合材料的制备方法及应用
Soltani et al. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst
Jia et al. The BiOCl/diatomite composites for rapid photocatalytic degradation of ciprofloxacin: Efficiency, toxicity evaluation, mechanisms and pathways
Li et al. Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide
Fan et al. Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism
Balarak et al. Photocatalytic degradation of amoxicillin using UV/Synthesized NiO from pharmaceutical wastewater
Fan et al. Photocatalytic inactivation of harmful algae and degradation of cyanotoxins microcystin-LR using GO-based Z-scheme nanocatalysts under visible light
Doudrick et al. Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100)
CN106423272B (zh) 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
Kim et al. Simultaneously photocatalytic treatment of hexavalent chromium (Cr (VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation
Han et al. Chapter green nanotechnology: development of nanomaterials for environmental and energy applications
Vadivel et al. Facile synthesis of broom stick like FeOCl/g-C3N5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants
Fawzy et al. Effective photocatalytic degradation of amoxicillin using MIL-53 (Al)/ZnO composite
CN103920459B (zh) 以硅酸盐粘土与稻壳为原料制备高效吸附复合材料的方法
Choina et al. Removal of hazardous pharmaceutical from water by photocatalytic treatment
Xiao et al. Graphitic carbon nitride for photocatalytic degradation of sulfamethazine in aqueous solution under simulated sunlight irradiation
Abromaitis et al. Ozone-enhanced TiO2 nanotube arrays for the removal of COVID-19 aided antibiotic ciprofloxacin from water: Process implications and toxicological evaluation
Jalloul et al. Antibiotics contaminated irrigation water: an overview on its impact on edible crops and visible light active titania as potential photocatalysts for irrigation water treatment
Zhu et al. Visible light photocatalytic reduction of Cr (VI) over polyimide in the presence of small molecule carboxylic acids
He et al. Water-soluble natural organic acid for highly efficient photoreduction of hexavalent chromium
CN106111105B (zh) 一种用于处理抗生素废水的复合催化剂及其制备方法和应用
Thamarai et al. Emerging trends and promising prospects in nanotechnology for improved remediation of wastewater contaminants: Present and future outlooks
CN113354059B (zh) 一种利用无定形红磷促进三价铁/过氧化氢体系降解环境污染物的方法
CN107537467A (zh) 一种钨酸铋基异质结光催化剂的制备方法
Chen et al. Synthesis of Surfactant-Assisted C/Fe–FeVO4 Nanostructure: Characterization and Photocatalytic Degradation of Ciprofloxacin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication