CN106712097A - 一种含大规模风电场的电力***暂态稳定风险评估方法 - Google Patents

一种含大规模风电场的电力***暂态稳定风险评估方法 Download PDF

Info

Publication number
CN106712097A
CN106712097A CN201710076646.1A CN201710076646A CN106712097A CN 106712097 A CN106712097 A CN 106712097A CN 201710076646 A CN201710076646 A CN 201710076646A CN 106712097 A CN106712097 A CN 106712097A
Authority
CN
China
Prior art keywords
wind speed
fault
scene
wind
speed scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710076646.1A
Other languages
English (en)
Inventor
何廷
何廷一
李胜男
吴水军
彭俊臻
刘明群
陈勇
和鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Yunnan Power System Ltd
Original Assignee
Electric Power Research Institute of Yunnan Power System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Yunnan Power System Ltd filed Critical Electric Power Research Institute of Yunnan Power System Ltd
Priority to CN201710076646.1A priority Critical patent/CN106712097A/zh
Publication of CN106712097A publication Critical patent/CN106712097A/zh
Pending legal-status Critical Current

Links

Classifications

    • H02J3/386
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种含大规模风电场的电力***暂态稳定风险评估方法,所述方法包括:建立电网故障不确定性模型,根据电网故障获得预想故障集;计算预想故障集的故障发生概率;模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率;对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,计算得到故障严重程度;计算各场景下的风险指标,并根据各场景的风险指标获得总的暂态稳定风险指标。该评估方法综合考虑了风速的不确定性和***故障状态的不确定性,采用场景模拟和区间概率分析方法,在各风速场景下研究***暂态稳定性,解决了传统方法时间开销大的缺点;度量故障严重程度的方法更符合客观实际。

Description

一种含大规模风电场的电力***暂态稳定风险评估方法
技术领域
本发明涉及电力***暂态稳定风险评估技术领域,尤其涉及一种含大规模风电场的电力***暂态稳定风险评估方法。
背景技术
随着能源和环境问题日益严峻,可再生能源的利用受到越来越多的关注。其中,风力发电是可再生能源中发展最快,也最为成熟的发电技术。随着风电场规模和容量不断增大,风电接入后对电力***安全稳定的影响已不容忽视。在大规模风电并网后,给整个电力***安全稳定运行带来的诸多问题中,***暂态稳定风险值得重点关注,其对于保证风电的有效接入和电网安全具有重要意义。
现有的研究风电并网对电力***暂态稳定影响的方法主要可以分为两大类:一类是在给定风速和故障状态下,通过时域仿真的方法得出相应结论,这类方法虽然可以得到一些有价值的结论,但忽略了风速以及电网故障的不确定性。另一类方法考虑风电场出力等不确定性因素的影响,对***进行暂态稳定概率评估,这类方法虽考虑了***的不确定性,但未对暂态稳定的后果进行定量分析,使评估结果不够完善。
风险评估方法是对事件发生可能性和后果严重程度的综合度量,已被广泛应用于电力***的安全评估中。尽管有部分技术涉及了含风电场的暂态稳定风险评估问题,但均面临以下几方面的问题:1,在考虑电力***的不确定因素时缺乏完整性;2,在度量暂态稳定后果严重程度时,往往采用***状态变量的线性函数刻画故障严重程度,这种刻画方法可能会导致一些后果十分严重,但发生概率不大的故障被淹没,使评估结果不符合客观实际;3,由于考虑了不确定性,已有方法大多采用蒙特卡洛法进行抽样评估,然而这种抽样方法时间开销巨大,难以应对复杂多变的电网环境。
发明内容
本发明提供了一种含大规模风电场的电力***暂态稳定风险评估方法,以解决目前含风电场的暂态稳定风险评估存在的不确定性因素不完整、评估结果不符合客观实际等问题。
本发明提供了一种含大规模风电场的电力***暂态稳定风险评估方法,所述方法包括:
设定风电场并网容量与并网点,建立电网故障不确定性模型,根据所述电网故障不确定性模型获得预想故障集;
计算所述预想故障集的故障发生概率;
模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率;
对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度;
根据所述故障发生概率、风速区间概率和故障严重程度获得风速场景的风险指标,并根据各风速场景的风险指标获得总的暂态稳定风险指标。
优选地,所述根据所述电网故障不确定性模型获得预想故障集,具体包括:
对电网中所有线路进行故障扫描筛选,并结合电网历史故障,获得预想故障集。
优选地,所述模拟典型风速场景,之后包括:
模拟典型风速场景,获得风速分布函数,对所述风速分布函数进行自适应估计,更新风速模型。
优选地,所述模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率,具体包括:
模拟典型风速场景,将风速场景中的风速样本划分为等间隔区间;
计算所述区间的概率值,并将所述概率值作为所述区间中心风速的概率大小。
优选地,所述对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度,之前包括:
获得风速场景,根据各风速场景的风速大小计算得到风电场出力;
获得所述风电场出力后,将所述风电场出力作为负的负荷接入***,计算得到***的潮流。
优选地,所述对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度,具体包括:
对所述各风速场景和故障场景进行时域仿真分析,得到各风速场景下的***功角曲线;
基于测度论和非线性效用理论,根据所述***功角曲线构建功角偏差效用函数,计算得到所述故障严重程度。
优选地,所述根据各风速场景的风险指标获得总的暂态稳定风险指标,具体包括:
根据故障场景下的故障发生概率和风速场景下的风速区间故障、故障严重程度计算得到所述风速场景下的风险指标;
枚举风速场景和故障场景的风险指标,得到***总的暂态稳定风险指标。
本发明提供的技术方案可以包括以下有益效果:
本发明提供的含大规模风电场的电力***暂态稳定风险评估方法包括:设定风电场并网容量与并网点,建立电网故障不确定性模型,根据电网故障不确定性模型获得预想故障集;计算预想故障集中故障发生概率;模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率;对各风速场景和故障场景进行时域仿真分析,计算得到故障严重程度;根据故障发生概率、风速区间概率和故障严重程度获得风速场景的风险指标,并根据各风速场景的风险指标获得总的暂态稳定风险指标。本发明提供的含大规模风电场的电力***暂态稳定风险评估方法综合考虑了风速的不确定性以及***故障状态的不确定性,更能反映实际电网运行的复杂性;根据***功角曲线,基于测度论和非线性效用理论,构建功角偏差效用函数来量化故障严重程度,相比于传统方法更符合客观实际;采用场景模拟方法,在各风速场景下研究***的暂态稳定性,解决了传统方法采用蒙塔卡洛模拟时间开销大的缺点。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种含大规模风电场的电力***暂态稳定风险评估方法的流程示意图;
图2为本发明实施例提供的一种含大规模风电场的电力***暂态稳定风险评估方法中步骤300的详细流程示意图;
图3为本发明实施例提供的一种含大规模风电场的电力***暂态稳定风险评估方法中步骤400的详细流程示意图;
图4为本发明实施例提供的一种含大规模风电场的电力***暂态稳定风险评估方法中故障严重程度与功角偏差的关系图;
图5为本发明实施例提供的一种含大规模风电场的电力***暂态稳定风险评估方法中步骤500的详细流程示意图;
图6为改进新英格兰39节点***单线图。
具体实施方式
参见图1,为本发明实施例提供的一种含大规模风电场的电力***暂态稳定风险评估方法的流程图。
S100:设定风电场并网容量与并网点,建立电网故障不确定性模型,根据电网故障不确定性模型获得预想故障集。
具体地,风电场并网容量与并网点是事先人为设定的,可以研究不同并网容量和并网点风电场对***风险的影响,为***的规划提供有益参考。建立电网故障不确定性模型,考虑到电网中大多数线路故障时,***仍能保持稳定性,只有少数线路故障对***的暂态稳定影响严重,因此对***所有线路进行故障扫描,并结合电网历史故障和运行状况,选出故障发生概率前五和故障严重程度前五的故障一起构成预想故障集。
S200:计算所述预想故障集的故障发生概率。
具体地,***的故障发生符合泊松分布,利用历史数据进行参数计算,并根据计算得到的概率分布函数定量计算故障发生概率,因此预想故障集的故障发生概率可表示为:
Pr(Ei)=1-exp(-λi) (1)
其中:λi——线路i的故障率,通过线路的历史统计数据计算得到。
充分考虑***故障状态不确定性对***暂态稳定风险评估的影响,并据此计算故障发生概率。
S300:模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率。
具体地,统计研究地点的历史风速数据,以建立风速模型,并对风速模型进行分布函数自适应估计,及时更新风速模型。风速分布函数是指风速的概率分布函数,进行自适应估计是指利用风电场所在地区的历史风速大小对风速概率分布的参数进行估计,并根据自适应最小二乘法不断收集到的风速值自适应地对参数进行更新,使风速模型更为可靠。
风速采用威布尔分布,此分布是描述风速随机性最常用的分布,其表达式如下:
其中:vw——风速大小;
c——尺度参数;
k——形状参数。
公式(2)反映了平均风速大小。根据风速模型模拟典型风速场景,计算风速区间概率的具体方法如图2所示:
S301:模拟典型风速场景,将风速场景中的风速样本划分为等间隔区间。
S302:计算所述区间的概率值,并将所述概率值作为所述区间中心风速的概率大小。
具体地,模拟典型风速场景,根据历史风速建立不同风速场景的区间概率模型,将风速样本划分为等间隔区间(vw1,vw2),通过威布尔累计分布函数求得所给区间的概率值大小,并用该区间的中心风速代替该风速区间,此区间的概率值也就是该中心风速的概率大小。风速区间概率的计算公式为:
充分考虑了风速不确定性对电力***暂态稳定风险评估的影响,并利用场景模拟法和区间概率模型刻画风速的不确定性,避免了传统方法时间开销大的缺点。
获得风速场景以后,根据各风速场景的风速大小计算得到风电机组的出力,其函数关系式如下:
其中:Pwr——风电机组的额定功率;
vin——切入风速;
vout——切出风速;
vr——额定风速;
n——风速-功率系数,其理想值为3。
得到风电场出力后,将风电场出力最为负的负荷接入***,计算得到***的潮流。潮流反映电力***运行状态,是指电力***各节点的有功、无功、电压和相角等电气量。潮流计算的结果是电力***稳定计算和故障分析的基础。计算潮流的方法主要有牛顿拉夫逊和PQ解耦法(快速解耦法),本技术方案采用的是牛顿拉夫逊算法。
S400:对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度。
具体地,基于测度论和非线性效用理论,建立非线性效用测度函数,借鉴效用理论的思想刻画故障严重程度,具体方法如图3所示:
S401:对所述各风速场景和故障场景进行时域仿真分析,得到各风速场景下的***功角曲线。
S402:基于测度论和非线性效用理论,根据所述***功角曲线构建功角偏差效用函数,计算得到所述故障严重程度。
具体地,时域仿真是指通过数值计算的方法计算电力***的动态特性曲线,本技术方案利用时域仿真方法计算***发生故障的功角曲线,以功角摇摆大小作为判断暂态稳定的基本依据,通过功角偏差效用函数刻画调度运行人员对功角摇摆程度的不满意程度,并以此作为刻画故障严重程度的测度,可以用下式的指数型效用函数加以刻画:
其中:|Δδmax|——仿真时限内发电机相对于惯量中心最大偏移角的绝对值;
δth——设定的功角偏差阈值,本文设置为π;
α——大于0的常数。
故障严重程度与功角偏差的关系可用如图4所示的曲线表示。
以调度运行人员对***运行状态的感知为出发点,利用测度论和非线性效用理论,通过构建功角摇摆的非线性效用测度函数,量化故障严重程度,更符合客观实际。
S500:根据所述故障发生概率、风速区间概率和故障严重程度获得风速场景的风险指标,并根据各风速场景的风险指标获得总的暂态稳定风险指标。
具体地,获得整个***的暂态稳定风险指标的具体方法如图5所示:
S501:根据故障场景下的故障发生概率和风速场景下的风速区间概率、故障严重程度计算得到所述风速场景下的风险指标。
S502:枚举风速场景和故障场景的风险指标,得到***总的暂态稳定风险指标。
具体地,采用场景模拟方法,分别获得各风速场景下的暂态稳定风险指标,再累加计算***总的暂态稳定风险指标,以解决传统方法采用蒙塔卡洛模拟时间开销大的缺点。
某个风速场景下的暂态稳定风险指标计算公式为:
Rij=Pr(Ei)Pr(vwj)Sevij (6)
枚举所有风速场景和故障场景,计算得到***总的暂态稳定风险指标,计算公式为:
其中:Nl——故障场景总数;
Nw——风速场景总数。
以改进的新英格兰39节点***为例对上述方法进行验证,该***的单线图如图6所示,假设风电场的并网点为8号节点,表1给出了预想故障集包含的10条支路。
表1预想故障集
利用本发明对含风电场和不含风电场的电力***进行暂态稳定风险评估,其对比结果如表2。
表2含风电场与不含风电场的风险对比
由表2可知,接入风电场后,电力***的暂态稳定风险降低,主要是因为风电场接入导致***等效负荷的减少,降低了暂态稳定风险。
表3给出了不同风电并网容量对***暂态稳定风险大小的影响以及相同容量增量导致的风险值减小量。
表3不同风电并网容量的***暂态稳定风险值大小与减小量
由表3可知,当风电并网容量增加时,***风险不断减小。另外,随着风电并网容量的增加,相同容量增量导致的风险减小量不断降低,呈现逐渐饱和的趋势。
从上述实施例可以看出,本发明提供的含大规模风电场的电力***暂态稳定风险评估方法包括:设定风电场并网容量与并网点,研究不同并网容量和并网点对电力***暂态稳定风险指标的影响;建立电网故障不确定性模型,根据电网故障不确定性模型获得预想故障集,计算预想故障集的故障发生概率,充分考虑***故障状态不确定性对电力***暂态稳定风险评估的影响;模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率,利用场景模拟法和区间概率模型刻画风速的不确定性,避免了传统方法时间开销大的缺点;对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度,利用测度论和非线性效用理论,通过时域仿真构建功角摇摆的非线性效用测度函数,量化故障严重程度,更符合客观实际。
本领域技术人员在考虑说明书及实践这里发明的公开后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (7)

1.一种含大规模风电场的电力***暂态稳定风险评估方法,其特征在于,所述方法包括:
设定风电场并网容量与并网点,建立电网故障不确定性模型,根据所述电网故障不确定性模型获得预想故障集;
计算所述预想故障集的故障发生概率;
模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率;
对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度;
根据所述故障发生概率、风速区间概率和故障严重程度获得风速场景的风险指标,并根据各风速场景的风险指标获得总的暂态稳定风险指标。
2.根据权利要求1所述的方法,其特征在于,所述根据所述电网故障不确定性模型获得预想故障集,具体包括:
对电网中所有线路进行故障扫描筛选,并结合电网历史故障,获得预想故障集。
3.根据权利要求1所述的方法,其特征在于,所述模拟典型风速场景,之后包括:
模拟典型风速场景,获得风速分布函数,对所述风速分布函数进行自适应估计,更新风速模型。
4.根据权利要求1所述的方法,其特征在于,所述模拟典型风速场景,对风速样本进行区间划分,计算风速区间概率,具体包括:
模拟典型风速场景,将风速场景中的风速样本划分为等间隔区间;
计算所述区间的概率值,并将所述概率值作为所述区间中心风速的概率大小。
5.根据权利要求1所述的方法,其特征在于,所述对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度,之前包括:
获得风速场景,根据各风速场景的风速大小计算得到风电场出力;
获得所述风电场出力后,将所述风电场出力作为负的负荷接入***,计算得到***的潮流。
6.根据权利要求5所述的方法,其特征在于,所述对各风速场景和故障场景进行时域仿真分析,构建非线性效用函数,获得故障严重程度,具体包括:
对所述各风速场景和故障场景进行时域仿真分析,得到各风速场景下的***功角曲线;
基于测度论和非线性效用理论,根据所述***功角曲线构建功角偏差效用函数,计算得到所述故障严重程度。
7.根据权利要求1-6任一项所述的方法,其特征在于,所述根据各风速场景的风险指标获得总的暂态稳定风险指标,具体包括:
根据故障场景下的故障发生概率和风速场景下的风速区间故障、故障严重程度计算得到所述风速场景下的风险指标;
枚举风速场景和故障场景的风险指标,得到***总的暂态稳定风险指标。
CN201710076646.1A 2017-02-13 2017-02-13 一种含大规模风电场的电力***暂态稳定风险评估方法 Pending CN106712097A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710076646.1A CN106712097A (zh) 2017-02-13 2017-02-13 一种含大规模风电场的电力***暂态稳定风险评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710076646.1A CN106712097A (zh) 2017-02-13 2017-02-13 一种含大规模风电场的电力***暂态稳定风险评估方法

Publications (1)

Publication Number Publication Date
CN106712097A true CN106712097A (zh) 2017-05-24

Family

ID=58910824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710076646.1A Pending CN106712097A (zh) 2017-02-13 2017-02-13 一种含大规模风电场的电力***暂态稳定风险评估方法

Country Status (1)

Country Link
CN (1) CN106712097A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074048A (zh) * 2018-02-06 2018-05-25 国网四川省电力公司技能培训中心 计入风速相关特性的风电并网电力***安全风险评估方法
CN109524982A (zh) * 2018-12-12 2019-03-26 国网山东省电力公司电力科学研究院 一种交直流电网暂态稳定风险评估方法
CN109559019A (zh) * 2018-11-01 2019-04-02 三峡大学 一种基于风险指数的电力***动态安全评估方法
CN109638810A (zh) * 2018-11-02 2019-04-16 中国电力科学研究院有限公司 一种基于电力***暂态稳定的储能规划方法及***
CN109711450A (zh) * 2018-12-20 2019-05-03 北京科东电力控制***有限责任公司 一种电网预想故障集预测方法、装置、电子设备及存储介质
CN110445174A (zh) * 2019-08-12 2019-11-12 电子科技大学 一种考虑随机风速影响的风电场***暂态稳定性评估方法
CN112653139A (zh) * 2020-12-16 2021-04-13 国电南瑞科技股份有限公司 非同步有功设备的暂态功角稳定影响度计算方法及***
CN112800683A (zh) * 2021-03-10 2021-05-14 广东电网有限责任公司电力调度控制中心 基于卷积神经网络的***短路电流水平评估方法及***
CN113765153A (zh) * 2021-08-24 2021-12-07 国网电力科学研究院有限公司 一种基于风险评估的新能源极限接入能力计算方法及***
CN113903958A (zh) * 2021-09-30 2022-01-07 国网上海市电力公司 一种风光制氢燃料电池集成装置的仿真方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104978608A (zh) * 2015-06-24 2015-10-14 云南电网有限责任公司电力科学研究院 一种风电功率预测装置及预测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104978608A (zh) * 2015-06-24 2015-10-14 云南电网有限责任公司电力科学研究院 一种风电功率预测装置及预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁立龙: "风电高渗透率电力***的暂态稳定性风险评估与控制", 《中国优秀硕士学位论文全文数据库》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074048A (zh) * 2018-02-06 2018-05-25 国网四川省电力公司技能培训中心 计入风速相关特性的风电并网电力***安全风险评估方法
CN109559019A (zh) * 2018-11-01 2019-04-02 三峡大学 一种基于风险指数的电力***动态安全评估方法
CN109559019B (zh) * 2018-11-01 2021-04-13 三峡大学 一种基于风险指数的电力***动态安全评估方法
CN109638810B (zh) * 2018-11-02 2023-11-14 中国电力科学研究院有限公司 一种基于电力***暂态稳定的储能规划方法及***
CN109638810A (zh) * 2018-11-02 2019-04-16 中国电力科学研究院有限公司 一种基于电力***暂态稳定的储能规划方法及***
CN109524982B (zh) * 2018-12-12 2020-06-16 国网山东省电力公司电力科学研究院 一种交直流电网暂态稳定风险评估方法
CN109524982A (zh) * 2018-12-12 2019-03-26 国网山东省电力公司电力科学研究院 一种交直流电网暂态稳定风险评估方法
CN109711450A (zh) * 2018-12-20 2019-05-03 北京科东电力控制***有限责任公司 一种电网预想故障集预测方法、装置、电子设备及存储介质
CN110445174A (zh) * 2019-08-12 2019-11-12 电子科技大学 一种考虑随机风速影响的风电场***暂态稳定性评估方法
CN112653139A (zh) * 2020-12-16 2021-04-13 国电南瑞科技股份有限公司 非同步有功设备的暂态功角稳定影响度计算方法及***
CN112653139B (zh) * 2020-12-16 2022-08-05 国电南瑞科技股份有限公司 非同步有功设备的暂态功角稳定影响度计算方法及***
CN112800683A (zh) * 2021-03-10 2021-05-14 广东电网有限责任公司电力调度控制中心 基于卷积神经网络的***短路电流水平评估方法及***
CN113765153A (zh) * 2021-08-24 2021-12-07 国网电力科学研究院有限公司 一种基于风险评估的新能源极限接入能力计算方法及***
CN113765153B (zh) * 2021-08-24 2023-09-12 国网电力科学研究院有限公司 一种基于风险评估的新能源极限接入能力计算方法及***
CN113903958A (zh) * 2021-09-30 2022-01-07 国网上海市电力公司 一种风光制氢燃料电池集成装置的仿真方法

Similar Documents

Publication Publication Date Title
CN106712097A (zh) 一种含大规模风电场的电力***暂态稳定风险评估方法
CN103545832B (zh) 一种基于发电预测误差的光伏***储能容量配置方法
CN112636341B (zh) 基于多新息辨识的电力***惯量空间分布估计方法及装置
CN103701120B (zh) 一种含风电场的大电网可靠性的评估方法
CN108667005B (zh) 一种计及新能源影响的电网静动态结合脆弱性评估方法
CN109408603B (zh) 一种基于大数据的台区拓扑图绘制方法
CN102934312B (zh) 能量产生***及其控制
CN104319807B (zh) 一种基于Copula函数获取多风电场容量可信度的方法
Lin et al. Assessment of the power reduction of wind farms under extreme wind condition by a high resolution simulation model
CN103475021B (zh) 一种基于统计模型的风电场弃风电量确定方法
CN103927695A (zh) 基于自学习复合数据源的风电功率超短期预测方法
CN108183512A (zh) 一种接入新能源的电力***的可靠性评估方法
CN105719062B (zh) 一种考虑两重故障概率特性的电网风险及薄弱环节评估方法
CN110147917B (zh) 一种用于电网线路的安全评估及动态调控方法
CN103996147A (zh) 配电网综合评估方法
CN109858793B (zh) 电力***风险评估指标体系构建方法
CN105356462B (zh) 风电场谐波预测评估方法
CN104156889A (zh) 一种基于wams数据的风电场性能评估***及其评估方法
CN105069236A (zh) 考虑风电场节点空间相关性的广义负荷联合概率建模方法
CN113569411A (zh) 一种面向灾害天气的电网运行风险态势感知方法
CN106611243A (zh) 一种基于garch模型的风速预测残差修正方法
CN110518632B (zh) 一种风电场并网对电网惯量削弱的定量计算方法
CN103927597A (zh) 基于自回归滑动平均模型的风电功率超短期预测方法
CN105678642A (zh) 一种电力***连锁故障风险辨识法
Wang et al. Analysis of wind farm output characteristics based on descriptive statistical analysis and envelope domain

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170524