CN106711254A - 一种直径可调铋纳米线阵列的制备方法 - Google Patents

一种直径可调铋纳米线阵列的制备方法 Download PDF

Info

Publication number
CN106711254A
CN106711254A CN201611216995.0A CN201611216995A CN106711254A CN 106711254 A CN106711254 A CN 106711254A CN 201611216995 A CN201611216995 A CN 201611216995A CN 106711254 A CN106711254 A CN 106711254A
Authority
CN
China
Prior art keywords
bismuth
nano
diameter
adjustable
wire array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611216995.0A
Other languages
English (en)
Other versions
CN106711254B (zh
Inventor
金立川
方觉
张怀武
肖勇
洪彩云
唐晓莉
钟智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201611216995.0A priority Critical patent/CN106711254B/zh
Publication of CN106711254A publication Critical patent/CN106711254A/zh
Application granted granted Critical
Publication of CN106711254B publication Critical patent/CN106711254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种直径可调铋纳米线阵列的制备方法,属于材料技术领域。所述直径可调的铋纳米线阵列,自下而上依次为半导体基片、铋纳米线阵列、锡纳米液滴,所述锡纳米液滴位于铋纳米线顶端;所述铋纳米线阵列的直径通过锡纳米液滴的大小进行调节,长度通过生长时间调节。本发明方法可实现在半导体衬底上制备大面积的直径在20~300nm范围可调的铋纳米线阵列,且得到的铋纳米线阵列在250~800nm光波长范围的吸收率大于80%,在高效光电转换器件和光电探测器领域具有重要的应用价值;并且本发明提供的直径可调铋纳米线阵列的制备方法简单易行,能够与半导体工艺兼容。

Description

一种直径可调铋纳米线阵列的制备方法
技术领域
本发明属于材料技术领域,具体涉及一种直径可调铋纳米线阵列的制备方法。
背景技术
纳米线是一种直径大小为纳米数量级的纳米结构,也可以指高长宽比(1000以上)的纳米结构,或者定义为长度没有限制、直径限制在几十纳米以内的结构。在纳米尺度下,量子效应比较明显,具有不同于块状或三维材料的独特性质,使其受到了人们的广泛关注。
铋(Bi)纳米线因为其特有的布里渊区各向异性电子能带,其量子限制效应可以通过纳米线的直径来高效调节,从而实现半金属到半导体的转换,这对获得高的热电转换效率具有重要的价值。因此,调控Bi纳米线的直径就成了一个关键的技术问题。然而,现有的Bi纳米线制备技术,主要有多孔氧化铝模板法、采用Bi薄膜的自生长法、电子束刻蚀法等,均需要借助外界模板获得不同直径的Bi纳米线,价格昂贵,生长工艺复杂。
发明内容
本发明针对背景技术存在的缺陷,提出了一种简单易行的直径可调铋纳米线阵列的制备方法。本发明方法可实现在半导体衬底上制备大面积的直径在20~300nm范围可调的铋纳米线阵列,且得到的铋纳米线阵列在250~800nm光波长范围的吸收率大于80%,在高效光电转换器件和光电探测器领域具有重要的应用价值;并且本发明提供的直径可调铋纳米线阵列的制备方法简单易行,能够与半导体工艺兼容。
本发明的技术方案如下:
一种直径可调的铋纳米线阵列,如图2所示,自下而上依次为半导体基片、铋纳米线阵列、锡纳米液滴,所述锡纳米液滴位于铋纳米线顶端;所述铋纳米线阵列的直径通过锡纳米液滴的大小进行调节,长度通过生长时间调节。
进一步地,所述半导体基片为抛光单晶基片,具体为硅或锗等,其表面粗糙度低于0.5nm。
一种直径可调的铋纳米线阵列的制备方法,如图1所示,包括以下步骤:
步骤1、清洗半导体基片:将半导体基片依次在氢氟酸溶液、去离子水、丙酮中超声清洗,氮气吹干;
步骤2、通过分子束外延的方式在步骤1清洗干净的半导体基片上生长直径可调的铋纳米线阵列:
2-1.将半导体基片装入分子束外延腔室,抽真空至10-10Torr以下;
2-2.将锡源以每分钟7℃的速度升温至1000~1100℃,铋源以每分钟3℃的速度升温至450~500℃,半导体基片以每分钟5℃的速度升温至300~350℃;
2-3.打开锡源,同时基片以0.2~2转/秒的速度匀速旋转,以保证锡纳米液滴的均匀性;
2-4. 5~30min后关闭锡源,即可得到直径从20~300nm可调的锡纳米液滴,然后打开铋源,基片仍然以0.2~2转/秒的速度匀速旋转,通过锡纳米液滴诱导生长铋纳米线阵列;
2-5. 120~240min后关闭铋源,然后将半导体基片、锡源和铋源以每分钟7℃的速度降温至常温,即可得到本发明所述直径可调的铋纳米线阵列。
进一步地,步骤2所述锡源为纯度不低于99.99wt%的锡,所述铋源为纯度不低于99.99wt%的铋。
本发明还提供了上述直径可调的铋纳米线阵列在高灵敏度光电探测器以及太阳能电池中的应用。
本发明制备铋纳米线阵列的原理为:在较高的基片温度下,利用锡的熔点低的物性,在半导体基片表面形成直径在纳米量级的金属锡液滴,作为后续铋纳米线生长的催化剂;然后在这些纳米液滴的基础上沿着垂直基片方向生长铋,形成铋纳米线阵列。铋纳米线阵列的直径可通过锡纳米液滴的大小进行调节,长度通过生长时间调节,生长过程中无需借助外界模板,工艺简单,且锡成本较低,易于实现大面积制备生产。
本发明的有益效果为:
本发明采用超高真空(小于10-10Torr)分子束外延技术,利用纳米级尺寸的锡液滴作为催化剂,在半导体基片上生长直径可调的铋纳米线阵列,具有制备方法简单、铋纳米线直径可在20~300nm范围调节、能够大面积生长的优点,且该方法制备的铋纳米线阵列在250~800nm波长范围的光学吸收率大于80%,在超薄光电探测器、太阳能电池等领域有着广泛的应用前景。
附图说明
图1为本发明实施例直径可调的铋纳米线阵列的制备方法流程示意图;
图2为本发明直径可调的铋纳米线阵列的生长示意图;
图3为本发明实施例得到的直径可调的铋纳米线阵列的原子力显微镜测试结果;
图4为本发明实施例得到的直径可调的铋纳米线阵列的光学吸收率测试结果。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例
一种直径可调的铋纳米线阵列,如图2所示,包括半导体基片、铋纳米线阵列、锡纳米液滴,所述铋纳米线位于半导体基片和锡纳米液滴之间,所述锡纳米液滴位于铋纳米线顶端;所述铋纳米线阵列的直径通过锡纳米液滴的大小进行调节,长度通过铋的生长时间调节。
一种直径可调的铋纳米线阵列的制备方法,如图1所示,包括以下步骤:
步骤1、清洗硅基片:
1-1.将硅基片在氢氟酸与去离子水的体积比为1:10的氢氟酸溶液中超声清洗15min;
1-2.将上步处理后的硅基片在去离子水中超声清洗10min;
1-3.将上步处理后的硅基片在丙酮中超声清洗15min,然后采用氮气吹干备用;
步骤2、通过分子束外延的方式在步骤1清洗干净的硅基片上生长直径可调的铋纳米线阵列:
2-1.将硅基片装入分子束外延腔室,通过机械泵、分子泵、液氦冷凝泵三级真空泵抽真空至10-10Torr以下;
2-2.将锡源以每分钟7℃的速度升温至1100℃,铋源以每分钟3℃的速度升温至500℃,硅基片以每分钟5℃的速度升温至350℃;
2-3.打开锡源,同时基片以0.2转/秒的速度匀速旋转,以保证锡纳米液滴的均匀性;
2-4. 7min后关闭锡源,然后打开铋源,基片仍然以0.2转/秒的速度匀速旋转,此时铋原子将聚集在锡纳米液滴所在的位置,并沿着垂直基片方向生长形成纳米线阵列;
2-5. 200min后关闭铋源,然后将半导体基片、锡源和铋源以每分钟7℃的速度降温至常温,即可得到本发明所述直径可调的铋纳米线阵列。
图3为实施例得到的直径可调的铋纳米线阵列的原子力显微镜测试结果;由如图3可知,实施例得到了分布均匀的铋纳米线阵列,长度约为200nm,半径约为20nm。图4为实施例得到的直径可调的铋纳米线阵列的光学吸收率测试结果,表明得到的铋纳米线阵列在250~800nm范围内的光学吸收率高于80%,在高效光电转换器件和光电探测器领域具有重要的应用价值。

Claims (5)

1.一种直径可调的铋纳米线阵列,自下而上依次为半导体基片、铋纳米线阵列、锡纳米液滴,所述锡纳米液滴位于铋纳米线顶端;所述铋纳米线阵列的直径通过锡纳米液滴的大小进行调节,长度通过生长时间调节。
2.根据权利要求1所述的直径可调的铋纳米线阵列,其特征在于,所述半导体基片为抛光单晶基片,具体为硅或锗,其表面粗糙度低于0.5nm。
3.一种直径可调的铋纳米线阵列的制备方法,包括以下步骤:
步骤1、清洗半导体基片:将半导体基片依次在氢氟酸溶液、去离子水、丙酮中超声清洗,氮气吹干;
步骤2、通过分子束外延的方式在步骤1清洗干净的半导体基片上生长直径可调的铋纳米线阵列:
2-1.将半导体基片装入分子束外延腔室,抽真空至10-10Torr以下;
2-2.将锡源以每分钟7℃的速度升温至1000~1100℃,铋源以每分钟3℃的速度升温至450~500℃,半导体基片以每分钟5℃的速度升温至300~350℃;
2-3.打开锡源,同时基片以0.2~2转/秒的速度匀速旋转,以保证锡纳米液滴的均匀性;
2-4.5~30min后关闭锡源,即可得到直径从20~300nm可调的锡纳米液滴,然后打开铋源,基片仍然以0.2~2转/秒的速度匀速旋转,通过锡纳米液滴诱导生长铋纳米线阵列;
2-5.120~240min后关闭铋源,然后将半导体基片、锡源和铋源以每分钟7℃的速度降温至常温,即可得到本发明所述直径可调的铋纳米线阵列。
4.根据权利要求3所述的直径可调的铋纳米线阵列的制备方法,其特征在于,步骤2所述锡源为纯度不低于99.99wt%的锡,所述铋源为纯度不低于99.99wt%的铋。
5.权利要求1至4中任一项所述直径可调的铋纳米线阵列在高灵敏度光电探测器以及太阳能电池中的应用。
CN201611216995.0A 2016-12-26 2016-12-26 一种直径可调铋纳米线阵列的制备方法 Active CN106711254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611216995.0A CN106711254B (zh) 2016-12-26 2016-12-26 一种直径可调铋纳米线阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611216995.0A CN106711254B (zh) 2016-12-26 2016-12-26 一种直径可调铋纳米线阵列的制备方法

Publications (2)

Publication Number Publication Date
CN106711254A true CN106711254A (zh) 2017-05-24
CN106711254B CN106711254B (zh) 2018-04-06

Family

ID=58903415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611216995.0A Active CN106711254B (zh) 2016-12-26 2016-12-26 一种直径可调铋纳米线阵列的制备方法

Country Status (1)

Country Link
CN (1) CN106711254B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995468A (zh) * 2006-12-18 2007-07-11 天津理工大学 一种直径可控的金属纳米线阵列的制备方法
CN105908214A (zh) * 2016-06-08 2016-08-31 天津理工大学 单质金属铋纳米颗粒的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995468A (zh) * 2006-12-18 2007-07-11 天津理工大学 一种直径可控的金属纳米线阵列的制备方法
CN105908214A (zh) * 2016-06-08 2016-08-31 天津理工大学 单质金属铋纳米颗粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO GUOZHONG: "《Nanostructures And Nanomatetials,Synthesis,Properties And Applications》", 31 December 2004, IMPERIAL COLLEGE PRESS *

Also Published As

Publication number Publication date
CN106711254B (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
Heiss et al. III–V nanowire arrays: growth and light interaction
Tan et al. Nano-fabrication methods and novel applications of black silicon
CN108023017A (zh) 一种有机无机复合钙钛矿材料的单晶薄膜及其制备方法和应用
Khadayeir et al. The effect of substrate temperature on the physical properties of copper oxide films
CN104475116B (zh) 二氧化锡纳米线修饰的三氧化二铁纳米棒阵列的制备方法
CN113097319B (zh) 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
Mukherjee et al. Band gap tuning and room-temperature photoluminescence of a physically self-assembled Cu2O nanocolumn array
Ramelan et al. ZnO wide bandgap semiconductors preparation for optoelectronic devices
CN106981531B (zh) 一种三维纳米结构阵列、制备方法及其应用
CN103296141A (zh) 一种枝状异质结纳米线阵列结构材料的制备方法
CN103232172B (zh) 大面积制备二氧化钛纳米中空球有序薄膜的方法
CN108821326B (zh) 一种ZnO纳米材料、及其制备方法
CN107706248A (zh) 一种硅纳米结构异质结太阳电池及其制备方法
Nichkalo et al. Fabrication and characterization of high-performance anti-reflecting nanotextured Si surfaces for solar cells
CN106711254B (zh) 一种直径可调铋纳米线阵列的制备方法
Morkoç Karadeniz et al. A comparative study on structural and optical properties of ZnO micro-nanorod arrays grown on seed layers using chemical bath deposition and spin coating methods
CN101994149A (zh) 一种ZnO纳米棒阵列尺寸可控生长方法
CN112582486B (zh) 一种NiO紫外光电探测器及其制备方法
CN102199770B (zh) 一种大面积制备氧化锌纳米棒阵列的方法
Wang et al. Design and fabrication of new wide-band and wide-angle solar cell absorbing layer
CN112864260A (zh) SnSe2/H-TiO2异质结光电探测器件及其制备方法
CN105529242A (zh) 一种制备珠串形单晶硅纳米线的方法
Singh et al. Growth mechanism and characteristics of semiconductor nanowires for photonic devices
CN104310403B (zh) 一种窄带发光黄色纳米硅颗粒的制备方法
Mohummed Noori Chemical beam epitaxy growth of III–V semiconductor nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant