CN106708056A - 四轮麦克纳姆轮巡检机器人运动控制方法 - Google Patents

四轮麦克纳姆轮巡检机器人运动控制方法 Download PDF

Info

Publication number
CN106708056A
CN106708056A CN201710076302.0A CN201710076302A CN106708056A CN 106708056 A CN106708056 A CN 106708056A CN 201710076302 A CN201710076302 A CN 201710076302A CN 106708056 A CN106708056 A CN 106708056A
Authority
CN
China
Prior art keywords
crusing robot
mecanum wheel
velocity
wheel
mecanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710076302.0A
Other languages
English (en)
Inventor
周谊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Super Technology Co Ltd
Original Assignee
Sichuan Super Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Super Technology Co Ltd filed Critical Sichuan Super Technology Co Ltd
Priority to CN201710076302.0A priority Critical patent/CN106708056A/zh
Publication of CN106708056A publication Critical patent/CN106708056A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种四轮麦克纳姆轮巡检机器人运动控制方法。其包括将巡检机器人的运动分解为三个独立分量,计算巡检机器人的各个麦克纳姆轮的轴心速度,计算巡检机器人的各个麦克纳姆轮的平行速度,计算巡检机器人的各个麦克纳姆轮的转动速度,控制巡检机器人在平面内运动。本发明可以让巡检机器人在平面上完成任意方向的运动,而无需让巡检机器人绕某一圆心旋转,从而有效的提高了巡检机器人运动效率,使得巡检机器人能在更小的空间完成就地转向、横向移动和按照一定角度斜线运动,避免了普通橡胶轮胎运动的不足。

Description

四轮麦克纳姆轮巡检机器人运动控制方法
技术领域
本发明属于巡检机器人运动控制技术领域,尤其涉及一种四轮麦克纳姆轮巡检机器人运动控制方法。
背景技术
移动式机器人与固定基座的机器人相比,具有更大、更灵活的工作空间,但同时轮式运动引入了非完整约束。作为一类典型的非完整***,移动机器人的镇定和跟踪问题引起了人们的广泛关注。对非完整约束移动机器人的控制策略的研究成为机器人研究的一个热点。从90年代末期尤其是2000年以后,许多研究者开始关注这一问题,并致力于不确定非完整***的控制研究。相关工作的重点主要是解决***的模型不确定性、外界干扰以及信号的噪声污染、输入受限、转弯半径受限等实际问题,进行相关的鲁棒和自适应控制以及滤波器的设计。研究不确定非完整***镇定和跟踪问题的文献的多样性,主要是因为对不确定性或干扰采用了不同的模型,以及使用了不同的处理方法以取得鲁棒性或适应性。对不确定非完整动力学***进行设计的主要方法有自适应控制、鲁棒控制、鲁棒自适应控制、智能控制等。
轮式移动机器人是一个具有大延迟、高度非线性的复杂***”。建立精确的数学模型十分困难,在进行航向跟踪控制时。参数的变化对***模型的影响较大,其中纵向速度的影响最为明显。轮式移动机器人的一般的控制方法是把期望的航向与机器人的实测航向之间的误差作为控制器的输入偏差。轮式移动机器人的航向与其纵向速度、横向速度、前轮的偏角、机器人绕其重心的转动惯量、重心的位置、前后轮的侧偏系数以及实际的道路情况等诸多因素都有关,因此,对轮式机器人建立动力学模型是比较困难的。
发明内容
本发明的发明目的是:为了解决现有技术中存在的以上问题,本发明提出了一种四轮麦克纳姆轮巡检机器人运动控制方法。
本发明的技术方案是:一种四轮麦克纳姆轮巡检机器人运动控制方法,包括以下步骤:
A、将巡检机器人在平面内的运动分解为X轴平动、Y轴平动、yaw轴自转三个独立分量;
B、计算巡检机器人的各个麦克纳姆轮的轴心速度;
C、将步骤B中巡检机器人的各个麦克纳姆轮的轴心速度分解为沿辊子方向的平行速度和垂直于辊子方向的垂直速度,计算巡检机器人的各个麦克纳姆轮的平行速度;
D、根据步骤C中巡检机器人的各个麦克纳姆轮的平行速度计算巡检机器人的各个麦克纳姆轮的转动速度;
E、根据步骤D中巡检机器人的各个麦克纳姆轮的转动速度控制巡检机器人在平面内运动。
进一步地,所述步骤B计算巡检机器人的各个麦克纳姆轮的轴心速度的计算公式具体为:
其中,为麦克纳姆轮的轴心速度矢量,为巡检机器人的几何中心速度矢量,为yaw轴自转的角速度,为从巡检机器人的几何中心指向麦克纳姆轮的轴心的矢量。
进一步地,所述步骤C中计算巡检机器人的各个麦克纳姆轮的平行速度的计算公式具体为:
其中,为麦克纳姆轮的平行速度矢量,vx为麦克纳姆轮的轴心速度在X轴方向的速度分量,vy为麦克纳姆轮的轴心速度在Y轴方向的速度分量。
进一步地,所述步骤D中计算巡检机器人的各个麦克纳姆轮的转动速度的计算公式具体为:
其中,vω为麦克纳姆轮的转动速度。
本发明的有益效果是:本发明通过将巡检机器人的运动分解为三个独立分量,计算出巡检机器人的各个麦克纳姆轮的轴心速度,从而计算出巡检机器人的各个麦克纳姆轮的转动速度;通过X轴平动、Y轴平动、yaw轴自转三个独立分量的运动结合,可以让巡检机器人在平面上完成任意方向的运动,而无需让巡检机器人绕某一圆心旋转,从而有效的提高了巡检机器人运动效率,使得巡检机器人能在更小的空间完成就地转向、横向移动和按照一定角度斜线运动,避免了普通橡胶轮胎运动的不足。
附图说明
图1是本发明的四轮麦克纳姆轮巡检机器人运动控制方法流程示意图。
图2是本发明实施例中巡检机器人的运动分解示意图。
图3是本发明实施例中巡检机器人的麦克纳姆轮轴心速度示意图。
图4是本发明实施例中巡检机器人的四个麦克纳姆轮轴心速度示意图。
图5是本发明实施例中巡检机器人的麦克纳姆轮轴心速度分解示意图。
图6是本发明实施例中巡检机器人的四个麦克纳姆轮轴心速度分解示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,为本发明的四轮麦克纳姆轮巡检机器人运动控制方法流程示意图。一种四轮麦克纳姆轮巡检机器人运动控制方法,包括以下步骤:
A、将巡检机器人在平面内的运动分解为X轴平动、Y轴平动、yaw轴自转三个独立分量;
B、计算巡检机器人的各个麦克纳姆轮的轴心速度;
C、将步骤B中巡检机器人的各个麦克纳姆轮的轴心速度分解为沿辊子方向的平行速度和垂直于辊子方向的垂直速度,计算巡检机器人的各个麦克纳姆轮的平行速度;
D、根据步骤C中巡检机器人的各个麦克纳姆轮的平行速度计算巡检机器人的各个麦克纳姆轮的转动速度;
E、根据步骤D中巡检机器人的各个麦克纳姆轮的转动速度控制巡检机器人在平面内运动。
在步骤A中,本发明的巡检机器人的各个麦克纳姆轮由两大部分组成:轮毂和辊子(roller)。轮毂是整个轮子的主体支架,辊子则是安装在轮毂上的鼓状物。麦克纳姆轮的轮毂轴与辊子转轴呈45°角。如图2所示,为本发明实施例中巡检机器人的运动分解示意图。本发明将巡检机器人在巡检平面内的运动分解为三个独立分量,分别为:X轴平动、Y轴平动、yaw轴自转。本发明的巡检机器人的四个麦克纳姆轮的速度也是由四个独立的电机提供的。所以四个麦克纳姆轮的合理速度是存在某种约束关系的,逆运动学可以得到唯一解,而正运动学中不符合这个约束关系的方程将无解。
在步骤B中,如图3所示,为本发明实施例中巡检机器人的麦克纳姆轮轴心速度示意图。本发明计算巡检机器人的各个麦克纳姆轮的轴心速度的计算公式具体为:
其中,为麦克纳姆轮的轴心速度矢量,为巡检机器人的几何中心速度矢量,为yaw轴自转的角速度,为从巡检机器人的几何中心指向麦克纳姆轮的轴心的矢量。
再将麦克纳姆轮的轴心速度矢量分别沿X轴方向和Y轴方向进行分解,计算麦克纳姆轮的轴心速度矢量分别沿X轴方向和Y轴方向的分量,表示为:
其中,vx为麦克纳姆轮的轴心速度在X轴方向的速度分量,vy为麦克纳姆轮的轴心速度在Y轴方向的速度分量,为巡检机器人沿X轴方向的速度,为巡检机器人沿Y轴方向的速度,rx沿X轴方向的分量,ry沿X轴方向的分量。
如图4所示,为本发明实施例中巡检机器人的四个麦克纳姆轮轴心速度示意图。根据上述计算方法即可得到巡检机器人的各个麦克纳姆轮的轴心速度。
在步骤C中,如图5所示,为本发明实施例中巡检机器人的麦克纳姆轮轴心速度分解示意图。本发明将步骤B中巡检机器人的各个麦克纳姆轮的轴心速度分解为沿辊子方向的平行速度和垂直于辊子方向的垂直速度,由于垂直于辊子方向的垂直速度对于巡检机器人的运动不会产生影响,因此本发明只需计算巡检机器人的各个麦克纳姆轮的平行速度,计算公式具体为:
其中,为麦克纳姆轮的平行速度矢量,vx为麦克纳姆轮的轴心速度在X轴方向的速度分量,vy为麦克纳姆轮的轴心速度在Y轴方向的速度分量。
在步骤D中,本发明根据步骤C中巡检机器人的各个麦克纳姆轮的平行速度计算巡检机器人的各个麦克纳姆轮的转动速度,计算公式具体为:
其中,vω为麦克纳姆轮的转动速度。
如图6所示,为本发明实施例中巡检机器人的四个麦克纳姆轮轴心速度分解示意图。其中,a为X轴方向上巡检机器人的几何中心至麦克纳姆轮的轴心的距离,b为Y轴方向上巡检机器人的几何中心至麦克纳姆轮的轴心的距离。根据a和b的关系,得到麦克纳姆轮的轴心速度矢量分别沿X轴方向和Y轴方向的分量,表示为:
从而根据巡检机器人的运动状态得到巡检机器人的四个麦克纳姆轮的转动速度,表示为:
其中,为巡检机器人的麦克纳姆轮1的转动速度,为巡检机器人的麦克纳姆轮2的转动速度,为巡检机器人的麦克纳姆轮3的转动速度,为巡检机器人的麦克纳姆轮4的转动速度。
本发明中全向移动巡检机器人是一个纯线性***,而刚体运动又可以线性分解为三个分量,因此只需要计算出麦克纳姆轮巡检机器人在沿X轴平移、沿Y轴平移、绕几何中心自转时,四个麦克纳姆轮的速度,就可以通过加法,计算出这三种简单运动所合成的平动+旋转运动时所需要的四个轮子的转速。
当巡检机器人沿着X轴平移时,巡检机器人的四个麦克纳姆轮的转动速度,表示为:
当巡检机器人沿着Y轴平移时,巡检机器人的四个麦克纳姆轮的转动速度,表示为:
当巡检机器人绕几何中心自转时,巡检机器人的四个麦克纳姆轮的转动速度,表示为:
在步骤E中,本发明根据步骤D中巡检机器人的各个麦克纳姆轮的转动速度控制巡检机器人在平面内运动。
本发明通过将巡检机器人的运动分解为三个独立分量,计算出巡检机器人的各个麦克纳姆轮的轴心速度,从而计算出巡检机器人的各个麦克纳姆轮的转动速度;通过X轴平动、Y轴平动、yaw轴自转三个独立分量的运动结合,可以让巡检机器人在平面上完成任意方向的运动,而无需让巡检机器人绕某一圆心旋转,从而有效的提高了巡检机器人运动效率,使得巡检机器人能在更小的空间完成就地转向、横向移动和按照一定角度斜线运动,避免了普通橡胶轮胎运动的不足。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (4)

1.一种四轮麦克纳姆轮巡检机器人运动控制方法,其特征在于,包括以下步骤:
A、将巡检机器人在平面内的运动分解为X轴平动、Y轴平动、yaw轴自转三个独立分量;
B、计算巡检机器人的各个麦克纳姆轮的轴心速度;
C、将步骤B中巡检机器人的各个麦克纳姆轮的轴心速度分解为沿辊子方向的平行速度和垂直于辊子方向的垂直速度,计算巡检机器人的各个麦克纳姆轮的平行速度;
D、根据步骤C中巡检机器人的各个麦克纳姆轮的平行速度计算巡检机器人的各个麦克纳姆轮的转动速度;
E、根据步骤D中巡检机器人的各个麦克纳姆轮的转动速度控制巡检机器人在平面内运动。
2.如权利要求1所述的四轮麦克纳姆轮巡检机器人运动控制方法,其特征在于,所述步骤B计算巡检机器人的各个麦克纳姆轮的轴心速度的计算公式具体为:
v → = v t → + ω → × r →
其中,为麦克纳姆轮的轴心速度矢量,为巡检机器人的几何中心速度矢量,为yaw轴自转的角速度,为从巡检机器人的几何中心指向麦克纳姆轮的轴心的矢量。
3.如权利要求2所述的四轮麦克纳姆轮巡检机器人运动控制方法,其特征在于,所述步骤C中计算巡检机器人的各个麦克纳姆轮的平行速度的计算公式具体为:
v → | | = v → · u → = - 1 2 v x + 1 2 v y
其中,为麦克纳姆轮的平行速度矢量,vx为麦克纳姆轮的轴心速度在X轴方向的速度分量,vy为麦克纳姆轮的轴心速度在Y轴方向的速度分量。
4.如权利要求3所述的四轮麦克纳姆轮巡检机器人运动控制方法,其特征在于,所述步骤D中计算巡检机器人的各个麦克纳姆轮的转动速度的计算公式具体为:
v ω = v | | c o s π 4 = 2 ( - 1 2 v x + 1 2 v y ) = - v x + v y
其中,vω为麦克纳姆轮的转动速度。
CN201710076302.0A 2017-02-13 2017-02-13 四轮麦克纳姆轮巡检机器人运动控制方法 Pending CN106708056A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710076302.0A CN106708056A (zh) 2017-02-13 2017-02-13 四轮麦克纳姆轮巡检机器人运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710076302.0A CN106708056A (zh) 2017-02-13 2017-02-13 四轮麦克纳姆轮巡检机器人运动控制方法

Publications (1)

Publication Number Publication Date
CN106708056A true CN106708056A (zh) 2017-05-24

Family

ID=58911191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710076302.0A Pending CN106708056A (zh) 2017-02-13 2017-02-13 四轮麦克纳姆轮巡检机器人运动控制方法

Country Status (1)

Country Link
CN (1) CN106708056A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107499892A (zh) * 2017-09-11 2017-12-22 山东洛杰斯特物流科技有限公司 分流器
CN108227598A (zh) * 2018-03-27 2018-06-29 济南大学 一种可平行移动的扫雷排雷机器人控制***
CN109531595A (zh) * 2018-12-28 2019-03-29 石家庄铁道大学 一种基于双磁导航纠偏的全向移动送餐机器人及导航方法
CN110442137A (zh) * 2019-08-12 2019-11-12 北京特种机械研究所 麦克纳姆轮agv自动寻迹行驶***
CN110442136A (zh) * 2019-08-12 2019-11-12 北京特种机械研究所 一种麦克纳姆轮agv的任意姿态导航方法
CN112462753A (zh) * 2020-10-20 2021-03-09 天津大学 车-蛇复合式变结构移动机器人的运动学建模方法
CN113119059A (zh) * 2021-04-01 2021-07-16 武汉工程大学 基于等百分比特性的麦克纳姆轮底盘操纵特性优化方法
CN114371702A (zh) * 2021-12-17 2022-04-19 华南理工大学 一种应用于视觉伺服的非线性模型预测控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714550A (zh) * 2015-03-11 2015-06-17 武汉汉迪机器人科技有限公司 麦克纳姆轮全向移动巡检机器人
CN105835063A (zh) * 2016-06-03 2016-08-10 国网宁夏电力公司检修公司 一种变电站室内巡检机器人***及其巡检方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714550A (zh) * 2015-03-11 2015-06-17 武汉汉迪机器人科技有限公司 麦克纳姆轮全向移动巡检机器人
CN105835063A (zh) * 2016-06-03 2016-08-10 国网宁夏电力公司检修公司 一种变电站室内巡检机器人***及其巡检方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
科长: "麦克纳姆轮浅谈", 《知乎在线》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107499892A (zh) * 2017-09-11 2017-12-22 山东洛杰斯特物流科技有限公司 分流器
CN108227598A (zh) * 2018-03-27 2018-06-29 济南大学 一种可平行移动的扫雷排雷机器人控制***
CN109531595A (zh) * 2018-12-28 2019-03-29 石家庄铁道大学 一种基于双磁导航纠偏的全向移动送餐机器人及导航方法
CN110442137A (zh) * 2019-08-12 2019-11-12 北京特种机械研究所 麦克纳姆轮agv自动寻迹行驶***
CN110442136A (zh) * 2019-08-12 2019-11-12 北京特种机械研究所 一种麦克纳姆轮agv的任意姿态导航方法
CN112462753A (zh) * 2020-10-20 2021-03-09 天津大学 车-蛇复合式变结构移动机器人的运动学建模方法
CN112462753B (zh) * 2020-10-20 2024-01-30 天津大学 车-蛇复合式变结构移动机器人的运动学建模方法
CN113119059A (zh) * 2021-04-01 2021-07-16 武汉工程大学 基于等百分比特性的麦克纳姆轮底盘操纵特性优化方法
CN113119059B (zh) * 2021-04-01 2022-03-15 武汉工程大学 基于等百分比特性的麦克纳姆轮底盘操纵特性优化方法
CN114371702A (zh) * 2021-12-17 2022-04-19 华南理工大学 一种应用于视觉伺服的非线性模型预测控制方法
CN114371702B (zh) * 2021-12-17 2023-11-10 华南理工大学 一种应用于视觉伺服的非线性模型预测控制方法

Similar Documents

Publication Publication Date Title
CN106708056A (zh) 四轮麦克纳姆轮巡检机器人运动控制方法
CN109885052B (zh) 基于全向移动机器人运动学建模的误差模型预测控制方法
CN107783540A (zh) 一种四轮驱动转向的控制方法及装置
CN106394561B (zh) 一种车辆的纵向车速的估计方法和装置
Bhattacharya et al. Design, experiments and motion planning of a spherical rolling robot
CN113341728B (zh) 一种抗噪型归零神经网络的四轮移动机械臂轨迹跟踪控制方法
CN105172793B (zh) 自动驾驶汽车的位姿估算方法
CN107092266B (zh) 一种移动车轨迹跟踪控制方法
CN107643752A (zh) 基于行人轨迹预测的全向移动机器人路径规划算法
CN111694361A (zh) 基于改进趋近律滑模控制的钢结构柔性探伤机器人轨迹跟踪方法
CN106527443A (zh) 全向移动agv导航纠偏方法
Bin et al. The kinematics model of a two-wheeled self-balancing autonomous mobile robot and its simulation
CN104236456B (zh) 一种基于两自由度3d视觉传感器的机器人手眼标定方法
CN110320906B (zh) 一种基于麦克纳姆轮的四驱agv小车差速直线行驶姿态调整方法
CN113433827B (zh) 一种质心变化喷砂除锈并联机器人移动平台轨迹跟踪控制方法
CN109960150A (zh) 巡检机器人轨迹跟踪控制方法
CN104898665A (zh) 巡检机器人轨迹规划的方法和装置
Kelly A vector algebra formulation of kinematics of wheeled mobile robots
CN111752150A (zh) 一种轮足机器人四轮协同控制方法
CN108681324A (zh) 基于全局视觉的移动机器人轨迹跟踪控制方法
CN108062024A (zh) 一种考虑阻力的移动机器人反演滑模控制方法
Jiang et al. Differential flatness-based motion control of a steer-and-drive omnidirectional mobile robot
Wu et al. Experimental kinematics modeling estimation for wheeled skid-steering mobile robots
Limebeer et al. Optimal control of a NASCAR–specification race car
Zhan et al. Near-optimal trajectory planning of a spherical mobile robot for environment exploration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170524

RJ01 Rejection of invention patent application after publication