CN106684236A - 一种高性能Cu2GeTe3热电材料的制备方法 - Google Patents

一种高性能Cu2GeTe3热电材料的制备方法 Download PDF

Info

Publication number
CN106684236A
CN106684236A CN201611155280.9A CN201611155280A CN106684236A CN 106684236 A CN106684236 A CN 106684236A CN 201611155280 A CN201611155280 A CN 201611155280A CN 106684236 A CN106684236 A CN 106684236A
Authority
CN
China
Prior art keywords
thermoelectric material
performance
gete
preparation
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611155280.9A
Other languages
English (en)
Inventor
宁纪爱
赵德刚
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Publication of CN106684236A publication Critical patent/CN106684236A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Abstract

本发明涉及一种高性能的Cu2GeTe3热电材料的制备方法。Cu粉、Ge粒、Te粒为原料按照2:1:3化学计量比配称取并混匀得到混合物。将以上混合物利用高温真空熔融法在900‑1000℃反应12‑24小时;分别采用自然随炉冷却、淬火以及淬火后退火处理后获得块锭,对其进行洗涤,烘干处理,在玛瑙研钵中研磨成细粉。对得到的细粉进行放电等离子烧结,得到高性能Cu2GeTe3热电材料。其中采用熔融淬火并退火制备得高性能的Cu2GeTe3热电材料相对传统熔融自然随炉冷却制备得Cu2GeTe3热电材料性能提高了38%。该制备工艺简单,可控性高,成本低,稳定性好等优点,适用于高性能Cu2GeTe3热电材料的制备。

Description

一种高性能Cu2GeTe3热电材料的制备方法
技术领域
本发明属于热电材料的制备技术领域,重点涉一种高性能Cu2GeTe3热电材料的制备工艺。
背景技术
热电材料是一种利用热电效应实现热与电之间转化的能源材料,它利用Seebeck效应可以将热能直接转化为电能,利用Peltier效应可以将电能转化为热能。用热电材料制备的热电发电元器件具有工作时无需机械运动部件,不产生噪音污染,也不排放任何有毒或者温室气体,体积小,寿命长,可靠性高等优点。在航天领域、工业余热回收及地热利用等领域颇具潜力,在能源日益减少的当今社会,急需能源材料来缓解、能源材料的与此同时在能源日益紧张的现代社会中,人们对能源的高效利用意识逐步加强,这些都不断推动着人们对高性能热电材料的研究和开发。
为追求更高性能的热电材料,人们不断的开发研究新热电材料,其目标在于努力提高材料的电导率、赛贝克系数等电性能方面的同时在材料热性能方面降低热导率。热电材料的性能高低使用无量纲热电优值ZT来评估,ZT的表达式为ZT=α2σT/κ,式中α称为Seebeck系数也叫温差电动势,它是指单位温度的电势差大小。σ为材料的电导率, κ为材料的热导率,T为绝对温度。α、σ、κ这三个热电性能的参数依赖于材料的电子结构和载流子的散射强弱,其中材料的热导率又分为晶格热导率和电子热导率,其表达式为 κ=κLe,κL是指材料的晶格热导率,κe是指材料的电子热导率,要想降低κ关键在于降低κL, 即增强晶格点阵对声子的散射从而降低晶格热导率。从理论上分析,非晶态结构的材料具有低的κ值,Glem Slack提出一种新的概念材料称为声子玻璃电子晶体 “ phonon glass electroncrystal”(PGEC), 也就是一种能够像晶体一样具有较高的导电性并且其导热性如玻璃一样弱的材料。Slack认为晶体结构中存在一种结合力弱的“ rattling”原子,对载热声子有强的散射作用导致热导率急剧下降,对导电性不会有太大影响。
Cu2GeTe3热电材料是一种类金刚石结构的热电材料,其复杂的晶体结构以及较低的比热赋予了该类材料较低的热导率,与此同时拥有着较好的电性能。被称为声子玻璃电子晶体(PGEC)中的一员。目前Cu2GeTe3基热电材料经过复合或者掺加以及掺杂后再进行复合后的热电材料的无量纲热电优值(ZT)都已经有了显著的提升,是中高温热电材料中极具发展潜力的一种新型热电材料。本发明在三元合金相图的理论指导下,选用不同的制备工艺参数获得了高性能的Cu2GeTe3热电材料,目前无论是从复合还是掺杂等手段来提高Cu2GeTe3热电材料,对其基体相Cu2GeTe3的性能以及纯度都有着严格的要求,在有规可循,有章可遵的科学指导原则下,对于高纯度、高性能的Cu2GeTe3基体相的制备有待提高。选用不同的制备工艺参数制备出高性能,高纯度的Cu2GeTe3热电材料,为Cu2GeTe3基热电材料的复合以及不同元素掺杂对其材料的热电优值的提升提供了实验依据参考和指导基础。
发明内容
本发明针对高性能Cu2GeTe3热电材料具备较大的发展潜力,其目的在于为Cu2GeTe3基热电材料的复合以及掺杂提供一种高性能、高纯度的Cu2GeTe3基体相。该方法制备工艺简单,可控性高,成本低,稳定性好等优点。
本发明为实现上述目的所提出的技术方案为:
一种高性能Cu2GeTe3热电材料的制备方法,它包括以下步骤:
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀,利用高温真空熔融法在900-1000℃反应12-24小时;分别采用自然随炉冷却、淬火以及淬火后退火处理后获得块锭,对其进行洗涤,在一定温度下进行烘干处理,在玛瑙研钵中研磨得到Cu2GeTe3细粉。对得到的细粉进行放电等离子烧结,得到高性能Cu2GeTe3热电材料,在700K获得的无量纲热电优值最大达到0.61,较传统熔融法制备的Cu2GeTe3热电材料的ZT值0.44相对提高了38%。
本发明的有益效果是:(1)本发明制备工艺简单、工艺参数易控制、可用于大批量生产制备;(2)本发明制备工艺成本低,可控性高,具有较高的应用价值;(3)本发明采用不同的制备工艺制备出高性能的Cu2GeTe3热电材料。
具体实施方式:
以下通过具体实例来说明本发明。
本发明包括以下步骤:(1)Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀。(2)将上述混合料采用不同的熔融温度、保温时间和冷却速率进行真空熔融处理。(3)对真空熔融制备的Cu2GeTe3块锭进行洗涤烘干处理后,研磨成细粉。(4)对得到的细粉进行放电等离子烧结,得到高性能的Cu2GeTe3热电材料。
实施例1
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀得到三种元素的混合料,将得到的混合料置于石英管中进行真空封装处理,将封装好的石英管置于程序控温立式管式电阻炉中,以2℃/min的速率升温至960℃,在该温度下保温12h,然后随炉冷却至室温。将熔融制备的块锭,进行洗涤并研磨成细粉。对得到的细粉进行放电等离子烧结,烧结压力为10MPa,保温时间为6min, 得到Cu2GaTe3热电材料ZT值在700K达到0.45。
实施例2
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀得到三种元素的混合料,将得到的混合料置于石英管中进行真空封装处理,将封装好的石英管置于程序控温立式管式电阻炉中,以2℃/min的速率升温至1000℃,在该温度下保温12h,然后随炉冷却至室温。将熔融制备的块锭,进行洗涤并研磨成细粉。对得到的细粉进行放电等离子烧结,烧结压力为10MPa,保温时间为6min, 得到Cu2GeTe3热电材料ZT值在700K达到0.44。
实施例3
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀得到三种元素的混合料,将得到的混合料置于石英管中进行真空封装处理,将封装好的石英管置于程序控温立式管式电阻炉中,以2℃/min的速率升温至1000℃,在该温度下保温24h,然后随炉冷却至室温。将熔融制备的块锭,进行洗涤并研磨成细粉。对得到的细粉进行放电等离子烧结,烧结压力为10MPa,保温时间为6min, 得到Cu2GeTe3热电材料ZT值在700K达到0.46。
实施例4
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀得到三种元素的混合料,将得到的混合料置于石英管中进行真空封装处理,将封装好的石英管置于程序控温立式管式电阻炉中,以2℃/min的速率升温至1000℃,在该温度下保温24h,进行淬火处理。将熔融淬火制备的块锭,进行洗涤并研磨成细粉。对得到的细粉进行放电等离子烧结,烧结压力为10MPa,保温时间为6min, 得到Cu2GeTe3热电材料ZT值在700K达到0.52。
实施例5
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀得到三种元素的混合料,将得到的混合料置于石英管中进行真空封装处理,将封装好的石英管置于程序控温立式管式电阻炉中,以2℃/min的速率升温至1000℃,在该温度下保温24h,进行淬火处理。将熔融淬火制备的块锭,在管式炉中进行退火处理,退火温度为800℃,退火时间为3天,对退火后的块锭进行进行洗涤并研磨成细粉。对得到的细粉进行放电等离子烧结,烧结压力为10MPa,保温时间为8min, 得到Cu2GeTe3热电材料ZT值在700K达到0.59。
实施例6
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀得到三种元素的混合料,将得到的混合料置于石英管中进行真空封装处理,将封装好的石英管置于程序控温立式管式电阻炉中,以2℃/min的速率升温至1000℃,在该温度下保温24h,进行淬火处理。将熔融淬火制备的块锭,在管式炉中进行退火处理,退火温度为760℃,退火时间为3天,对退火后的块锭进行进行洗涤并研磨成细粉。对得到的细粉进行放电等离子烧结,烧结压力为10MPa,保温时间为8min, 得到Cu2GeTe3热电材料ZT值在700K达到0.61。
对比以上案例得到热电材料,得到最大ZT值为0.61,相对传统熔融炉冷制备的热电材料性能提高了38%。

Claims (8)

1.一种高性能Cu2GeTe3热电材料的制备方法,其主要特征在于:
将Cu粉、Ge粒、Te粒分别按照2:1:3化学计量比称取并混匀,利用高温真空熔融法在900-1000℃反应12-24小时;分别采用自然随炉冷却、淬火以及淬火后退火处理后获得块锭,对其进行洗涤,烘干处理,在玛瑙研钵中研磨得到Cu2GeTe3细粉。
2.对得到的细粉进行放电等离子烧结,得到高性能Cu2GeTe3热电材料。
3.按照权利要求1所述的一种高性能Cu2GeTe3热电材料的制备方法,其特征在于:所选用的Cu粉纯度为99.99%,Ge粒纯度为99.99%,Te粒纯度为99.999%,称量质量精确度达万分之一。
4.按照权利要求3所述的一种高性能Cu2GeTe3热电材料的制备方法,其特征在于:其中Cu粉、Ge粒和Te粒在有机溶剂中进行人工初步混匀。
5.按照权利要求4所述的一种高性能Cu2GeTe3热电材料的制备方法,其特征在于:其人工混匀的混合物在100-150℃进行烘干处理。
6.按照权利要求5所述的一种高性能Cu2GeTe3热电材料的制备方法,其特征在于:获得烘干后的混合物采用真空高温熔融法制备,工艺参数为:在900-1000℃进行12-24小时熔融。
7.按照权利要求6所述的一种高性能Cu2GeTe3热电材料的制备方法,其特征在于:采用随炉冷却,淬火以及淬火后退火等不同冷却速率制备得Cu2GeTe3块锭。
8.按照权利要求7所述的一种高性能Cu2GeTe3热电材料的制备方法,其特征在于:获得的Cu2GeTe3块锭研磨成细粉后进行放电等离子烧结。
CN201611155280.9A 2016-11-29 2016-12-14 一种高性能Cu2GeTe3热电材料的制备方法 Pending CN106684236A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611070762 2016-11-29
CN2016110707624 2016-11-29

Publications (1)

Publication Number Publication Date
CN106684236A true CN106684236A (zh) 2017-05-17

Family

ID=58867998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611155280.9A Pending CN106684236A (zh) 2016-11-29 2016-12-14 一种高性能Cu2GeTe3热电材料的制备方法

Country Status (1)

Country Link
CN (1) CN106684236A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950389A (zh) * 2019-03-18 2019-06-28 清华大学 中温区高性能热电材料制备方法及中温区高性能热电材料
CN111334685A (zh) * 2020-04-03 2020-06-26 济南大学 一种高致密度的Half-Heusler热电材料的制备方法及所得产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194989A (zh) * 2010-03-18 2011-09-21 中国科学院上海硅酸盐研究所 一种三元类金刚石结构的热电材料的制备方法
US20140174494A1 (en) * 2012-11-20 2014-06-26 Samsung Electronics Co., Ltd. Thermoelectric material, thermoelectric element and apparatus including the same, and preparation method thereof
CN104046876A (zh) * 2014-06-16 2014-09-17 济南大学 一种石墨烯/Cu2AX3型热电复合材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194989A (zh) * 2010-03-18 2011-09-21 中国科学院上海硅酸盐研究所 一种三元类金刚石结构的热电材料的制备方法
US20140174494A1 (en) * 2012-11-20 2014-06-26 Samsung Electronics Co., Ltd. Thermoelectric material, thermoelectric element and apparatus including the same, and preparation method thereof
CN104046876A (zh) * 2014-06-16 2014-09-17 济南大学 一种石墨烯/Cu2AX3型热电复合材料及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950389A (zh) * 2019-03-18 2019-06-28 清华大学 中温区高性能热电材料制备方法及中温区高性能热电材料
CN111334685A (zh) * 2020-04-03 2020-06-26 济南大学 一种高致密度的Half-Heusler热电材料的制备方法及所得产品
CN111334685B (zh) * 2020-04-03 2021-11-02 济南大学 一种高致密度的Half-Heusler热电材料的制备方法及所得产品

Similar Documents

Publication Publication Date Title
CN103872237B (zh) 铜硫基高性能热电材料及其制备方法
CN108238796B (zh) 铜硒基固溶体热电材料及其制备方法
CN102194989B (zh) 一种三元类金刚石结构的热电材料的制备方法
CN107799646B (zh) 一种合金热电半导体材料及其制备方法
CN106986315B (zh) 一种适用于低温发电的p型碲化铋热电材料及制备方法
CN108231991A (zh) 一种用于室温附近固态制冷和废热余热发电的p型碲化铋基热电材料
CN107887495B (zh) 一种一步制备Cu2Se/BiCuSeO复合热电材料的方法
CN103700759A (zh) 一种纳米复合结构Mg2Si基热电材料及其制备方法
CN102280570A (zh) 一种微量Cu掺杂Bi2S3基热电材料
CN106684236A (zh) 一种高性能Cu2GeTe3热电材料的制备方法
CN105990510B (zh) 一种铜硒基高性能热电材料及其制备方法
CN108417704B (zh) 一种高性能掺铕PbTe基热电材料及其制备方法
CN108516526B (zh) 一种高性能PbTe基固溶体热电材料及其制备方法
CN104004935A (zh) 一种超快速制备高性能高锰硅热电材料的方法
CN105702847A (zh) 一种提高BiTeSe基N型半导体热电材料性能的方法
CN107293637B (zh) 一种高性能GeSbTe基热电材料的制备方法
CN104022218A (zh) 一种高性能SbAgSeS基热电材料及其制备方法
CN108520915B (zh) 一种高性能PbTe-SnTe合金基热电材料及其制备方法
CN103290249A (zh) 生产热电转换材料的方法、装置及生产溅射靶材的方法
CN101857929A (zh) 一种多孔结构p型锌锑基热电材料及其制备方法
CN105420528B (zh) 一种制备高性能AgInTe2热电材料的方法
CN109087987A (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
CN101307394A (zh) 液体急冷结合放电等离子烧结制备碲化铋基热电材料的方法
CN104711444B (zh) 一种快速制备高性能SiGe高温热电合金材料的方法
CN110317971A (zh) 一种协同提高方钴矿热电材料热电性能和机械性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhao Degang

Inventor after: Ning Jiai

Inventor after: Wu Di

Inventor before: Ning Jiai

Inventor before: Zhao Degang

Inventor before: Wu Di

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170517