CN106684177A - 一种p GaNi GaN n BN中子探测器 - Google Patents

一种p GaNi GaN n BN中子探测器 Download PDF

Info

Publication number
CN106684177A
CN106684177A CN201710095586.8A CN201710095586A CN106684177A CN 106684177 A CN106684177 A CN 106684177A CN 201710095586 A CN201710095586 A CN 201710095586A CN 106684177 A CN106684177 A CN 106684177A
Authority
CN
China
Prior art keywords
gan
thickness
thin film
layer
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710095586.8A
Other languages
English (en)
Other versions
CN106684177B (zh
Inventor
朱志甫
汤彬
邹继军
彭新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN201710095586.8A priority Critical patent/CN106684177B/zh
Publication of CN106684177A publication Critical patent/CN106684177A/zh
Application granted granted Critical
Publication of CN106684177B publication Critical patent/CN106684177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/117Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the bulk effect radiation detector type, e.g. Ge-Li compensated PIN gamma-ray detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种p‑GaN/i‑GaN/n‑BN中子探测器,该中子探测器由Al2O3衬底层、n‑BN层、i‑GaN层、p‑GaN层组成。其制备方法如下:在一定厚度的Al2O3衬底上,利用金属有机物化学气相沉积技术先生长n‑BN,而后生长未掺杂的i‑GaN,最后生长p‑GaN,再用感应耦合等离子体刻蚀出n‑BN,最后用电子束蒸发在n‑BN和p‑GaN层分别蒸镀欧姆接触金属电极,完成中子探测器的制作。本发明制备工艺简单、无需单独制备中子转换层,能量分辨率高、探测效率高且结构简单,在航空航天探索、核能利用与开发、放射性同位素的产生应用以及一些特殊领域有重要的应用价值。

Description

一种p GaNi GaN n BN中子探测器
技术领域
本发明涉及属于核辐射探测技术领域,尤其是一种p-GaN/i-GaN/n-BN中子探测器。
背景技术
中子本身不带电,不能通过电离损失引起电离、激发而损失能量。因此,常规的半导体中子探测器是在其表面蒸镀一层一定厚度的中子转换层6LiF或B4C。中子转换层的存在,使得半导体中子探测器的探测效率和能量分辨率都很低。由于这个因素的制约,近年来,半导体中子探测器的进一步的发展受到了一定限制。BN是重要的III–V族化合物宽禁带半导体材料,室温下的禁带宽度为6.5eV。BN是一种直接探测中子且极具潜力的中子探测材料,BN中的10B原子具有高的热中子俘获界面。2016年,美国德州理工大学的Maity课题组利用金属有机物化学气相沉积***外延生长了厚度为43μm的未掺杂BN薄膜,制备了光电导型中子探测器,理论计算的探测效率高达51.4%。GaN和BN同属于III–V化合物宽禁带半导体材料,具有相似的外延生长环境及设备。pin结型探测器相比光电导型探测器,电荷收集效率高,响应速度快等优点,在核辐射探测器方面得到广泛应用。基于BN/GaN pin结型的中子探测器结合了BN薄膜中子转换效率高和电荷收集效率高两方面优势,在中子探测领域极具发展和应用潜力。
发明内容
本发明的目的针对现有中子探测器需要中子转换层、探测效率低等方面的不足,本发明提供了一种p-GaN/i-GaN/n-BN中子探测器及其制备方法。
本发明的技术方案为:一种p-GaN/i-GaN/n-BN中子探测器,该探测器包括Al2O3衬底层、n-BN中子转换层兼电荷收集层、i-GaN电荷产生层、p-GaN电荷收集层。
所述Al2O3衬底层,厚度为150~200μm,晶向为c轴0001面。
所述中子转换层兼电荷收集层n-BN,其中BN中的B为B的同位素10B,其厚度为5~50μm,掺杂元素为S,掺杂浓度为(5~8)×1018cm-3
所述电荷产生层i-GaN ,其厚度为5~20μm,为非故意掺杂GaN材料。
所述p-GaN电荷收集层 ,其厚度为100~500nm,掺杂元素为Mg,掺杂浓度为(1~3)×1019cm-3
一种p-GaN/i-GaN/n-BN中子探测器,其制备方法包括以下步骤:
(1)、n-BN薄膜的制备:采用金属有机物化学气相沉积***在Al2O3衬底上先预生长缓冲层,而后外延生长n-BN薄膜,三乙基硼和NH3作为BN的前驱反应物,H2作为载气,硫化氢作为S掺杂剂,生长温度1300~1500℃,厚度为5~50μm,掺杂浓度为(5~8)×1018cm-3
(2)、i-GaN薄膜的制备:采用金属有机物化学气相沉积***在n-BN薄膜上外延生长i-GaN薄膜,三甲基镓源和NH3作为i-GaN的前驱反应物,H2作为载气,生长温度1000~1100℃,厚度为5~20μm;
(3)、p-GaN薄膜的制备:采用金属有机物化学气相沉积***在i-GaN薄膜上外延生长p-GaN薄膜,三甲基镓源和NH3作为p-GaN的前驱反应物,H2作为载气,二茂镁作为Mg掺杂元素的气体掺杂源,生长温度900~1000℃,掺杂浓度为(1~3)×1019cm-3,厚度为2~5μm;
(4)、利用匀胶机在上述p-GaN/i-GaN/n-BN薄膜的表面涂上一层正光刻胶并曝光、显影,产生光刻图形;用感应耦合等离子体刻蚀技术刻蚀p-GaN/i-GaN/n-BN薄膜至n-BN层,在p-GaN/i-GaN/n-BN上形成阶梯层;
(5)、用热蒸发或电子束蒸发设备在n-BN上沉积Ti/Au双层金属电极并退火,制备n-BN欧姆接触电极,其中Ti的厚度为10~20nm, Au的厚度为50~200nm,而后进行欧姆接触电极退火处理,退火温度为550~650℃,退火时间为300~600s。
(6)、用热蒸发或电子束蒸发设备在p-GaN上沉积Ni/Au双层金属电极并退火,制备p-GaN欧姆接触电极,其中Ni的厚度为10~20nm,Au的厚度为50~150nm,而后进行欧姆接触电极退火处理,退火温度为450~550℃,退火时间为600~900s。
(7)、利用超声波金丝球焊机将制备好欧姆接触金属电极的p-GaN/i-GaN/n-BN用10~25μm金丝键合至PCB电路板,将含有p-GaN/i-GaN/n-BN的电路板封装到镀金的铝外壳中,完成探测器的装配。
有关本发明的机理、特点和优点:本发明是一种p-GaN/i-GaN/n-BN结构的中子探测器。其特点在于,n-BN中的10B与中子发生核反应后产生α粒子,一部分α粒子电离n-BN产生电子空穴对;一部分α粒子在能量损失前进入i-GaN层并电离i-GaN材料产生电子空穴对。p-GaN/i-GaN/n-BN结构的中子探测器工作在反偏状态下,在外加电压形成的强电场的作用下,α粒子电离后产生的电子空穴对中,p-GaN形成的欧姆接触收集电子,n-BN形成的欧姆接触收集空穴。该探测器解决了传统半导体中子探测器需要中子转换层且转换后的α粒子只能向一个方向运行的矛盾要求,从而提高探测效率,实现中子探测。
本发明的优点在于:1、本发明p-GaN/i-GaN/n-BN结构的中子探测器,当中子照射探测器时,n-BN中的10B直接与中子发生核反应产生α粒子,α粒子与BN和GaN相互作用电离出电子空穴对,常规半导体中子探测器需要中子转换层才能与中子发生核反应,且产生的α粒子只能向一个方向运动才能电离出电子空穴对,如果中子转换层太薄,中子与转换层发生反应的几率就小,产生的α粒子少,如果中子转换层太厚超过产生的α粒子的射程,α射出转换层的概率低,相对的探测效率低。本探测器克服了上述问题,提高了探测效率。
2、n-BN、i-GaN和p-GaN薄膜都属于三族氮化物,具有氮化物特有的优异性质,禁带宽度大,耐高温,能够在较高的温度下工作,当工作温度升高时,其性能基本不发生变化;位移能大,耐辐照,能够在高辐照环境下工作。从而能够在严酷的环境中工作。
3、n-BN、i-GaN和p-GaN薄膜外延生长都在一个金属有机物化学气相沉积***中完成,外延生长工艺基本相同,制备工艺成熟、重复性好、成本低,可控性强,可以制备出性能优异的结型中子探测器。
附图说明
图1为本发明的p-GaN/i-GaN/n-BN中子探测器结构示意图;
图2是涂正光刻胶后的图;
图3是光刻并刻蚀后的图;
图4是涂负光刻胶后的图;
图5是在n-BN上沉积Ti/Au欧姆接触电极后的图;
图6是涂负光刻胶后的图;
图7是在p-GaN上沉积Ni/Au欧姆接触电极后的图。
p-GaN/i-GaN/n-BN中子探测器制备过程示意图如图2、图3、图4、图5、图6、图7所示。
图中:1、Al2O3衬底层,2、n-BN,3、i-GaN,4、p-GaN,5、正光刻胶,6、负光刻胶,7、Ti/Au欧姆接触电极,8、Ni/Au欧姆接触电极,9、PCB电路板,10、金线。
具体实施方式
图1为p-GaN/i-GaN/n-BN结构的中子探测器的结构示意图。如图所示,在150μm厚的Al2O3衬底上利用金属有机物化学气相沉积技术外延生长n-BN、i-GaN 和p-GaN结构, 其中BN中的B为B的同位素10B;而后利用电感耦合等离子体刻蚀出n-BN的欧姆接触图形并利用电子束蒸发设备沉积金属电极,利用光刻技术剥离出p-GaN的欧姆接触图形并利用电子束蒸发设备沉积金属电极。利用超声波金丝球焊机将制备好欧姆接触金属电极的p-GaN/i-GaN/n-BN用金丝键合至PCB电路板,将含有p-GaN/i-GaN/n-BN和PCB电路板一并封装到镀金的铝外壳中。当有中子照射时,n-BN中的10B与中子发生核反应,产生α粒子,一部分α粒子电离BN产生电子空穴对,一部分α粒子进入i-GaN并电离出电子空穴对,而后利用外加电压形成的强电场将电子空穴对收集到电极两端。
实施例1
本发明p-GaN/i-GaN/n-BN中子探测器及其制备方法,该探测器适合探测低能量的热中子:
首先, 将150μm厚的Al2O3衬底1放入金属有机物化学气相沉积设备的生长腔室里,而后将Al2O3衬底1加热至1100℃,高温烘烤10分钟,去除衬底表面的杂质。先在550度下生长一层厚度为20nm的GaN缓冲层,其次温度升高到1350℃,生长n-BN薄膜2, 硫化氢作为气体掺杂源,掺杂浓度为5×1018cm-3,厚度为20μm;再次在温度为1050℃下,在n-BN薄膜2上外延生长未掺杂的i-GaN薄膜3,厚度为10μm;最后在温度为950℃下,在n-GaN/i-GaN薄膜上外延生长p-GaN薄膜4(图2),二茂镁作为气体掺杂源,掺杂浓度为1×1019cm-3,厚度为200nm;
其次,利用匀胶机在上述p-GaN/i-GaN/n-BN(图2)薄膜的表面涂上一层厚度为5μm的厚的正光刻胶5(图2),而后放入温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光4s,曝光后的片子放入负胶显影液显影25s,利用去离子水冲洗并用氮气吹干,形成含有刻蚀的光刻图形(图2);用感应耦合等离子体刻蚀技术刻蚀p-GaN/i-GaN/n-BN薄膜至n-BN层,设定反应室气压6mTorr,通入Cl2、BCl3气体,流量分别为6sccm、14sccm,刻蚀20分钟,在p-GaN/i-GaN/n-BN上形成阶梯层;将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶(图3);
然后,利用匀胶机在上述p-GaN/i-GaN/n-BN薄膜的表面涂上一层厚度为2μm的负光刻胶6(图4),而后放入加热温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光4s,曝光后的片子放入温度为110℃的热板上烘烤60s,放入负胶显影液显影25s,利用去离子水冲洗并用氮气吹干,再放入温度为120℃的热板上烘烤120s,制备n-BN欧姆接触的光刻图形(图4);用热蒸发或电子束蒸发设备在上述曝光后的图形上沉积厚度为20/100nm的Ti/Au双层金属电极,沉积本底真空度为10-5pa,制备n-BN欧姆接触电极7(图5);将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶,用快速热退火处理技术形成良好的欧姆接触,设定退火炉N2流量100sccm、退火温度为650℃,退火时间600s,完成n-BN的欧姆接触制备;
然后,利用匀胶机在上述p-GaN/i-GaN/n-BN/Ni/Au的表面涂上一层厚度为2μm的负光刻胶6(图6),而后放入加热温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光8s,曝光后的片子放入温度为110℃的热板上烘烤60s,放入负胶显影液显影25s,利用去离子水冲洗并用氮气吹干,再放入温度为120℃的热板上烘烤120s,制备p-GaN欧姆接触的光刻图形(图6);用热蒸发或电子束蒸发设备在上述曝光后的图形上沉积厚度为10/50nm的Ni/Au多层金属电极,沉积本底真空度为10-5pa;将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶,用快速热退火处理技术形成良好的欧姆接触,退火气氛为空气、退火温度为550℃,退火时间900s,完成p-GaN的欧姆接触制备(图7);
最后,利用超声波金丝球焊机将制备好欧姆接触金属电极的p-GaN/i-GaN/n-BN用直径为10μm的金丝9键合至PCB电路板10,将含有p-GaN/i-GaN/n-BN的电路板封装到镀金的铝外壳中(图1)。
实施例2
本发明p-GaN/i-GaN/n-BN结构的中子探测器的制备方法,该探测器适合探测能量在0.1~5MeV的快中子,中子源与探测器之间放置聚乙烯转换剂:
首先, 将200μm厚的Al2O3衬底1放入金属有机物化学气相沉积设备的生长腔室里,而后将Al2O3衬底1加热至1100℃,高温烘烤10分钟,去除衬底表面的杂质。先在550度下生长一层厚度为20nm的GaN缓冲层,其次温度升高到1400℃,生长n-BN薄膜2, 硫化氢作为气体掺杂源,掺杂浓度为6×1018cm-3,厚度为30μm;再次在温度为1050℃下,在n-BN薄膜2上外延生长未掺杂的i-GaN薄膜3,厚度为15μm;最后在温度为950℃下,在n-GaN/i-GaN薄膜上外延生长p-GaN薄膜4(图2),二茂镁作为气体掺杂源,掺杂浓度为2×1019cm-3,厚度为300nm;
其次,利用匀胶机在上述p-GaN/i-GaN/n-BN(图2)薄膜的表面涂上一层厚度为6μm的厚的正光刻胶5(图2),而后放入温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光6s,曝光后的片子放入负胶显影液显影50s,利用去离子水冲洗并用氮气吹干,形成含有刻蚀的光刻图形(图2);用感应耦合等离子体刻蚀技术刻蚀p-GaN/i-GaN/n-BN薄膜至n-BN层,设定反应室气压6mTorr,通入Cl2、BCl3气体,流量分别为6sccm、14sccm,刻蚀20分钟,在p-GaN/i-GaN/n-BN上形成阶梯层;将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶(图3);
然后,利用匀胶机在上述p-GaN/i-GaN/n-BN薄膜的表面涂上一层厚度为4μm的负光刻胶6(图4),而后放入加热温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光8s,曝光后的片子放入温度为110℃的热板上烘烤60s,放入负胶显影液显影50s,利用去离子水冲洗并用氮气吹干,再放入温度为120℃的热板上烘烤120s,制备n-BN欧姆接触的光刻图形(图4);用热蒸发或电子束蒸发设备在上述曝光后的图形上沉积厚度为20/200nm的Ti/Au双层金属电极,沉积本底真空度为10-5pa,制备n-BN欧姆接触电极7(图5);将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶,用快速热退火处理技术形成良好的欧姆接触,设定退火炉N2流量100sccm、退火温度为600℃,退火时间450s,完成n-BN的欧姆接触制备;
然后,利用匀胶机在上述p-GaN/i-GaN/n-BN/Ni/Au的表面涂上一层厚度为4μm的负光刻胶6(图6),而后放入加热温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光8s,曝光后的片子放入温度为110℃的热板上烘烤60s,放入负胶显影液显影50s,利用去离子水冲洗并用氮气吹干,再放入温度为120℃的热板上烘烤120s,制备p-GaN欧姆接触的光刻图形(图6);用热蒸发或电子束蒸发设备在上述曝光后的图形上沉积厚度为20/50nm的Ni/Au多层金属电极,沉积本底真空度为10-5pa;将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶,用快速热退火处理技术形成良好的欧姆接触,退火气氛为空气、退火温度为500℃,退火时间15分钟,完成p-GaN的欧姆接触制备(图7);
最后,利用超声波金丝球焊机将制备好欧姆接触金属电极的p-GaN/i-GaN/n-BN用直径为25μm的金丝9键合至PCB电路板10,将含有p-GaN/i-GaN/n-BN的电路板封装到镀金的铝外壳中(图1)。
实施例3
本发明p-GaN/i-GaN/n-BN结构的中子探测器的制备方法,该探测器适合探测能量在0.1~10MeV的快中子,中子源与探测器之间放置聚乙烯转换剂:
首先, 将150μm厚的Al2O3衬底1放入金属有机物化学气相沉积设备的生长腔室里,而后将Al2O3衬底1加热至1100℃,高温烘烤10分钟,去除衬底表面的杂质。先在550℃下生长一层厚度为20nm的GaN缓冲层,其次温度升高到1500℃,生长n-BN薄膜2, 硫化氢作为气体掺杂源,掺杂浓度为8×1018cm-3,厚度为50μm;再次在温度为1050℃下,在n-BN薄膜2上外延生长未掺杂的i-GaN薄膜3,厚度为20μm;最后在温度为950℃下,在n-GaN/i-GaN薄膜上外延生长p-GaN薄膜4(图2),二茂镁作为气体掺杂源,掺杂浓度为3×1019cm-3,厚度为500nm;
其次,利用匀胶机在上述p-GaN/i-GaN/n-BN(图2)薄膜的表面涂上一层厚度为8μm的厚的正光刻胶5(图2),而后放入温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光8s,曝光后的片子放入负胶显影液显影70s,利用去离子水冲洗并用氮气吹干,形成含有刻蚀的光刻图形(图2);用感应耦合等离子体刻蚀技术刻蚀p-GaN/i-GaN/n-BN薄膜至n-BN层,设定反应室气压6mTorr,通入Cl2、BCl3气体,流量分别为6sccm、14sccm,刻蚀20分钟,在p-GaN/i-GaN/n-BN上形成阶梯层;将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶(图3);
然后,利用匀胶机在上述p-GaN/i-GaN/n-BN薄膜的表面涂上一层厚度为5μm的负光刻胶6(图4),而后放入加热温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光12s,曝光后的片子放入温度为110℃的热板上烘烤60s,放入负胶显影液显影70s,利用去离子水冲洗并用氮气吹干,再放入温度为120℃的热板上烘烤120s,制备n-BN欧姆接触的光刻图形(图4);用热蒸发或电子束蒸发设备在上述曝光后的图形上沉积厚度为10/50nm的Ti/Au双层金属电极,沉积本底真空度为10-5pa,制备n-BN欧姆接触电极7(图5);将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶,用快速热退火处理技术形成良好的欧姆接触,设定退火炉N2流量100sccm、退火温度为650℃,退火时间500s,完成n-BN的欧姆接触制备;
然后,利用匀胶机在上述p-GaN/i-GaN/n-BN/Ni/Au的表面涂上一层厚度为5μm的负光刻胶6(图6),而后放入加热温度为90℃的热板上烘烤90s,冷却后取出并放入光刻机位置,利用铬光刻掩模版曝光12s,曝光后的片子放入温度为110℃的热板上烘烤60s,放入负胶显影液显影70s,利用去离子水冲洗并用氮气吹干,再放入温度为120℃的热板上烘烤120s,制备p-GaN欧姆接触的光刻图形(图6);用热蒸发或电子束蒸发设备在上述曝光后的图形上沉积厚度为10/50nm的Ni/Au多层金属电极,沉积本底真空度为10-5pa;将顶部有光刻胶的p-GaN/i-GaN/n-BN薄膜放入去胶剥离液中,去除p-GaN/i-GaN/n-BN薄膜最顶层的残余光刻胶,用快速热退火处理技术形成良好的欧姆接触,退火气氛为空气、退火温度为450℃,退火时间450s,完成p-GaN的欧姆接触制备(图7);
最后,利用超声波金丝球焊机将制备好欧姆接触金属电极的p-GaN/i-GaN/n-BN用直径为10μm的金丝9键合至PCB电路板10,将含有p-GaN/i-GaN/n-BN的电路板封装到镀金的铝外壳中(图1)。

Claims (6)

1.一种p-GaN/i-GaN/n-BN中子探测器,其特征在于:该探测器包括Al2O3衬底层、n-BN中子转换层兼电荷收集层、i-GaN电荷产生层、p-GaN电荷收集层。
2.根据权利要求1所述的p-GaN/i-GaN/n-BN中子探测器,其特征在于:所述Al2O3衬底层,厚度为150~200μm,晶向为c轴0001面。
3.根据权利要求1所述的p-GaN/i-GaN/n-BN中子探测器,其特征在于:所述中子转换层兼电荷收集层n-BN,其中BN中的B为B的同位素10B,其厚度为5~50μm,掺杂元素为S,掺杂浓度为(5~8)×1018cm-3
4.根据权利要求1所述的p-GaN/i-GaN/n-BN中子探测器,其特征在于:所述电荷产生层i-GaN ,其厚度为5~20μm,为非故意掺杂GaN材料。
5.根据权利要求1所述的p-GaN/i-GaN/n-BN中子探测器,其特征在于:所述p-GaN电荷收集层 ,其厚度为100~500nm,掺杂元素为Mg,掺杂浓度为(1~3)×1019cm-3
6.根据权利要求1所述的p-GaN/i-GaN/n-BN中子探测器,其制备方法包括以下步骤:
(1)、n-BN薄膜的制备:采用金属有机物化学气相沉积***在Al2O3衬底上先预生长缓冲层,而后外延生长n-BN薄膜,三乙基硼和NH3作为BN的前驱反应物,H2作为载气,硫化氢作为S掺杂剂,生长温度1300~1500℃,厚度为5~50μm,掺杂浓度为(5~8)×1018cm-3
(2)、i-GaN薄膜的制备:采用金属有机物化学气相沉积***在n-BN薄膜上外延生长i-GaN薄膜,三甲基镓源和NH3作为i-GaN的前驱反应物,H2作为载气,生长温度1000~1100℃,厚度为5~20μm;
(3)、p-GaN薄膜的制备:采用金属有机物化学气相沉积***在i-GaN薄膜上外延生长p-GaN薄膜,三甲基镓源和NH3作为p-GaN的前驱反应物,H2作为载气,二茂镁作为Mg掺杂元素的气体掺杂源,生长温度900~1000℃,掺杂浓度为(1~3)×1019cm-3,厚度为2~5μm;
(4)、利用匀胶机在上述p-GaN/i-GaN/n-BN薄膜的表面涂上一层正光刻胶并曝光、显影,产生光刻图形;用感应耦合等离子体刻蚀技术刻蚀p-GaN/i-GaN/n-BN薄膜至n-BN层,在p-GaN/i-GaN/n-BN上形成阶梯层;
(5)、用热蒸发或电子束蒸发设备在n-BN上沉积Ti/Au双层金属电极并退火,制备n-BN欧姆接触电极,其中Ti的厚度为10~20nm, Au的厚度为50~200nm,而后进行欧姆接触电极退火处理,退火温度为550~650℃,退火时间为300~600s;
(6)、用热蒸发或电子束蒸发设备在p-GaN上沉积Ni/Au双层金属电极并退火,制备p-GaN欧姆接触电极,其中Ni的厚度为10~20nm,Au的厚度为50~150nm,而后进行欧姆接触电极退火处理,退火温度为450~550℃,退火时间为600~900s;
(7)、利用超声波金丝球焊机将制备好欧姆接触金属电极的p-GaN/i-GaN/n-BN用10~25μm金丝键合至PCB电路板,将含有p-GaN/i-GaN/n-BN的电路板封装到镀金的铝外壳中,完成探测器的装配。
CN201710095586.8A 2017-02-22 2017-02-22 一种p-GaN/i-GaN/n-BN中子探测器 Active CN106684177B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710095586.8A CN106684177B (zh) 2017-02-22 2017-02-22 一种p-GaN/i-GaN/n-BN中子探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710095586.8A CN106684177B (zh) 2017-02-22 2017-02-22 一种p-GaN/i-GaN/n-BN中子探测器

Publications (2)

Publication Number Publication Date
CN106684177A true CN106684177A (zh) 2017-05-17
CN106684177B CN106684177B (zh) 2018-08-28

Family

ID=58861646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710095586.8A Active CN106684177B (zh) 2017-02-22 2017-02-22 一种p-GaN/i-GaN/n-BN中子探测器

Country Status (1)

Country Link
CN (1) CN106684177B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108796447A (zh) * 2018-05-29 2018-11-13 东华理工大学 一种GaN中子探测器用的大面积厚膜6LiF中子转换层制备方法
CN112462412A (zh) * 2020-10-28 2021-03-09 东华理工大学 一种GaN中子探测器用的10B4C中子转换层制备方法
CN112599620A (zh) * 2020-12-14 2021-04-02 中国科学院长春光学精密机械与物理研究所 一种中子辐射探测器
CN117214942A (zh) * 2023-11-07 2023-12-12 清华大学 高纯锗探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641327A (zh) * 2004-01-06 2005-07-20 元砷光电科技股份有限公司 紫外光检测器
CN1753191A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 基于氮化镓半导体的紫外线光检测器
CN202221480U (zh) * 2011-04-18 2012-05-16 同方威视技术股份有限公司 涂硼中子探测器
US20130292685A1 (en) * 2012-05-05 2013-11-07 Texas Tech University System Structures and Devices Based on Boron Nitride and Boron Nitride-III-Nitride Heterostructures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1641327A (zh) * 2004-01-06 2005-07-20 元砷光电科技股份有限公司 紫外光检测器
CN1753191A (zh) * 2004-09-23 2006-03-29 璨圆光电股份有限公司 基于氮化镓半导体的紫外线光检测器
CN202221480U (zh) * 2011-04-18 2012-05-16 同方威视技术股份有限公司 涂硼中子探测器
US20130292685A1 (en) * 2012-05-05 2013-11-07 Texas Tech University System Structures and Devices Based on Boron Nitride and Boron Nitride-III-Nitride Heterostructures

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108796447A (zh) * 2018-05-29 2018-11-13 东华理工大学 一种GaN中子探测器用的大面积厚膜6LiF中子转换层制备方法
CN112462412A (zh) * 2020-10-28 2021-03-09 东华理工大学 一种GaN中子探测器用的10B4C中子转换层制备方法
CN112462412B (zh) * 2020-10-28 2023-01-03 郑州工程技术学院 一种GaN中子探测器用的10B4C中子转换层制备方法
CN112599620A (zh) * 2020-12-14 2021-04-02 中国科学院长春光学精密机械与物理研究所 一种中子辐射探测器
CN117214942A (zh) * 2023-11-07 2023-12-12 清华大学 高纯锗探测器及其制备方法
CN117214942B (zh) * 2023-11-07 2024-02-09 清华大学 高纯锗探测器及其制备方法

Also Published As

Publication number Publication date
CN106684177B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
Cheng et al. A high open-circuit voltage gallium nitride betavoltaic microbattery
CN106684177A (zh) 一种p GaNi GaN n BN中子探测器
US8735290B2 (en) Amorphous group III-V semiconductor material and preparation thereof
Kamimura et al. Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3 (010) and its suppressed interface state density
CN103117346B (zh) 一种发光二极管芯片及其制造方法
Hwang et al. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation
CN112489848A (zh) 一种半导体辐射电池
CN104638026B (zh) 一种金刚石肖特基势垒二极管及其制备方法
TW201234614A (en) Optoelectronic device and method of fabricating the same
Tang et al. Temperature-dependent electrical characteristics of β–Ga2O3 trench Schottky barrier diodes via self-reactive etching
CN109873048A (zh) 一种透明紫外光电子器件的制造方法
CN106449850A (zh) 一种高效硅基异质结双面电池及其制备方法
CN117276438A (zh) 一种深紫外led器件及其制备方法
CN103137772A (zh) 新型多层结构碳化硅光电导开关及其制备方法
CN206480639U (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
CN106711250B (zh) 一种变掺杂变组分的AlGaNGaN中子探测器
CN106505128A (zh) 一种硅基异质结电池的制备方法
CN206650087U (zh) 一种p GaNi GaN n BN中子探测器
Liu et al. Enhanced device performance of Si nanowires/Si nanocrystals heterojunction solar cells with ultrathin Al2O3 passivation
KR101765412B1 (ko) 수소 센서 및 이의 제조방법
CN115295677A (zh) 高响应度β-Ga2O3基异质结自供能紫外探测器及其制备方法和应用
CN115084234A (zh) 基于自中心至四周渐变P型掺杂浓度的氧化镓pn二极管及制备方法
Chen et al. Improvement of silicon nanowire solar cells made by metal catalyzed electroless etching and nano imprint lithography
CN104051043B (zh) 3D式PIN结构α辐照电池及其制备方法
CN109659408A (zh) 一种氮化镓基发光二极管外延片、芯片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant