CN106673631A - 一种高导热耐崩裂石英硅砖的制备方法 - Google Patents

一种高导热耐崩裂石英硅砖的制备方法 Download PDF

Info

Publication number
CN106673631A
CN106673631A CN201611265217.0A CN201611265217A CN106673631A CN 106673631 A CN106673631 A CN 106673631A CN 201611265217 A CN201611265217 A CN 201611265217A CN 106673631 A CN106673631 A CN 106673631A
Authority
CN
China
Prior art keywords
added
silica brick
silica bricks
silica
beaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611265217.0A
Other languages
English (en)
Inventor
雷笑天
王维
孙冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611265217.0A priority Critical patent/CN106673631A/zh
Publication of CN106673631A publication Critical patent/CN106673631A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种高导热耐崩裂石英硅砖的制备方法,属于硅砖制备技术领域。本发明首先将石英岩和石墨烯粉碎过筛后与氢氧化钙溶液、硅微粉加热反应得悬浊液,随后将氧化铝、氧化铁等球磨后与悬浊液、硅烷偶联剂等搅拌得混合料,再将椰子壳粉碎过筛后用盐酸酸解,得微晶纤维素,最后将其与混合料压制成型后烧结出窑,即可得到高导热耐崩裂石英硅砖,本发明解决了硅砖因体积膨胀引起的结构松散问题,有助于砖体成型及稳定硅石的晶型转化,减少了成品的裂纹或开裂,增加了硅砖的致密度,且本发明制得的硅砖内部孔隙分布均匀,结构制密,使硅砖导热率得到较大提高,具有较好的应用前景。

Description

一种高导热耐崩裂石英硅砖的制备方法
技术领域
本发明公开了一种高导热耐崩裂石英硅砖的制备方法,属于硅砖制备技术领域。
背景技术
先进焦炉的设计方向是高效、长寿、节能和环保,硅砖的各项性能直接影响着焦炉技术的先进性。长期以来,人们多关注硅砖的强度、热震、荷重软化等耐火性能,以求焦炉尽可能的长寿命。但随着节能与环保要求的日益严格化,企业要求焦炉在炼焦过程中节省煤气消耗,同时减少氮氧化物和碳氧化物的排放。焦炉的燃烧室及碳化室除长期遭受1300℃以上的高温作用外还承受上部砌体及设备的静荷重,装煤车及推焦机在工作时的动负荷,煤结焦时膨胀所产生的压力,推焦时与焦炭的摩擦作用等,因此要求硅砖需具有高的强度,强度越高,耐磨性越好、寿命越高。
由于硅砖具有荷重软化温度点高、高温体积稳定性好、长期使用不收缩等特性,在轻质耐火材料体系中也被大量应用和研究。目前国内外制造轻质硅砖的方法很多,其中广泛应用的是泡沫法和机压可燃法。
然而,现有的硅砖制造技术中,存在硅砖内部结构性能相对不均匀的问题,硅砖制造在混练工序里,传统矿化剂-石灰乳的加入是通过管道加入湿碾机里,迅速被部分硅石颗粒和细粉包裹,不能很好地均匀分布在泥料中,这使得砖坯里氧化钙的分布不均匀。在烧结过程中使得在同一温度下颗粒及基质间二氧化硅晶型转变不均匀,有的局部转化过快,有的局部转化又过慢,这样砖体内部由于晶型转变而产生的膨胀应力非常不均匀,很容易造成大气孔、甚至裂纹的产生,这样不仅影响成品率,还影响硅砖质量的稳定性。所以仅仅通过物理的机械搅拌方法想使矿化剂均匀化分布是有局限的,这样会影响硅砖内部结构的均匀性,从而会影响硅砖性能。此外,现有硅砖由于其传统矿化剂矿化效果及加入形式的局限性,使硅砖半成品造坯过程中水分分布不够均匀,泥料水分也偏高。硅砖在烧成后,水分排除留下的气孔分布也非常不均匀,气孔簇团局部集中情况突出,这都严重地影响了硅砖导热率的提高。
发明内容
本发明主要解决的技术问题:针对现有的硅砖内部结构性能相对不均匀,砖体易出现大气孔及裂纹现象,且由于硅砖中矿化剂矿化效果及加入形式的局限性,导致硅砖导热率不理想的缺陷,提供一种石墨烯增强硅砖导热性,以金属氧化物与氢氧化钙配合做矿化剂提高石英的转变程度,通过微晶纤维素与无机硅在烧结过程中形成碳化硅晶须增加密实度、减少裂纹来制备高导热耐崩裂石英硅砖的方法,本发明首先将石英岩和石墨烯粉碎过筛后与氢氧化钙溶液、硅微粉加热反应得悬浊液,随后将氧化铝、氧化铁等球磨后与悬浊液、硅烷偶联剂等搅拌得混合料,再将椰子壳粉碎过筛后用盐酸酸解,得微晶纤维素,最后将其与混合料压制成型后烧结出窑,即可得到高导热耐崩裂石英硅砖,本发明解决了硅砖因体积膨胀引起的结构松散问题,有助于砖体成型及稳定硅石的晶型转化,减少了成品的裂纹或开裂,增加了硅砖的致密度,且本发明制得的硅砖内部孔隙分布均匀,结构制密,使硅砖导热率得到较大提高,具有较好的应用前景。
为了解决上述技术问题,本发明所采用的技术方案是:
(1)称取2~3kg石英岩和25~30g石墨烯加入到粉碎机中粉碎,过80~100目筛,收集过筛物,称取600~700g过筛物加入到烧杯中,再加入1~2L质量分数为1%氢氧化钙溶液和8~12g硅微粉,搅拌混合2~3min后,将烧杯移入水浴锅中,控制温度在70~80℃,搅拌反应2~3h后,停止加热,得到悬浊液;
(2)分别称取15~20g氧化铝、30~40g氧化铁、8~12g氧化铈和5~8g氧化锰,加入到球磨机中球磨30~40min后,过120~150目筛,得到混合粉末,取10~12g混合粉末加入到上述悬浊液中,再加入0.3~0.5g硅烷偶联剂KH-550、0.5~0.8g羧甲基纤维素和6~8g海藻酸钠,搅拌混合15~20min后,得到混合料,备用;
(3)称取400~500g椰子壳加入到粉碎机中粉碎,过80~100目筛,收集过筛物,取100~200g过筛物加入到盛有400~500mL质量分数为10%盐酸的烧杯中,将烧杯置于水浴锅中,控制温度在40~50℃,浸泡酸解4~5h,待酸解完成后过滤,收集滤饼,并用质量分数为75%乙醇溶液清洗3~5次,得到微晶纤维素;
(4)将上述微晶纤维素加入到步骤(2)备用的混合料中,搅拌5~10min后,移入模压振动成型机中压制成型,得到砖坯,将砖坯移入高温隧道窑中,设定隧道窑温度为1100~1200℃,升温速率为180~200℃/h,到达设定温度后,保温烧结3~4h,再升温至1400~1500℃,继续烧结23~25h后,降温至25~35℃,控制降温速率为120~150℃/h,出窑,即可得到高导热耐崩裂石英硅砖。
本发明的应用方法是:首先用水平线竿进行现场拉线定位,并按重量份数计,取50~60份水泥,20~30份砂,20~30份水搅拌混合得泥浆,随后在本发明制得的高导热耐崩裂石英硅砖面层均匀涂抹一层泥浆,再采用层叠堆砌的方式将抹上泥浆的硅砖在定位处砌筑捣固式焦炉炉体,待炉体砌筑完成后,在炉体立面进行抹灰施工,最后在抹灰完成后进行常温炉体养护5~7天即可。经检测,本发明制得的高导热耐崩裂石英硅砖内部孔隙分布均匀,结构致密,砖体密度为2.16~2.28g/cm3,显气孔率为15.8~17.2%,具有较高的导热性能,导热率达2.42~2.75W/m·K,较传统硅砖提高了25~30%,同时本发明硅砖强度高,硅砖的成品率达96.5%以上,砖体耐压强度达65~73MPa,且本发明硅砖荷重软化温度达1700~1800℃,硅砖使用寿命达10~12年,较传统硅砖延长了4~8年。
本发明的有益效果是:
(1)本发明制得的高导热耐崩裂石英硅砖内部孔隙分布均匀,孔径比传统硅砖小,硅砖结构更加均匀,且不易产生裂纹,能有效提供硅砖成品率及硅砖质量稳定性;
(2)本发明制得的高导热耐崩裂石英硅砖具有高导热性,能保持硅砖其它综合优良性能,还能同时满足焦炉长寿、节能和高效生产的需要,具有广阔的应用前景。
具体实施方式
首先称取2~3kg石英岩和25~30g石墨烯加入到粉碎机中粉碎,过80~100目筛,收集过筛物,称取600~700g过筛物加入到烧杯中,再加入1~2L质量分数为1%氢氧化钙溶液和8~12g硅微粉,搅拌混合2~3min后,将烧杯移入水浴锅中,控制温度在70~80℃,搅拌反应2~3h后,停止加热,得到悬浊液;随后分别称取15~20g氧化铝、30~40g氧化铁、8~12g氧化铈和5~8g氧化锰,加入到球磨机中球磨30~40min后,过120~150目筛,得到混合粉末,取10~12g混合粉末加入到上述悬浊液中,再加入0.3~0.5g硅烷偶联剂KH-550、0.5~0.8g羧甲基纤维素和6g海藻酸钠,搅拌混合15~20min后,得到混合料,备用;再称取400~500g椰子壳加入到粉碎机中粉碎,过80~100目筛,收集过筛物,取100~200g过筛物加入到盛有400~500mL质量分数为10%盐酸的烧杯中,将烧杯置于水浴锅中,控制温度在40~50℃,浸泡酸解4~5h,待酸解完成后过滤,收集滤饼,并用质量分数为75%乙醇溶液清洗3~5次,得到微晶纤维素;最后将上述微晶纤维素加入到上述备用的混合料中,搅拌5~10min后,移入模压振动成型机中压制成型,得到砖坯,将砖坯移入高温隧道窑中,设定隧道窑温度为1100~1200℃,升温速率为180~200℃/h,到达设定温度后,保温烧结3~4h,再升温至1400~1500℃,继续烧结23~25h后,降温至25~35℃,控制降温速率为120~150℃/h,出窑,即可得到高导热耐崩裂石英硅砖。
实例1
首先称取2kg石英岩和25g石墨烯加入到粉碎机中粉碎,过80目筛,收集过筛物,称取600g过筛物加入到烧杯中,再加入1L质量分数为1%氢氧化钙溶液和8g硅微粉,搅拌混合2min后,将烧杯移入水浴锅中,控制温度在70℃,搅拌反应2h后,停止加热,得到悬浊液;随后分别称取15g氧化铝、30g氧化铁、8g氧化铈和5g氧化锰,加入到球磨机中球磨30min后,过120目筛,得到混合粉末,取10g混合粉末加入到上述悬浊液中,再加入0.3g硅烷偶联剂KH-550、0.5g羧甲基纤维素和7g海藻酸钠,搅拌混合15min后,得到混合料,备用;再称取400g椰子壳加入到粉碎机中粉碎,过80目筛,收集过筛物,取100g过筛物加入到盛有400mL质量分数为10%盐酸的烧杯中,将烧杯置于水浴锅中,控制温度在40℃,浸泡酸解4h,待酸解完成后过滤,收集滤饼,并用质量分数为75%乙醇溶液清洗3次,得到微晶纤维素;最后将上述微晶纤维素加入到上述备用的混合料中,搅拌5min后,移入模压振动成型机中压制成型,得到砖坯,将砖坯移入高温隧道窑中,设定隧道窑温度为1100℃,升温速率为180℃/h,到达设定温度后,保温烧结3h,再升温至1400℃,继续烧结23h后,降温至25℃,控制降温速率为120℃/h,出窑,即可得到高导热耐崩裂石英硅砖。
本实例操作简便,使用时,首先用水平线竿进行现场拉线定位,并按重量份数计,取50份水泥,20份砂,20份水搅拌混合得泥浆,随后在本发明制得的高导热耐崩裂石英硅砖面层均匀涂抹一层泥浆,再采用层叠堆砌的方式将抹上泥浆的硅砖在定位处砌筑捣固式焦炉炉体,待炉体砌筑完成后,在炉体立面进行抹灰施工,最后在抹灰完成后进行常温炉体养护5天即可。经检测,本发明制得的高导热耐崩裂石英硅砖内部孔隙分布均匀,结构致密,砖体密度为2.16g/cm3,显气孔率为15.8%,具有较高的导热性能,导热率达2.42W/m·K,较传统硅砖提高了25%,同时本发明硅砖强度高,硅砖的成品率达96.7%,砖体耐压强度达65MPa,且本发明硅砖荷重软化温度达1700℃,硅砖使用寿命达10年,较传统硅砖延长了4年。
实例2
首先称取2kg石英岩和28g石墨烯加入到粉碎机中粉碎,过90目筛,收集过筛物,称取650g过筛物加入到烧杯中,再加入1L质量分数为1%氢氧化钙溶液和10g硅微粉,搅拌混合2min后,将烧杯移入水浴锅中,控制温度在75℃,搅拌反应2h后,停止加热,得到悬浊液;随后分别称取18g氧化铝、35g氧化铁、10g氧化铈和7氧化锰,加入到球磨机中球磨35min后,过135目筛,得到混合粉末,取11g混合粉末加入到上述悬浊液中,再加入0.4g硅烷偶联剂KH-550、0.7g羧甲基纤维素和8g海藻酸钠,搅拌混合18min后,得到混合料,备用;再称取450g椰子壳加入到粉碎机中粉碎,过90目筛,收集过筛物,取150g过筛物加入到盛有4500mL质量分数为10%盐酸的烧杯中,将烧杯置于水浴锅中,控制温度在45℃,浸泡酸解4h,待酸解完成后过滤,收集滤饼,并用质量分数为75%乙醇溶液清洗4次,得到微晶纤维素;最后将上述微晶纤维素加入到上述备用的混合料中,搅拌8min后,移入模压振动成型机中压制成型,得到砖坯,将砖坯移入高温隧道窑中,设定隧道窑温度为1150℃,升温速率为190℃/h,到达设定温度后,保温烧结3h,再升温至1450℃,继续烧结24h后,降温至30℃,控制降温速率为135℃/h,出窑,即可得到高导热耐崩裂石英硅砖。
本实例操作简便,使用时,首先用水平线竿进行现场拉线定位,并按重量份数计,取55份水泥,25份砂,25份水搅拌混合得泥浆,随后在本发明制得的高导热耐崩裂石英硅砖面层均匀涂抹一层泥浆,再采用层叠堆砌的方式将抹上泥浆的硅砖在定位处砌筑捣固式焦炉炉体,待炉体砌筑完成后,在炉体立面进行抹灰施工,最后在抹灰完成后进行常温炉体养护6天即可。经检测,本发明制得的高导热耐崩裂石英硅砖内部孔隙分布均匀,结构致密,砖体密度为2.22g/cm3,显气孔率为16.5%,具有较高的导热性能,导热率达2.588W/m·K,较传统硅砖提高了28%,同时本发明硅砖强度高,硅砖的成品率达97.2%,砖体耐压强度达69MPa,且本发明硅砖荷重软化温度达1750℃,硅砖使用寿命达11年,较传统硅砖延长了6年。
实例3
首先称取3kg石英岩和30g石墨烯加入到粉碎机中粉碎,过100目筛,收集过筛物,称取700g过筛物加入到烧杯中,再加入2L质量分数为1%氢氧化钙溶液和12g硅微粉,搅拌混合3min后,将烧杯移入水浴锅中,控制温度在80℃,搅拌反应3h后,停止加热,得到悬浊液;随后分别称取20g氧化铝、40g氧化铁、12g氧化铈和8g氧化锰,加入到球磨机中球磨40min后,过150目筛,得到混合粉末,取12g混合粉末加入到上述悬浊液中,再加入0.5g硅烷偶联剂KH-550和0.8g羧甲基纤维素,搅拌混合20min后,得到混合料,备用;再称取500g椰子壳加入到粉碎机中粉碎,过100目筛,收集过筛物,取200g过筛物加入到盛有500mL质量分数为10%盐酸的烧杯中,将烧杯置于水浴锅中,控制温度在50℃,浸泡酸解5h,待酸解完成后过滤,收集滤饼,并用质量分数为75%乙醇溶液清洗5次,得到微晶纤维素;最后将上述微晶纤维素加入到上述备用的混合料中,搅拌10min后,移入模压振动成型机中压制成型,得到砖坯,将砖坯移入高温隧道窑中,设定隧道窑温度为1200℃,升温速率为200℃/h,到达设定温度后,保温烧结4h,再升温至1500℃,继续烧结25h后,降温至35℃,控制降温速率为150℃/h,出窑,即可得到高导热耐崩裂石英硅砖。
本实例操作简便,使用时,首先用水平线竿进行现场拉线定位,并按重量份数计,取60份水泥,30份砂,30份水搅拌混合得泥浆,随后在本发明制得的高导热耐崩裂石英硅砖面层均匀涂抹一层泥浆,再采用层叠堆砌的方式将抹上泥浆的硅砖在定位处砌筑捣固式焦炉炉体,待炉体砌筑完成后,在炉体立面进行抹灰施工,最后在抹灰完成后进行常温炉体养护7天即可。经检测,本发明制得的高导热耐崩裂石英硅砖内部孔隙分布均匀,结构致密,砖体密度为2.28g/cm3,显气孔率为17.2%,具有较高的导热性能,导热率达2.75W/m·K,较传统硅砖提高了30%,同时本发明硅砖强度高,硅砖的成品率达97.5%,砖体耐压强度达73MPa,且本发明硅砖荷重软化温度达1800℃,硅砖使用寿命达12年,较传统硅砖延长了8年。

Claims (1)

1.一种高导热耐崩裂石英硅砖的制备方法,其特征在于具体制备步骤为:
(1)称取2~3kg石英岩和25~30g石墨烯加入到粉碎机中粉碎,过80~100目筛,收集过筛物,称取600~700g过筛物加入到烧杯中,再加入1~2L质量分数为1%氢氧化钙溶液和8~12g硅微粉,搅拌混合2~3min后,将烧杯移入水浴锅中,控制温度在70~80℃,搅拌反应2~3h后,停止加热,得到悬浊液;
(2)分别称取15~20g氧化铝、30~40g氧化铁、8~12g氧化铈和5~8g氧化锰,加入到球磨机中球磨30~40min后,过120~150目筛,得到混合粉末,取10~12g混合粉末加入到上述悬浊液中,再加入0.3~0.5g硅烷偶联剂KH-550、0.5~0.8g羧甲基纤维素和6~8g海藻酸钠,搅拌混合15~20min后,得到混合料,备用;
(3)称取400~500g椰子壳加入到粉碎机中粉碎,过80~100目筛,收集过筛物,取100~200g过筛物加入到盛有400~500mL质量分数为10%盐酸的烧杯中,将烧杯置于水浴锅中,控制温度在40~50℃,浸泡酸解4~5h,待酸解完成后过滤,收集滤饼,并用质量分数为75%乙醇溶液清洗3~5次,得到微晶纤维素;
(4)将上述微晶纤维素加入到步骤(2)备用的混合料中,搅拌5~10min后,移入模压振动成型机中压制成型,得到砖坯,将砖坯移入高温隧道窑中,设定隧道窑温度为1100~1200℃,升温速率为180~200℃/h,到达设定温度后,保温烧结3~4h,再升温至1400~1500℃,继续烧结23~25h后,降温至25~35℃,控制降温速率为120~150℃/h,出窑,即可得到高导热耐崩裂石英硅砖。
CN201611265217.0A 2016-12-30 2016-12-30 一种高导热耐崩裂石英硅砖的制备方法 Pending CN106673631A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611265217.0A CN106673631A (zh) 2016-12-30 2016-12-30 一种高导热耐崩裂石英硅砖的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611265217.0A CN106673631A (zh) 2016-12-30 2016-12-30 一种高导热耐崩裂石英硅砖的制备方法

Publications (1)

Publication Number Publication Date
CN106673631A true CN106673631A (zh) 2017-05-17

Family

ID=58850621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611265217.0A Pending CN106673631A (zh) 2016-12-30 2016-12-30 一种高导热耐崩裂石英硅砖的制备方法

Country Status (1)

Country Link
CN (1) CN106673631A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573087A (zh) * 2017-10-17 2018-01-12 陈合华 一种隔热型致密硅砖的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167606A (zh) * 2011-01-21 2011-08-31 武汉科技大学 一种硅砖及其制备方法
CN102531648A (zh) * 2011-12-26 2012-07-04 北京航空航天大学 一种钛合金铸造用氧化钙基陶瓷型芯及其制备方法
CN103060890A (zh) * 2013-01-22 2013-04-24 华南理工大学 一种合成纳米碳化硅晶须的方法
CN103787607A (zh) * 2014-01-21 2014-05-14 洛阳理工学院 一种硅砖用新型环保矿化剂的制备方法和使用方法
CN103788216A (zh) * 2014-01-27 2014-05-14 钟春燕 一种以椰子全果为原料生产微晶纤维素的方法
CN104072154A (zh) * 2014-05-24 2014-10-01 芜湖浙鑫新能源有限公司 一种稀土包覆石英玻璃基陶瓷型芯
CN105110798A (zh) * 2015-07-09 2015-12-02 浙江长兴银兴窑业有限公司 一种石墨烯碳化硅砖及其制备方法
CN105504609A (zh) * 2015-12-28 2016-04-20 常州亚环环保科技有限公司 一种海苔渣制备碳化硅晶须复合聚四氟乙烯摩擦材料的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167606A (zh) * 2011-01-21 2011-08-31 武汉科技大学 一种硅砖及其制备方法
CN102531648A (zh) * 2011-12-26 2012-07-04 北京航空航天大学 一种钛合金铸造用氧化钙基陶瓷型芯及其制备方法
CN103060890A (zh) * 2013-01-22 2013-04-24 华南理工大学 一种合成纳米碳化硅晶须的方法
CN103787607A (zh) * 2014-01-21 2014-05-14 洛阳理工学院 一种硅砖用新型环保矿化剂的制备方法和使用方法
CN103788216A (zh) * 2014-01-27 2014-05-14 钟春燕 一种以椰子全果为原料生产微晶纤维素的方法
CN104072154A (zh) * 2014-05-24 2014-10-01 芜湖浙鑫新能源有限公司 一种稀土包覆石英玻璃基陶瓷型芯
CN105110798A (zh) * 2015-07-09 2015-12-02 浙江长兴银兴窑业有限公司 一种石墨烯碳化硅砖及其制备方法
CN105504609A (zh) * 2015-12-28 2016-04-20 常州亚环环保科技有限公司 一种海苔渣制备碳化硅晶须复合聚四氟乙烯摩擦材料的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573087A (zh) * 2017-10-17 2018-01-12 陈合华 一种隔热型致密硅砖的制备方法

Similar Documents

Publication Publication Date Title
CN102060562B (zh) 一种陶粒的制备方法
EP2985270B1 (en) Preparation method of low-temperature fast-fired lightweight ceramic heat insulation plate.
CN103936340B (zh) 一种仿古青砖及其制备方法
CN106082962A (zh) 一种泡沫陶瓷保温材料及其制备方法
CN102515801B (zh) 玻璃窑炉用硅砖
CN108821671B (zh) 一种全工业固废高强度即用型发泡混凝土材料及制备方法
CN101805203A (zh) 一种保温复合泡沫混凝土及其制备方法
CN103288426A (zh) 一种利用工业废料制备页岩气专用压裂支撑剂的方法
CN107602015A (zh) 一种轻质泡沫混凝土及其制备方法
CN104591749A (zh) 一种焦炉炭化室炉墙用超高导热硅砖及其制备方法
RU2403230C1 (ru) Способ получения гранулированного теплоизоляционного материала
CN101550018B (zh) 一种硅质耐火浇注料及其制备方法
CN106380217A (zh) 一种轻质环保陶瓷板的制作方法
CN108821621A (zh) 一种轻质高强陶粒及制备方法
CN110317016A (zh) 一种防水抗渗加气砖
CN104926288A (zh) 一种轻质陶瓷板的制备方法
CN101462883B (zh) 一种低强度镁质砖及其生产方法
CN103360013A (zh) 一种石膏基保温砂浆的制备方法
CN106673631A (zh) 一种高导热耐崩裂石英硅砖的制备方法
CN111205074B (zh) 一种含堇青石骨架的发泡陶瓷及其制备方法
CN106478130B (zh) 一种防火、保温墙体型材及其制备方法
CN107602098A (zh) 一种高荷软中铝砖及其制备方法
CN104261688B (zh) 一种多孔岩颗粒材料的制备方法
CN106396696B (zh) 莫来石球形骨料增强耐火材料的制备方法
CN103936387A (zh) 一种轻质粉煤灰基绝热材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170517