CN106638087A - 一种天然高结晶度植物纤维素及其制备方法 - Google Patents

一种天然高结晶度植物纤维素及其制备方法 Download PDF

Info

Publication number
CN106638087A
CN106638087A CN201611100734.2A CN201611100734A CN106638087A CN 106638087 A CN106638087 A CN 106638087A CN 201611100734 A CN201611100734 A CN 201611100734A CN 106638087 A CN106638087 A CN 106638087A
Authority
CN
China
Prior art keywords
crystallinity
solid
plant cellulose
natural high
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611100734.2A
Other languages
English (en)
Other versions
CN106638087B (zh
Inventor
高文花
曾劲松
徐峻
王斌
田晓俊
陈克复
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201611100734.2A priority Critical patent/CN106638087B/zh
Publication of CN106638087A publication Critical patent/CN106638087A/zh
Application granted granted Critical
Publication of CN106638087B publication Critical patent/CN106638087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/04Pulping cellulose-containing materials with acids, acid salts or acid anhydrides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种天然高结晶度植物纤维素及其制备方法,该方法是高效开发利用生物质藻类资源的有效途径之一。具体为将采集的藻类原料洗涤干净,去除杂质,自然风干,机械粉碎。酸性条件下,采用次氯酸钠氧化去除色素组分,反应结束洗至中性,固液分离。固体残渣采用碱性氢氧化钠处理去除其蛋白质组分,反应结束洗至中性,固液分离。继续采用稀盐酸溶液水解固体残渣中的钙盐等无机盐组分,反应结束,洗至中性,固液分离,干燥,制得纯度和结晶度较高的纤维素。本发明从天然生物质中提取获得了具有微细、网络交织微观结构的高纯度、高结晶度纤维素,为可再生高结晶度纤维材料的开发提供技术支持。

Description

一种天然高结晶度植物纤维素及其制备方法
技术领域
本发明涉及可再生生物质基材料领域,具体涉及一种天然高结晶度植物纤维素及其制备方法。
背景技术
天然植物纤维通常有结晶区和非结晶区组成。结晶区内微晶排列紧密,相互之间的结合力大,宏观上表现即结晶区高的纤维,耐磨性、强度以及刚度等性能较好。高结晶度的微纳纤维在复合材料纳米材料中也展现出特殊的光学性质。此外,结晶度高的纤维表面大量羟基基团通过氢键构成巨大的氢键网络,与外界水分子结合的氢键作用减少,吸湿性能变低,热稳定性能提高,是开发高性能可再生纳米材料或者药物载体的重要原料。
广泛分布于淡水湖泊、河流或沿海浅水域的绿藻,是由单列细胞或者多细胞组成的、多分支生物质,组分复杂,主要由蛋白质、矿物质、碳水化合物、色素等组成。藻体细胞均具有***能力,但通常只有顶部的细胞大量产生新的细胞,从而在水中很快形成繁茂的分支***,破坏水体环境的生态平衡。如何利用绿藻快速繁殖的优势,高效开发绿藻基高附加值产品,已成为全球多个国家急需解决的问题。研究发现藻体中纤维结构特性与高纯度细菌纤维素有较多相似之处,主要由结晶区组成,因此高效去除杂质组分,获取高纯度绿藻纤维素成为分离制备天然高结晶度植物纤维素的重要途径。本发明将通过一系列复杂的工艺,提取制备高纯度、高结晶度的植物纤维素,为可再生纤维基材料的开发与利用提供新型的纤维素来源。
发明内容
本发明的目的是提供一种天然高结晶度植物纤维素及其制备方法,该方法包括藻体色素脱除、蛋白质脱除、钙质等矿物组分去除等工艺,高效去除杂质组分,获取高纯度的绿藻基纤维素,为可再生纤维基材料的开发与利用提供纤维素来源。
为实现上述目的,本发明采用以下技术方案。
一种天然高结晶度植物纤维素的制备方法,包括以下步骤:
(1)将绿藻洗涤,去除杂质,自然风干,机械磨碎,得绿藻粉末;
(2)在酸性条件下,采用次氯酸钠氧化去除绿藻粉末中的色素,反应结束后将反应液洗至中性,再固液分离;
(3)将步骤(2)分离所得固体残渣置于氢氧化钠溶液中,反应去除蛋白质,反应结束后将反应液洗至中性,再固液分离;
(4)采用稀盐酸溶液酸性水解步骤(3)所得固体残渣中的钙盐等无机盐,水解结束后将水解液洗至中性,干燥,得纯度较高、结晶度较高的植物纤维素。
优选的,步骤(1)所述的绿藻来自淡水河流、湖泊或者浅海水域。
优选的,步骤(1)所述的绿藻为单列细胞或者多细胞生绿藻,具体为刚毛藻属、水绵属、栅藻属、小球藻属等藻类。
优选的,步骤(2)所述次氯酸钠氧化的步骤为:在40~70℃下,将绿藻粉末、次氯酸钠、pH为4.0~5.0的醋酸-醋酸钠缓冲溶液以固液比为1:5~1:20搅拌均匀,反应3~6 h,所述次氯酸钠的用量为绿藻粉末的10~40 wt%。
优选的,步骤(2)所述氯酸钠氧化的过程中原料的颜色由绿色或黄绿色被漂白至白色或乳白色。
优选的,步骤(3)中,固体残渣与氢氧化钠溶液的固液比为1:8~1:15,所述氢氧化钠溶液中的氢氧化钠为固体残渣质量的10~25 wt%,反应的温度为50~70℃,反应的时间为3~6 h。
优选的,步骤(3)所述固体残渣中蛋白质的去除程度通过元素分析仪检测氮元素的含量计算得出,去除率大于96 %。
优选的,步骤(4)所述酸性水解的步骤为:向固体残渣中以固液比为1:3~1:5加入浓度为3~6 wt%的盐酸溶液,持续搅拌,加热至沸腾,保持沸腾1~5 min,移走加热热源,室温下静置12~24 h。
由以上所述的制备方法制得的一种天然高结晶度植物纤维素。
优选的,该天然高结晶度植物纤维素具有微细的网络交织形貌结构(采用扫描电镜分析,此结构有利于开发高附加值可再生多孔纤维材料),结晶度大于92.0 %(采用X射线衍射检测),灰分值小于4.0 %(采用马弗炉575℃煅烧检测)。
与现有技术相比,本发明具有如下优点与技术效果:
1、本发明从天然生物质绿藻中提取获得了具有微细、网络交织微观结构的高纯度、高结晶度纤维素,为可再生高结晶度纤维材料的开发提供技术支持。
2、本发明采用精密的氮元素分析仪分析绿藻中蛋白质的脱除率,可反馈调控优化绿藻蛋白质脱除工艺,保证蛋白质组分深度去除,为绿藻组分的高效分离提供技术支持。
附图说明
图1为实施例1提取分离得到的天然高结晶度植物纤维素的扫描电镜图片。
具体实施方式
以下通过实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
将取自淡水湖泊的绿藻洗净,去除杂质,自然风干,机械磨碎,得绿藻粉末。按照固液比为1:5(w/w),次氯酸钠用量为绿藻粉末的10 %(w/w),将绿藻粉末(5.0 g)、次氯酸钠(0.5g)置于pH为4.0的醋酸-醋酸钠缓冲溶液中,温度40℃,持续搅拌反应3 h。反应结束,绿藻粉末由绿色变为乳白色,洗涤至中性,固液分离。将分离所得固体残渣进一步置于氢氧化钠溶液中脱除蛋白质,固液比为1:8(w/w),氢氧化钠用量为固体残渣的10 %(w/w),温度50℃,持续搅拌反应4 h。反应结束后将反应液洗涤至中性,固液分离。元素分析仪检测蛋白质脱除反应前后氮元素含量,计算得到蛋白质的脱除率为96.1%。再采用稀盐酸水解脱除蛋白质后分离所得固体残渣中的钙质等矿物质组分,进一步纯化。稀盐酸的浓度为3 wt%,固液比为1:3(w/w),持续搅拌,加热至沸腾,保持沸腾1 min,移走加热热源,室温下静置12 h。反应结束后将反应液洗涤至中性,固液分离,干燥固体,得到天然高结晶度植物纤维素。采用马弗炉575℃煅烧天然高结晶度植物纤维素,灰分为0.8 %。X射线衍射分析分离纤维素的结晶度,表明获得了天然高结晶度植物纤维素,且结晶度为92.0 %。
本实施例提取分离得到的天然高结晶度植物纤维素的扫描电镜图片如图1所示,表明此纤维素具有相互交织的微观结构,适合用于可再生多孔材料。其它实施例所得纤维素的扫描电镜图片与图1类似,均具有相互交织的微观结构。
实施例2
将取自河流的绿藻原料洗净,去除杂质,自然风干,机械磨碎,得绿藻粉末。按照固液比为1:10(w/w),次氯酸钠用量为绿藻粉末的20 %(w/w),将绿藻粉末(4.0 g)、次氯酸钠(0.8g)置于pH为4.5的醋酸-醋酸钠缓冲溶液中,温度55℃,持续搅拌反应4.5 h。反应结束,绿藻粉末由绿色变为乳白色,洗涤至中性,固液分离。将分离所得固体残渣进一步置于氢氧化钠溶液中脱除蛋白质,固液比为1:10(w/w),氢氧化钠用量为固体残渣的25 %(w/w),温度70℃,持续搅拌反应6 h。反应结束后将反应液洗涤至中性,固液分离。元素分析仪检测蛋白质脱除反应前后氮元素含量,计算得到蛋白质的脱除率为98.2 %。再采用稀盐酸水解脱除蛋白质后分离所得固体残渣中的钙质等矿物质组分,进一步纯化。稀盐酸浓度为6 wt%,固液比为1:5(w/w),持续搅拌,加热至沸腾,保持沸腾5 min,移走加热热源,室温下静置24 h。反应结束后将反应液洗涤至中性,固液分离,干燥固体,得到天然高结晶度植物纤维素。采用马弗炉575℃煅烧制取的天然高结晶度植物纤维素,灰分为0.4 %。X射线衍射分析分离纤维素的结晶度,表明获得了天然高结晶度植物纤维素,且结晶度为96.0 %。
实施例3
将取自浅海水域的绿藻原料洗净,去除杂质,自然风干,机械磨碎,得绿藻粉末。按照固液比为1:20(w/w),次氯酸钠用量为绿藻粉末的40 %(w/w),将绿藻粉末(5.0 g)、次氯酸钠(2.0 g)置于pH为5.0的醋酸-醋酸钠缓冲溶液中,温度70℃,持续搅拌反应6 h。反应结束,绿藻粉末由黄绿色变为乳白色,洗涤至中性,固液分离。将分离所得固体残渣进一步置于氢氧化钠溶液中脱除蛋白质,固液比为1:12(w/w),氢氧化钠用量为固体残渣的15 %(w/w),温度60℃,持续搅拌反应5 h。反应结束后将反应液洗涤至中性,固液分离。元素分析仪检测蛋白质脱除反应前后氮元素含量,计算得到蛋白质的脱除率为97.0 %。再采用稀盐酸水解脱除蛋白质后分离所得固体残渣中的钙质等矿物质组分,进一步纯化。稀盐酸浓度为4 wt%,固液比为1:4(w/w),持续搅拌,加热至沸腾,保持沸腾3 min,移走加热热源,室温下静置12h。反应结束后将反应液洗涤至中性,固液分离,干燥固体,得到天然高结晶度植物纤维素。采用马弗炉575℃煅烧制取的天然高结晶度植物纤维素,灰分为0.65 %。X射线衍射分析分离纤维素的结晶度,表明获得了天然高结晶度植物纤维素,且结晶度为93.5 %。
实施例4
将取自淡水湖泊的绿藻原料洗净,去除杂质,自然风干,机械磨碎,得绿藻粉末。按照固液比为1:15(w/w),次氯酸钠用量为绿藻粉末的30 %(w/w),将绿藻粉末(5.0 g)、次氯酸钠(1.5 g)置于pH为4.8的醋酸-醋酸钠缓冲溶液中,温度50℃,持续搅拌反应4 h。反应结束,绿藻粉末由黄绿色变为乳白色,洗涤至中性,固液分离。将分离所得固体残渣进一步置于氢氧化钠溶液中脱除蛋白质,固液比为1:12(w/w),氢氧化钠用量为固体残渣的20 %(w/w),温度60℃,持续搅拌反应4 h。反应结束后将反应液洗涤至中性,固液分离。元素分析仪检测蛋白质脱除反应前后氮元素含量,计算得到蛋白质的脱除率为97.5 %。再采用稀盐酸水解脱除蛋白质后分离所得固体残渣中的钙质等矿物质组分,进一步纯化。稀盐酸浓度为4 wt%,固液比为1:4(w/w),持续搅拌,加热至沸腾,保持沸腾3 min,移走加热热源,室温下静置24h。反应结束后将反应液洗涤至中性,固液分离,干燥固体,得到天然高结晶度植物纤维素。采用马弗炉575℃煅烧制取的天然高结晶度植物纤维素,灰分为0.6 %。X射线衍射分析纤维素的结晶度,表明获得了天然高结晶度植物纤维素,且结晶度为95.0%。
实施例5
将取自河流的绿藻原料洗净,去除杂质,自然风干,机械磨碎,得绿藻粉末。按照固液比为1:15(w/w),次氯酸钠用量为绿藻粉末的30 %(w/w),将绿藻粉末(4.5 g)、次氯酸钠(1.35g)置于pH为4.8的醋酸-醋酸钠缓冲溶液中,温度60℃,持续搅拌反应6 h。反应结束,绿藻粉末由绿色变为乳白色,洗涤至中性,固液分离。将分离所得固体残渣进一步置于氢氧化钠溶液中脱除蛋白质,固液比为1:10(w/w),氢氧化钠用量为固体残渣的15 %(w/w),温度60℃,持续搅拌反应6 h。反应结束后将反应液洗涤至中性,固液分离。元素分析仪检测蛋白质脱除反应前后氮元素含量,计算得到蛋白质的脱除率为97.3 %。再采用稀盐酸水解脱除蛋白质后分离所得固体残渣中的钙质等矿物质组分,进一步纯化。稀盐酸浓度为5 wt%,固液比为1:5(w/w),持续搅拌,加热至沸腾,保持沸腾4 min,移走加热热源,室温下静置18 h。反应结束后将反应液洗涤至中性,固液分离,干燥固体,得到天然高结晶度植物纤维素。采用马弗炉575℃煅烧制取的天然高结晶度植物纤维素,灰分为0.55 %。X射线衍射分析纤维素的结晶度,表明获得了天然高结晶度植物纤维素,且结晶度为92.5 %。
以上列举的仅是本发明的具体实施例。本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (10)

1.一种天然高结晶度植物纤维素的制备方法,其特征在于,包括以下步骤:
(1)将绿藻洗涤,去除杂质,自然风干,磨碎,得绿藻粉末;
(2)在酸性条件下,采用次氯酸钠氧化去除绿藻粉末中的色素,反应结束后将反应液洗至中性,再固液分离;
(3)将步骤(2)分离所得固体残渣置于氢氧化钠溶液中,反应去除蛋白质,反应结束后将反应液洗至中性,再固液分离;
(4)采用稀盐酸溶液酸性水解步骤(3)所得固体残渣中的无机盐,水解结束后将水解液洗至中性,固液分离,干燥,得天然高结晶度植物纤维素。
2.根据权利要求1所述的一种天然高结晶度植物纤维素的制备方法,其特征在于,步骤(1)所述的绿藻来自淡水河流、湖泊或者浅海水域。
3.根据权利要求1所述的一种天然高结晶度植物纤维素的制备方法,其特征在于,步骤(1)所述的绿藻为刚毛藻属、水绵属、栅藻属和小球藻属中的一种以上。
4.根据权利要求1所述的一种天然高结晶度植物纤维素的制备方法,其特征在于,步骤(2)所述次氯酸钠氧化的步骤为:在40~70℃下,将绿藻粉末、次氯酸钠、pH为4.0~5.0的醋酸-醋酸钠缓冲溶液以固液比为1:5~1:20混合搅拌均匀,反应3~6 h,所述次氯酸钠为绿藻粉末的10~40 wt%。
5.根据权利要求1所述的一种天然高结晶度植物纤维素的制备方法,其特征在于,步骤(2)所述氯酸钠氧化的过程中原料的颜色由绿色或黄绿色被漂白至白色或乳白色。
6.根据权利要求1所述的一种天然高结晶度植物纤维素的制备方法,其特征在于,步骤(3)中,固体残渣与氢氧化钠溶液的固液比为1:8~1:15,所述氢氧化钠溶液中的氢氧化钠为固体残渣质量的10~25 wt%,反应的温度为50~70℃,反应的时间为3~6 h。
7.根据权利要求1所述的一种天然高结晶度植物纤维素的制备方法,其特征在于,步骤(3)所述固体残渣中蛋白质的去除程度通过元素分析仪检测氮元素的含量计算得出,去除率大于96 %。
8.根据权利要求1所述的一种天然高结晶度植物纤维素的制备方法,其特征在于,步骤(4)所述酸性水解的步骤为:向固体残渣中以固液比为1:3~1:5加入浓度为3~6 wt%的盐酸溶液,搅拌,加热至沸腾,保持沸腾1~5 min,移走加热热源,室温下静置12~24 h。
9.由权利要求1-8任一项所述的制备方法制得的一种天然高结晶度植物纤维素。
10.根据权利要求9所述的一种天然高结晶度植物纤维素,其特征在于,该天然高结晶度植物纤维素具有网络交织形貌结构,结晶度大于92.0 %,灰分值小于4.0 %。
CN201611100734.2A 2016-12-05 2016-12-05 一种天然高结晶度植物纤维素及其制备方法 Active CN106638087B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611100734.2A CN106638087B (zh) 2016-12-05 2016-12-05 一种天然高结晶度植物纤维素及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611100734.2A CN106638087B (zh) 2016-12-05 2016-12-05 一种天然高结晶度植物纤维素及其制备方法

Publications (2)

Publication Number Publication Date
CN106638087A true CN106638087A (zh) 2017-05-10
CN106638087B CN106638087B (zh) 2018-09-14

Family

ID=58819077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611100734.2A Active CN106638087B (zh) 2016-12-05 2016-12-05 一种天然高结晶度植物纤维素及其制备方法

Country Status (1)

Country Link
CN (1) CN106638087B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235130A (zh) * 2018-08-16 2019-01-18 温州崇奥礼品有限公司 一种抗菌效果好的包装纸及其制备方法
DE102019001184B4 (de) 2019-02-18 2023-06-22 Soumeya Nadir Verfahren zur Herstellung von Papier auf Basis von mittels eines schonenden Extraktionsverfahrens aus aquatischen Makrophyten, insbesondere Wasserpest (Elodea), isolierter Cellulose und durch dieses Verfahren hergestelltes Papier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255662A (zh) * 2013-05-06 2013-08-21 青岛大学 一种纳米纤丝化浒苔纤维素的制备方法
CN103980530A (zh) * 2014-05-27 2014-08-13 哈尔滨工业大学 一种海藻纤维素气凝胶吸油材料的制备方法
CN105189857A (zh) * 2013-01-25 2015-12-23 文迪克斯环境股份有限公司 用于从纤维素生物质分离纤维素的工艺、经分离的i型的纤维素和包括其的复合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189857A (zh) * 2013-01-25 2015-12-23 文迪克斯环境股份有限公司 用于从纤维素生物质分离纤维素的工艺、经分离的i型的纤维素和包括其的复合材料
CN103255662A (zh) * 2013-05-06 2013-08-21 青岛大学 一种纳米纤丝化浒苔纤维素的制备方法
CN103980530A (zh) * 2014-05-27 2014-08-13 哈尔滨工业大学 一种海藻纤维素气凝胶吸油材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235130A (zh) * 2018-08-16 2019-01-18 温州崇奥礼品有限公司 一种抗菌效果好的包装纸及其制备方法
DE102019001184B4 (de) 2019-02-18 2023-06-22 Soumeya Nadir Verfahren zur Herstellung von Papier auf Basis von mittels eines schonenden Extraktionsverfahrens aus aquatischen Makrophyten, insbesondere Wasserpest (Elodea), isolierter Cellulose und durch dieses Verfahren hergestelltes Papier

Also Published As

Publication number Publication date
CN106638087B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN101417798B (zh) 一种稻壳燃烧废气和废渣综合利用的方法
KR101048410B1 (ko) 미세구조의 고순도 실리카 및 섬유를 동시에 제조하는 방법
CN103352066A (zh) 鱼鳞、鱼皮胶原活性肽的生产工艺
CN101985641B (zh) 一种利用麦秆制备细菌纤维素的方法
KR101902206B1 (ko) 바이오매스로부터 표면적이 향상된 실리카를 제조하는 방법
CN102744238B (zh) 一种生物质发电厂草木灰综合利用的方法
JP5442284B2 (ja) 草本系バイオマスの酵素加水分解処理の前処理方法及び草本系バイオマスを原料とするエタノール製造方法
CN102212976A (zh) 一种分离甘蔗渣纤维素和木质素的方法
JP2010041923A (ja) 酵素糖化方法ならびにエタノール製造方法
EP2771442A1 (en) Method of lipid extraction
CN106930133A (zh) 一种用甘蔗渣造纸的方法及其制成的水杯
CN103031762B (zh) 一种在可降解型离子液体溶剂中制备富含纤维素材料的方法
CN107904266B (zh) 一种高效绿色提高木质纤维素酶解糖化效率的预处理方法及应用
CN101823741B (zh) 用铝灰连续生产铝电解原料高氟氧化铝及冰晶石和水玻璃的方法
CN106638087A (zh) 一种天然高结晶度植物纤维素及其制备方法
CN101327940A (zh) 一种利用净化后饱和卤水为原料制取日晒盐工艺
CN102492235A (zh) 环氧大豆油酸钙锌复合pvc用稳定剂及其制备方法
CN101638235B (zh) 一种从植物中制备含硅产物的方法
CN101024605A (zh) 利用蛋壳制备新型有机钙的方法
CN101985642B (zh) 一种利用稻秆制备细菌纤维素的方法
CN107353352A (zh) 一种纳米纤维素的制备方法、纳米纤维素及净水膜、净水膜的制备方法
CN106592311A (zh) 一种纳米纤丝纤维素的制备方法
CN111072469B (zh) 一种提取天然神经酸的方法
CN107216253A (zh) 一种利用酶-化学联合技术从大豆油脱臭馏出物中提取ve、甾醇的生产方法
CN1669927A (zh) 一种利用煤矸石为原料制备纳米级4a沸石的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant