CN106637932A - 一种制备储氢物质镁镍合金纳米纤维的方法 - Google Patents

一种制备储氢物质镁镍合金纳米纤维的方法 Download PDF

Info

Publication number
CN106637932A
CN106637932A CN201611004228.3A CN201611004228A CN106637932A CN 106637932 A CN106637932 A CN 106637932A CN 201611004228 A CN201611004228 A CN 201611004228A CN 106637932 A CN106637932 A CN 106637932A
Authority
CN
China
Prior art keywords
fibers
nanofiber
temperature
hydrogen
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611004228.3A
Other languages
English (en)
Inventor
余学斌
黄雨琴
夏广林
陈洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201611004228.3A priority Critical patent/CN106637932A/zh
Publication of CN106637932A publication Critical patent/CN106637932A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0042Intermetallic compounds; Metal alloys; Treatment thereof only containing magnesium and nickel; Treatment thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于氢气存储材料制备技术领域,具体为制备储氢物质镁镍合金纳米纤维的方法。本发明通过改变静电纺丝法制备Ni(NO3)2/PVP纤维的煅烧条件,合成竹节状的Ni纳米纤维作为Ni源,利用高温热蒸发法将Mg蒸发到Ni纳米纤维表面进行原位反应,制备得到Mg‑Ni纳米纤维。本发明合成的Mg‑Ni纳米纤维总储氢量为2.25 wt.%,在100℃,100 min内即可吸附1.31 wt.%的氢气,吸完氢后,在265℃,1 min内能够快速放出1.5 wt.%的氢气,总放氢量为2.13 wt.%,具有较高的吸放氢动力学性能。

Description

一种制备储氢物质镁镍合金纳米纤维的方法
技术领域
本发明属于氢气存储材料制备技术领域,具体涉及制备储氢物质镁镍合金纳米纤维的方法。
背景技术
不可再生化石能源的大量消耗,人类生存环境的日益恶化换得了人类经济的迅猛发展,能源是人类赖以生存、生产和生活的重要源泉,为了满足全球对清洁能源的需求,解决日益严重的能源危机,寻找合适的可替代能源是各国的战略目标。[1] 在各种可替代能源中,氢能因其储量丰富,燃烧能量密度值高,燃烧产物(水)清洁无污染等一系列优势成为最理想的二次能源。如何安全高效地储存氢能是当前氢能应用的瓶颈问题。[2,3] 随着氢经济的发展,许多储氢材料不断被开发,如合金,轻金属氢化物,碳纳米管等。镁基储氢材料以其丰富的储备,低廉的价格,以及容量高,可逆性好等特点而备受关注,但是它还存在高的吸放氢温度和缓慢的动力学这两个主要应用障碍,MgH2具有极高的热力学稳定性,分解焓变高达74.6 KJ/(mol·H2)。放氢温度往往在350 ℃以上,这限制了其在储氢方面的实际应用,而通过与Ni,Cu,Al等合金化能够改变MgH2的分解路径,降低其热力学稳定性,从而能够显著改善MgH2的热力学性能,Ni作为一种廉价易得的金属,其与Mg的二元合金产物Mg2Ni具有相对较高的理论含氢量(3.6 wt.%)和快速可逆吸放氢的性能受到广泛研究。但是目前合成Mg2Ni的方法存在种种不足。比如常规的共熔法由于Mg的低熔点、高挥发性以及MgNi金属间高的熔点差异受到限制很难制备高纯度的Mg2Ni合金。[4-6]有研究表明机械球磨的方法可以合成Mg2Ni。[7-10]但是此法耗时长,并且最终产物均一性和纯度会受到球磨转速,球料比,球磨时间等多种因素的影响。此外,长的球磨时间容易使样品发生氧化。为了解决这个问题,Sun课题组提出了两步法合成Mg2Ni。先将Mg粉与Ni粉简单球磨20 min后再在500 ℃,Ar气氛下进行固相反应合成Mg2Ni。[11]但是此法步骤较为繁琐。后来Li等人采用H等离子体法合成Mg,Ni纳米颗粒,然后在4 MPa氢压,350 ℃条件下,利用Mg,Ni纳米颗粒反应合成Mg2NiH4,再经后续脱氢后便得到纯Mg2Ni。[12,13]但此法引进了H等离子体设备,目前只能应用于实验室合成,不适合工业化批量生产。本发明开创性的利用高温热蒸发法将Mg蒸发到Ni纳米纤维表面进行原位反应制备Mg-Ni纳米纤维。
参考文献:
【1】. Schmitz, B., Virtual Reality: On the Brink of Greatness [J].Computer Aided Engineering, Vol. 12, No. 4, 1993, pp.26~32.
【2】. Jayaram, S., Connacher, H.I., and Lyons, K.W., Virtual AssemblyUsing Virtual Reality Techniques [J]. Computer Aided Design, Vol. 29, No. 8,1997, pp. 575~584.
【3】. Jung, B., Hoffhenke, M., and Wachsmuth, I., Virtual Assembly WithConstruction Kits [M]. Proceedings of 1997 ASME Design Engineering TechnicalConference, September 14-17, 1997, Sacramento, DETC97/DFM-4363.
【4】. Hsu C-W, Lee S-L, Jeng R-R, Lin J-C. Mass production of Mg2Ni alloybulk by isothermal evaporation casting process [J]. Int J Hydrogen Energy,2007,32:4907-4911.
【5】. Sun D, Enoki H, Gingl F, Akiba E. New approach for synthesizing Mg-based alloys [J]. J Alloys Compd., 1999, 285:279-283.
【6】. Knight Jr L, Brittain R, Duncan M, Joyner C. Unusual behavior ofvaporaized magnesium under low pressure conditions [J]. J Phys Chem., 1975,79: 1183-1190.
【7】. Ebrahimi-Purkani A, Kashani-Bozorg SF, Nanocrystalline Mg2Ni-basedpowders produced by high-energy ball milling and subsequent annealing [J]. JAlloys Compd., 2008,456:211-215.
【8】. Simicic MV, Zdujic M, Dimitrijevic R, Nikolic-Bujanovic L, PopovicNH. Hydrogen absorption and elecdtrochemical properties of Mg2Ni-type alloyssynthesized by mechanical alloying [J]. J Power Sources, 2006, 158: 730-734.
【9】. Zaluski L, Zaluska A, Stromolsen JO. Hydrogen absorption innanocrystalling Mg2Ni formed by mechanical alloying [J]. J Alloys Compd.,1995, 217: 245-249.
【10】. Lee HY, Goo NH, Jeong WT, Lee KS. The surface state ofnanocrystalline and amorphous Mg2Ni alloys prepared by mechanical alloying[J]. J Alloys Compd., 2000, 313: 258-262.
【11】. Zhao B, Fang F, Sun D, Zhang Q, Wei S, Cao F, er al. Formation ofMg2Ni with enhanced kinetics: Using MgH2 instead of Mg as a starting material[J]. J Solid State Chem., 2012, 192: 210-214.
【12】. Shao H, Liu T, Li X. Preparation of the Mg2Ni compound fromultrafine particles and its hydrogen storage properties [J]. Nanotechnology,2003,14: L1-L3.
【13】. Shao HY, Liu T, Wang YT, Xu HR, Li XG. Preparation of Mg-basedhydrogen storage materials from metal nanoparticles [J]. J Alloys Compd.,2008, 456: 527-533.。
发明内容
本发明目的是提供一种工艺简单的制备镁镍(Mg-Ni)合金纳米纤维的方法。
本发明提供的制备镁镍合金纳米纤维的方法,通过改变静电纺丝法制备Ni(NO3)2/PVP纤维的煅烧条件,合成竹节状的Ni纳米纤维作为Ni源,利用高温热蒸发法将Mg蒸发到Ni纳米纤维表面进行原位反应,制备得到Mg-Ni纳米纤维。具体步骤为:
(1)用静电纺丝法合成竹节状的Ni纳米纤维:
将溶有Ni(NO3)2和PVP的DMF/乙醇溶液用静电纺丝法制备Ni(NO3)2/PVP纤维,然后,在管式炉中将Ni(NO3)2/PVP纤维在空气中煅烧成NiO纤维,最后在H2/N2混合气保护下将NiO纤维还原为Ni纤维;
(2)用热蒸发法将Mg粉蒸发到Ni纳米纤维表面:
将装有Ni纤维的瓷舟置于铺满Mg粉的大瓷舟内,密封,然后在保护气体Ar下,用管式炉对其煅烧,将Mg粉蒸到Ni纳米纤维表面,并与Ni进行原位反应,生成Mg-Ni纳米纤维。
本发明步骤(1)中,所述煅烧Ni(NO3)2/PVP纤维的条件为:以1~5 ℃/min速率升温到190~220 ℃,保温1~3 h;然后继续以此速率升温至500~550 ℃,在此温度下保温2~4 h;所述还原NiO纤维的条件为:H2/N2混合气的保护下,以1~5 ℃/min速率升温至380-420℃,在此温度下保温2~4 h,结束后冷却至室温。
本发明步骤(2)中,所述煅烧条件为:以1~5 ℃/min速率升温至500 -550℃,随即再从此温度以2-3 ℃/min速率升温至600~650 ℃,在此温度保温2~3h,然后冷却至室温。
本发明所合成的Mg-Ni合金纳米纤维,由许多纳米晶粒堆积而成,纤维尺寸在80-200 nm不等。
本发明所合成的Mg-Ni合金纳米纤维是一中理想的储氢物质,在氢压30 bar,100℃下,100 min内即可吸附1.31 wt.%的氢气;在235 ℃,1 min内吸氢量就能达到1 wt.%,总的储氢容量为2.25 wt.%;吸完氢后,在265 ℃,1 min内能够快速放出1.5 wt.%的氢气,总放氢量为2.13 wt.%。
本发明具有以下几个方面显著优点:
(1)使用Mg-Ni合金纳米纤维作为氢源材料,可于较低的加热温度下获得大量高纯氢气;
(2)制备设备简单,易于实现;
(3)工艺简单,合成方便,成本适中。
附图说明
图1静电纺丝法合成的NiO纳米纤维(NiO NFs),还原后的Ni纤维(Ni NFs), Mg-Ni合金纳米纤维(Mg-Ni NFs)的XRD图。
图2为NiO纳米纤维、Ni纳米纤维、Mg-Ni合金纳米纤维的有关图片。其中, a为 静电纺丝法制备的NiO纳米纤维的TEM照片;b为竹节状的Ni纳米纤维的TEM照片;c 为Mg-Ni合金纳米纤维的TEM照片;d为Mg-Ni合金纳米纤维的HRTEM照片;e为单根的TEM照片,f为e中元素Ni谱图,g 为e中的元素Mg谱图。
图3 Mg-Ni合金纳米纤维热分解性能谱图。其中,黑线,为Mg-Ni合金纳米纤维的加氢产物的质谱图;红线为 Mg-Ni粉末样品的加氢产物的质谱图。
图4产物吸放氢后的XRD谱图,其中,a为Mg-Ni合金纳米纤维吸氢后的产物;b 为Mg-Ni合金纳米纤维放氢后的产物。
图5 Mg-Ni合金纤维不同温度条件下的吸氢曲线(上)。
图6 Mg-Ni合金纤维不同温度条件下的放氢曲线(下)。
具体实施方式
下面通过实施例进一步说明本发明。
实施例1:
1.Ni纳米纤维的制备:共分为三步。首先,量取1.25 ml的DMF和乙醇,混合均匀。然后在混合的有机溶剂中,加入0.17 g的PVP,搅拌几分钟溶解,再加入0.101g的Ni(NO32·6H2O,继续搅拌5 h后得到澄清的绿色溶液,用于静电纺丝。参数设置:电压12 KV,喷丝头距接收板15 cm,液体流速为0.25 ml/h,在室温条件下纺丝。第二步,将负极板上接受的Ni(NO32/PVP前驱纤维在空气中煅烧得到NiO纤维。煅烧程序为1 ℃/min到190 ℃,保温2 h后继续升温至500 ℃,保温3 h。第三步,还原NiO纤维,在400 ℃,H2/N2混合气的保护下保温2 h,可以使NiO还原成Ni纤维。
2.Mg-Ni合金纳米纤维制备:称取Ni线25 mg于小瓷舟 A中,将瓷舟 A置于底部铺满Mg粉(400 mg) 大瓷舟 B内部,盖上瓷舟盖密封。将瓷舟 B移入石英管内,置于管式炉加热,通保护气体Ar。热处理程序为:先5 ℃/min 到500 ℃,再以2 ℃/min到650 ℃保温2 h,后冷却至室温。作为对比,称取等量Ni粉按照相同方法合成Mg2Ni粉末样品。
3.Mg-Ni纳米纤维加氢过程:称取20 mg样品与高压反应釜中,加入30 bar的氢压,在300℃保温5 h后冷却至室温。按照相同方法对合成的Mg-Ni粉末样品进行加氢操作作为对比试验。产物的XRD如图1所示,合成产物的形貌表征如图2所示,图3为Mg-Ni纳米纤维及其对比样品的热分解性能图谱,而Mg-Ni纳米纤维吸氢和放氢后的产物分析如图4所示,最后,Mg-Ni纳米纤维的吸放氢性能如图5-6所示。
实施例2:
1.Ni纳米纤维的制备:共分为三步。首先,量取2.5 ml的DMF和乙醇,混合均匀。然后在混合的有机溶剂中,加入0.34g的PVP,搅拌几分钟溶解,再加入0.202g的Ni(NO32·6H2O,继续搅拌5 h后得到澄清的绿色溶液,用于静电纺丝。参数设置:电压12 KV,喷丝头距接收板15 cm,液体流速为0.25 ml/h,在室温条件下纺丝。第二步,将负极板上接受的Ni(NO32/PVP前驱纤维在空气中煅烧得到NiO纤维。煅烧程序为3 ℃/min到220 ℃,保温2 h后继续以此速率升温至550 ℃,保温3 h。第三步,还原NiO纤维,在H2/N2混合气的保护下,以5 ℃/min升到400 ℃,在400 ℃下保温3 h,可以使NiO还原成Ni纤维。
2.Mg-Ni合金纳米纤维制备:称取Ni线25 mg于小瓷舟 A中,将瓷舟 A置于底部铺满Mg粉(400 mg) 大瓷舟 B内部,盖上瓷舟盖密封。将瓷舟 B移入石英管内,置于管式炉加热,通保护气体Ar。热处理程序为:先5 ℃/min 到500 ℃,再以2 ℃/min到600 ℃保温3 h,后冷却至室温。作为对比,称取等量Ni粉按照相同方法合成Mg2Ni粉末样品。
3.Mg-Ni纳米纤维加氢过程:称取20 mg样品与高压反应釜中,加入30 bar的氢压,在300℃保温5 h后冷却至室温。按照相同方法对合成的Mg-Ni粉末样品进行加氢操作作为对比试验。

Claims (3)

1.一种制备储氢物质镁镍合金纳米纤维的方法,其特征在于,通过改变静电纺丝法制备Ni(NO3)2/PVP纤维的煅烧条件,合成竹节状的Ni纳米纤维作为Ni源,利用高温热蒸发法将Mg蒸发到Ni纳米纤维表面进行原位反应,制备得到Mg-Ni纳米纤维;具体步骤为:
(1)用静电纺丝法合成竹节状的Ni纳米纤维:
将溶有Ni(NO3)2和PVP的DMF/乙醇溶液用静电纺丝法制备Ni(NO3)2/PVP纤维,然后,在管式炉中将Ni(NO3)2/PVP纤维在空气中煅烧成NiO纤维,最后在H2/N2混合气保护下将NiO纤维还原为Ni纤维;
(2)用热蒸发法将Mg粉蒸发到Ni纳米纤维表面:
将装有Ni纤维的瓷舟置于铺满Mg粉的大瓷舟内,密封,然后在保护气体Ar下,用管式炉对其煅烧,将Mg粉蒸到Ni纳米纤维表面,并与Ni进行原位反应,生成Mg-Ni纳米纤维;
步骤(1)中所述煅烧Ni(NO3)2/PVP纤维的条件为:以1~5 ℃/min速率升温到190~220℃,保温1~3 h;然后继续以此速率升温至500~550 ℃,在此温度下保温2~4 h;所述还原NiO纤维的条件为:H2/N2混合气的保护下,以1~5 ℃/min速率升温至380-420℃,在此温度下保温2~4 h,结束后冷却至室温。
2. 根据权利要求1所述的方法,其特征在于,步骤(2)所述煅烧条件为:以1~5 ℃/min速率升温至500 -550℃,随即再从此温度以2-3 ℃/min速率升温至600~650 ℃,在此温度保温2~3h,然后冷却至室温。
3. 根据权利要求1所述的方法,其特征在于,所合成的Mg-Ni合金纳米纤维由许多纳米晶粒堆积而成,纤维尺寸为80-200 nm。
CN201611004228.3A 2016-11-15 2016-11-15 一种制备储氢物质镁镍合金纳米纤维的方法 Pending CN106637932A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611004228.3A CN106637932A (zh) 2016-11-15 2016-11-15 一种制备储氢物质镁镍合金纳米纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611004228.3A CN106637932A (zh) 2016-11-15 2016-11-15 一种制备储氢物质镁镍合金纳米纤维的方法

Publications (1)

Publication Number Publication Date
CN106637932A true CN106637932A (zh) 2017-05-10

Family

ID=58806789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611004228.3A Pending CN106637932A (zh) 2016-11-15 2016-11-15 一种制备储氢物质镁镍合金纳米纤维的方法

Country Status (1)

Country Link
CN (1) CN106637932A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941610A (zh) * 2018-09-19 2018-12-07 西京学院 一种基于多元醇法制备储氢镁镍合金纳米粉末的方法
CN114411028A (zh) * 2022-01-21 2022-04-29 徐州工程学院 一种微量镍复合层状镁复合材料及其制备方法和应用
CN114918421A (zh) * 2022-04-21 2022-08-19 北京航空航天大学 一种ZrCo合金的纤维空间限域制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398664A (zh) * 2002-08-28 2003-02-26 武汉理工大学 储氢金属或储氢合金修饰的一维纳米碳储氢材料
CN102418018A (zh) * 2011-11-16 2012-04-18 南京工业大学 一种纳米镁基储氢材料及其制备方法
CN105063804A (zh) * 2015-07-21 2015-11-18 苏州明动新材料科技有限公司 一种金属纳米纤维的制备工艺
CN105692553A (zh) * 2016-01-14 2016-06-22 南京工业大学 一种纳米镁基储氢合金氢化物的制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398664A (zh) * 2002-08-28 2003-02-26 武汉理工大学 储氢金属或储氢合金修饰的一维纳米碳储氢材料
CN102418018A (zh) * 2011-11-16 2012-04-18 南京工业大学 一种纳米镁基储氢材料及其制备方法
CN105063804A (zh) * 2015-07-21 2015-11-18 苏州明动新材料科技有限公司 一种金属纳米纤维的制备工艺
CN105692553A (zh) * 2016-01-14 2016-06-22 南京工业大学 一种纳米镁基储氢合金氢化物的制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"镍纳米纤维及镍纳米颗粒的制备和性能表征": "冀翼", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941610A (zh) * 2018-09-19 2018-12-07 西京学院 一种基于多元醇法制备储氢镁镍合金纳米粉末的方法
CN108941610B (zh) * 2018-09-19 2021-07-16 西京学院 一种基于多元醇法制备储氢镁镍合金纳米粉末的方法
CN114411028A (zh) * 2022-01-21 2022-04-29 徐州工程学院 一种微量镍复合层状镁复合材料及其制备方法和应用
CN114918421A (zh) * 2022-04-21 2022-08-19 北京航空航天大学 一种ZrCo合金的纤维空间限域制备方法及其应用

Similar Documents

Publication Publication Date Title
Yong et al. Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y
Khan et al. Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2Ni powder
Liu et al. Synthesis and hydrogen storage properties of ultrafine Mg–Zn particles
Yuan et al. Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy
Kalinichenka et al. Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys
Zou et al. Hydrogen storage properties of Mg–TM–La (TM= Ti, Fe, Ni) ternary composite powders prepared through arc plasma method
Liu et al. Improved reversible hydrogen storage of LiAlH4 by nano-sized TiH2
WO2001053550A1 (fr) Materiau mixte de stockage d'hydrogene constituant un nanotube d'alliage/carbone et son procede de fabrication
Liu et al. NiB nanoparticles: A new nickel-based catalyst for hydrogen storage properties of MgH2
Yang et al. Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites
CN103101880B (zh) 一种硼氢化锂/稀土镁基合金复合储氢材料及其制备方法
Dong et al. Enhanced hydrogen sorption properties of MgH2 when doped with mechanically alloyed amorphous Zr0· 67Ni0. 33 particles
CN106637932A (zh) 一种制备储氢物质镁镍合金纳米纤维的方法
Yang et al. Trimesic acid-Ni based metal organic framework derivative as an effective destabilizer to improve hydrogen storage properties of MgH2
Chen et al. Hydrogen storage in Mg2Fe (Ni) H6 nanowires synthesized from coarse-grained Mg and nano sized γ-Fe (Ni) precursors
Zhang et al. Remarkably improved hydrogen storage properties of carbon layers covered nanocrystalline Mg with certain air stability
Yuan et al. Preparation and hydrogen storage property of Mg-based hydrogen storage composite embedded by polymethyl methacrylate
Yin et al. Enhanced hydrogen storage performance of Mg-Cu-Ni system catalyzed by CeO2 additive
Yin et al. Microstructure and improved hydrogen storage properties of Mg85Zn5Ni10 alloy catalyzed by Cr2O3 nanoparticles
Jiang et al. Hydrogen storage properties of LaMg4Cu
Yao et al. Improved dehydriding property of polyvinylpyrrolidone coated Mg-Ni hydrogen storage nano-composite prepared by hydriding combustion synthesis and wet mechanical milling
Pan et al. Hydrogen storage properties of Mg–TiO2 composite powder prepared by arc plasma method
Yin et al. A comparative study of NbF5 catalytic effects on hydrogenation/dehydrogenation kinetics of Mg-Zn-Ni and Mg-Cu-Ni systems
Congwen et al. Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism
Yin et al. Ni-based catalyst assisted by MnO to boost the hydrogen storage performance of magnesium hydride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170510