CN106588124A - 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法 - Google Patents

一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法 Download PDF

Info

Publication number
CN106588124A
CN106588124A CN201610989902.1A CN201610989902A CN106588124A CN 106588124 A CN106588124 A CN 106588124A CN 201610989902 A CN201610989902 A CN 201610989902A CN 106588124 A CN106588124 A CN 106588124A
Authority
CN
China
Prior art keywords
slurry
wave
wave absorbing
absorbing
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610989902.1A
Other languages
English (en)
Inventor
殷小玮
叶昉
刘晓菲
莫然
成来飞
张立同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201610989902.1A priority Critical patent/CN106588124A/zh
Publication of CN106588124A publication Critical patent/CN106588124A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Paints Or Removers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种对8~18GHz频段内的吸波涂层的低温制备方法,即采用涂刷技术先将含有吸波剂的浆料均匀涂刷在基底材料表面,静置阴干后再通过化学气相沉积技术,在吸波剂表面制备透波层。本发明中吸波涂层与基底材料结合良好,并可显著改善材料的吸波性能。该方法具有很强的可设计性,例如通过调整吸波剂种类、透波层种类和沉积时间等参数,可优化涂层结构和组分,从而使基底材料获得更佳的吸波性能。

Description

一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法
技术领域
本发明涉及一种吸波陶瓷涂层的低温制备方法,具体指经涂刷-化学气相沉积(Chemical vapor deposition,CVD)两个核心步骤在基底材料表面制备对8~18GHz频段内的吸波涂层的方法。
背景技术
现代雷达技术、电子技术和军事技术的迅猛发展使各国对高温吸波材料的研究与需求日益迫切。高温吸波材料主要包括高温吸波陶瓷和高温结构型吸波材料。由于兼具承载/吸波性能,高温结构型吸波材料被视为最有潜力的高温吸波材料。
连续纤维增韧陶瓷基复合材料(CFCC)具有很高的强度与韧性,同时对裂纹不敏感,不发生灾难性损毁,是一种优异的高温结构材料。目前,将CFCC发展为兼具承载和减小雷达反射截面双重功能的高温结构型吸波材料,已逐渐成为各国研究的热点。然而,根据文献报道可知,常见的CFCC(如C/SiC、SiC/SiC、SiC/Nasicon)虽具备优异的力学性能,但其吸波效果并不理想。因此,对此类材料进行改性优化以提高材料的电磁吸波能力是解决这一问题的关键。
改善CFCC吸波性能的方法可以从纤维和基体两方面入手。对纤维的改性主要目的在于降低其电导率,从而减少其对电磁波的反射。降低纤维电导率的方法包括降低纤维的晶化程度和制备非晶包覆层。然而,降低纤维的晶化程度会显著影响纤维的强度,致使复合材料的力学性能降低;在纤维表面制备非晶包覆层会减小纤维的体积分数,也不利于材料强度的提高。从基体相入手改善CFCC吸波性能的主要方法为选择具有一定吸波性能或透波性能的陶瓷材料作为基体相,这可一定程度改善复合材料对电磁波的强反射特性。然而,通常情况下为了保证复合材料的力学性能,CFCC中纤维预制体的体积分数均较高,因此调整基体的电磁性能对复合材料吸波性能的改善效果并不显著。
综上所述,从复合材料的基本组成单元(纤维、基体)出发提高材料的吸波性能具有一定局限性。近年来,研究人员通过在材料表面制备吸波涂层,已经实现复合材料吸波性能的显著提高。制备吸波涂层的主要工艺有涂刷、化学镀、热喷涂和溶胶-凝胶技术。涂刷法工艺简单,涂层厚度可控,但通常需要进一步的烧结以保证涂层强度和涂层与基底的结合性,因此需在浆料中添加足够的粘结剂或烧结助剂(烧结温度高)。化学镀方法要求基底材料具有化学稳定性,不与镀液反应,且通常局限于制备金属或合金涂层,如镍涂层或铁钴合金涂层。热喷涂法需将涂层材料加热到熔融或半熔融状态,因此不适用于难熔材料且温度较高。同时,有一定比例CFCC的耐温性能低于陶瓷的烧结问题。由此可见,以上方法应用于CFCC吸波涂层的制备时均存在一定局限性。因此,亟待需要发展一种新方法,使采用该法低温制备获得的吸波涂层不仅满足复合材料的高温使用需求,而且能够有效改善CFCC的吸波效果。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法,是一种“涂刷技术”结合“化学气相沉积技术”的涂层低温制备方法,其流程图如附图1所示。
技术方案
一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法,其特征在于步骤如下:
步骤1、制备含有吸波剂的浆料:按照浆料的体积分数配比物质为:60~75%的溶剂、3%的分散剂磷酸三乙酯、3%的粘结剂聚乙烯醇缩丁醛、2%的增塑剂、2%的除泡剂、15~30%的吸波剂;将上述物质混合后,通过超声处理使浆料混合充分,成为均匀的悬浮液;
所述溶剂是体积比0.1~10的甲苯与异丙醇的混合溶剂;
所述增塑剂是体积比0.1~1150的丙三醇与邻苯二甲酸二乙酯的混合物;
上述除泡剂是体积比0.1~10的正丁醇与乙二醇的混合物;
步骤2:将步骤1的浆料按照设计厚度涂刷在基底材料表面,然后静置阴干;
步骤3:通过化学气相沉积技术CVD在涂刷浆料的基底材料上低温制备透波层。
所述吸波剂为碳纳米管、石墨烯、纳米碳化硅晶粒或碳化硅晶须。
所述基底材料为陶瓷和陶瓷基复合材料、金属及金属基复合材料、树脂及树脂基复合材料。
有益效果
本发明提出的一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法,在交变电场下,陶瓷、陶瓷基复合材料、金属和树脂基复合材料等,通常对电磁波表现为反射或透过特性,因此材料的吸波性能较差。为进一步改善材料的吸波性能,本发明涉及一种针对8~18GHz频段内的吸波涂层的低温制备方法,即采用涂刷技术先将含有吸波剂的浆料均匀涂刷在基底材料表面,静置阴干后再通过化学气相沉积技术,在吸波剂表面制备透波层。本发明中吸波涂层与基底材料结合良好,并可显著改善材料的吸波性能。该方法具有很强的可设计性,例如通过调整吸波剂种类、透波层种类和沉积时间等参数,可优化涂层结构和组分,从而使基底材料获得更佳的吸波性能。
附图2显示了本发明中吸波涂层的结构示意图。采用本发明方法制备获得的吸波涂层,具有以下主要优点:
(1)与基底材料粘结性优良,制备过程中能够保持复合材料力学性能不下降;
(2)具有良好的耐高温、抗氧化性,能够满足复合材料的高温使用要求;
(3)可设计性强,涂层结构组分可调可控,能够制备具有不同性能的吸波涂层;
(4)适用范围广,不仅可以用于改善CFCC的吸波性能,还可用于使用温度在涂层制备温度以上的陶瓷材料、金属及树脂基复合材料的吸波性能的优化。
附图说明
图1:吸波涂层制备工艺流程图
图2:本发明中吸波涂层的结构示意图
图3:(a)吸波涂层的表面形貌SEM照片和(b)表面化学成分EDS分析
图4:含有吸波涂层的二维SiC/SiBCN复合材料的电磁反射系数随涂层厚度的变化规律
图5:(a)MWCNTs剖面形貌TEM照片和(b)吸波涂层表面形貌SEM照片
具体实施方式
现结合实施例、附图对本发明作进一步描述:
针对吸波涂层的制备过程,本发明提出一种“涂刷技术”结合“化学气相沉积技术”的涂层低温制备方法,其流程图如附图1所示。该制备工艺主要包括以下三个核心环节:
(1)配料,将吸波剂与粘结剂、增塑剂和溶剂等材料混合均匀;
(2)涂刷,将(1)中混合浆料均匀涂刷在基底材料表面;
(3)沉积,在(2)中材料表面化学气相沉积透波涂层。
具体地说,首先,配料是本发明的基础环节。为了将吸波剂均匀涂刷在复合材料表面,需向其中添加多种有机物,配成满足一定黏度的浆料。添加的有机组分包括:溶剂(甲苯与异丙醇,体积比0.1~10)作为分散介质,占浆料的体积分数为60~75%;分散剂(磷酸三乙酯),占浆料的体积分数为3%,使粉末态的吸波剂分散更加均匀;粘结剂(聚乙烯醇缩丁醛,PVB),占浆料的体积分数为3%,使浆料具有一定的粘性,便于涂刷,并使干燥后的涂层具有一定的强度;增塑剂(丙三醇与邻苯二甲酸二乙酯,体积比0.1~1150),占浆料的体积分数为2%,使涂刷层具有一定的塑性,便于后续流程;除泡剂(正丁醇与乙二醇,体积比0.1~10),占浆料的体积分数为2%,减少浆料中的气泡,使涂刷更均匀。吸波剂(占浆料的体积分数为15~30%)与这些有机组分混合后,通过超声处理使浆料混合充分,成为均匀的悬浮液。
其次,涂刷是本发明的关键环节。由于每一遍涂刷后基底材料的厚度增加很小,因此需要不断重复这一步骤。为了保证浆料均匀涂刷在基底材料表面,相邻两遍的涂刷方向相反且间隔时间相等。达到预定厚度后,材料在室温空气中静置,使部分有机组分挥发。
最后,沉积是本发明的重要环节。单纯的吸波剂由于具有较高的介电常数和介电损耗,因此与自由空间之间存在阻抗失配现象,不能有效吸收电磁波。而且经涂刷、阴干后,附着在复合材料表面的吸波剂微粒与基底材料结合力很弱,容易脱落。化学气相沉积技术(CVD)具有优异的沉积渗透性,通过改变前驱体气源和沉积工艺参数(温度、反应气比例、沉积时间),可制备出变厚度、变组分的各种耐高温透波阻抗匹配层,包括CVD Si3N4、CVD BN、CVD B4C、CVD BCN、CVD SiCN和CVD SiBCN等。将此技术应用于涂刷浆料后的材料表面,可使CVD过程的沉积产物很好的渗透进入吸波剂微粒层,固定包裹吸波剂使其与基底材料紧密结合。同时,沉积产物必须具备透波特性,使其作为吸波涂层的外部材料能够满足电磁波的阻抗匹配要求。而且其与吸波剂的包覆组合可以进一步调整吸波剂微粒层的介电常数,从而有效提高材料的吸波性能。
实施方案:
下面对本发明的实施作进一步描述。
实施例1:
选取二维SiC纤维增韧SiBCN基复合材料作为基底材料,材料尺寸为180mm×180mm×3.2mm。选用40wt.%A粉与60wt.%B粉形成的混合粉体作为吸波剂(其中,A粉为经过高温热处理的含纳米SiC的SiBCN粉体,B粉为未经高温热处理的不含纳米SiC的SiBCN粉体)。浆料中混合粉体的体积分数为30%,溶剂的体积分数为60%,分散剂和粘结剂的体积分数均为3%,增塑剂和除泡剂的体积分数均为2%。浆料超声处理2小时后,立即开始涂刷。涂刷完成后,复合材料在室温空气下静置12小时。浆料阴干后,将复合材料置于真空反应炉中化学气相沉积Si3N4。反应温度为800℃,先驱体系为SiCl4-NH3-H2-Ar,[Si]:[N]=1:3,H2与SiCl4稀释比为10:1。吸波涂层制备完成后,采用弓形法对复合材料在8~18GHz内的电磁性能进行测试。附图3显示了此处制备的吸波涂层的表面形貌和表面化学组成。附图4显示了含有吸波涂层的复合材料在8~18GHz内的电磁反射系数随涂层厚度的变化情况。
实施例2:
选取Al2O3纤维毡增强SiCN基复合材料作为基底材料,材料尺寸为180mm×180mm×2mm。选用多壁碳纳米管(MWCNTs)作为吸波剂。浆料中吸波剂的体积分数为15%,溶剂的体积分数为75%,分散剂和粘结剂的体积分数均为3%,增塑剂和除泡剂的体积分数均为2%。浆料超声处理1小时后,立即开始涂刷。涂刷完成后,复合材料在室温空气下静置12小时。浆料阴干后,将复合材料置于真空反应炉中化学气相沉积B4C。反应温度为950℃,先驱体系为BCl3-CH4-H2-Ar,[B]:[C]=3:1。吸波涂层制备完成后,采用弓形法对复合材料在8~18GHz内的电磁性能进行测试。附图5显示了本实施例中使用的MWCNTs的剖面形貌及吸波涂层的表面形貌。
实施例3:
选取C纤维增强的Si3N4基复合材料作为基底,材料尺寸为180mm×180mm×2mm。选用SiC晶须作为吸波剂。浆料中吸波剂的体积分数为20%,溶剂的体积分数为70%,分散剂和粘结剂的体积分数均为3%,增塑剂和除泡剂的体积分数均为2%。浆料超声处理1.5小时后,立即开始涂刷。涂刷完成后,复合材料在室温空气下静置12小时。浆料阴干后,将复合材料置于真空反应炉中化学气相沉积SiCN。反应温度为1000℃,先驱体系为SiCl4–C3H6–NH3–H2–Ar,[Si]:[N]=4.25:1,[C]:[N]=9:1。
实施例4:
选取致密的Si3N4陶瓷片作为基底材料,材料尺寸为22.86mm×10.16mm×3mm。选用ZnO-ZnAl2O4复合陶瓷粉末作为吸波剂。浆料中吸波剂的体积分数为25%,溶剂的体积分数为65%,分散剂和粘结剂的体积分数均为3%,增塑剂和除泡剂的体积分数均为2%。浆料超声处理1.5小时后,立即开始涂刷。涂刷完成后,在室温空气下静置12小时。浆料阴干后,将材料置于真空反应炉中化学气相沉积BN。反应温度为650℃,先驱体系为BCl3-NH3-H2-Ar,[B]:[N]=1:3。

Claims (3)

1.一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法,其特征在于步骤如下:
步骤1、制备含有吸波剂的浆料:按照浆料的体积分数配比物质为:60~75%的溶剂、3%的分散剂磷酸三乙酯、3%的粘结剂聚乙烯醇缩丁醛、2%的增塑剂、2%的除泡剂、15~30%的吸波剂;将上述物质混合后,通过超声处理使浆料混合充分,成为均匀的悬浮液;
所述溶剂是体积比0.1~10的甲苯与异丙醇的混合溶剂;
所述增塑剂是体积比0.1~1150的丙三醇与邻苯二甲酸二乙酯的混合物;
上述除泡剂是体积比0.1~10的正丁醇与乙二醇的混合物;
步骤2:将步骤1的浆料按照设计厚度涂刷在基底材料表面,然后静置阴干;
步骤3:通过化学气相沉积技术CVD在涂刷浆料的基底材料上低温制备透波层。
2.根据权利要求1所述对8~18GHz频段内的吸波陶瓷涂层的低温制备方法,其特征在于:所述吸波剂为碳纳米管、石墨烯、纳米碳化硅晶粒或碳化硅晶须。
3.根据权利要求1所述对8~18GHz频段内的吸波陶瓷涂层的低温制备方法,其特征在于:所述基底材料为陶瓷和陶瓷基复合材料、金属及金属基复合材料、树脂及树脂基复合材料。
CN201610989902.1A 2016-11-10 2016-11-10 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法 Pending CN106588124A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610989902.1A CN106588124A (zh) 2016-11-10 2016-11-10 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610989902.1A CN106588124A (zh) 2016-11-10 2016-11-10 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法

Publications (1)

Publication Number Publication Date
CN106588124A true CN106588124A (zh) 2017-04-26

Family

ID=58590170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610989902.1A Pending CN106588124A (zh) 2016-11-10 2016-11-10 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法

Country Status (1)

Country Link
CN (1) CN106588124A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135637A (zh) * 2017-05-27 2017-09-05 东北大学 一种基于包覆型复合材料的吸波贴片及其制备方法
CN108659675A (zh) * 2018-05-23 2018-10-16 中国海洋大学 一种石墨烯改性氮化硅的长效耐腐蚀透波涂层的制备方法
CN109020588A (zh) * 2018-07-30 2018-12-18 西北工业大学 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN110387160A (zh) * 2019-08-16 2019-10-29 江苏绿带新材料科技有限公司 一种石墨烯水基吸波涂料涂层结构
CN113423255A (zh) * 2021-06-09 2021-09-21 西北工业大学 核壳结构Ti4O7/磁性金属复合吸收剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125996A (zh) * 2007-10-09 2008-02-20 北京科技大学 一种四针状纳米氧化锌吸波涂层的制备方法
CN103058696A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种氮化硅基体的制备方法
CN103644772A (zh) * 2013-11-25 2014-03-19 衡阳泰豪通信车辆有限公司 一种电磁屏蔽与吸波结合一体的复合材料板
CN103923601A (zh) * 2013-12-20 2014-07-16 西北工业大学 结构/吸波一体化复合材料的制备方法
CN105198472A (zh) * 2015-09-25 2015-12-30 西北工业大学 一种氮化硅晶须增强氮化硅层状陶瓷的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125996A (zh) * 2007-10-09 2008-02-20 北京科技大学 一种四针状纳米氧化锌吸波涂层的制备方法
CN103058696A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种氮化硅基体的制备方法
CN103644772A (zh) * 2013-11-25 2014-03-19 衡阳泰豪通信车辆有限公司 一种电磁屏蔽与吸波结合一体的复合材料板
CN103923601A (zh) * 2013-12-20 2014-07-16 西北工业大学 结构/吸波一体化复合材料的制备方法
CN105198472A (zh) * 2015-09-25 2015-12-30 西北工业大学 一种氮化硅晶须增强氮化硅层状陶瓷的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135637A (zh) * 2017-05-27 2017-09-05 东北大学 一种基于包覆型复合材料的吸波贴片及其制备方法
CN108659675A (zh) * 2018-05-23 2018-10-16 中国海洋大学 一种石墨烯改性氮化硅的长效耐腐蚀透波涂层的制备方法
CN108659675B (zh) * 2018-05-23 2021-01-29 中国海洋大学 一种石墨烯改性氮化硅的长效耐腐蚀透波涂层的制备方法
CN109020588A (zh) * 2018-07-30 2018-12-18 西北工业大学 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN109020588B (zh) * 2018-07-30 2021-07-06 西北工业大学 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN110387160A (zh) * 2019-08-16 2019-10-29 江苏绿带新材料科技有限公司 一种石墨烯水基吸波涂料涂层结构
CN113423255A (zh) * 2021-06-09 2021-09-21 西北工业大学 核壳结构Ti4O7/磁性金属复合吸收剂及其制备方法

Similar Documents

Publication Publication Date Title
CN106588124A (zh) 一种对8~18GHz频段内的吸波陶瓷涂层的低温制备方法
KR101293826B1 (ko) 용융된 금속 여과용 필터 및 그 제조 방법
CA2504831C (en) Wear resistant ceramic composite coatings and process for production thereof
CN107188596B (zh) 多孔梯度氮化硅-碳化硅复相陶瓷及其制备方法和用途
CN101734940B (zh) 基于压差法快速cvi涂层的炭纸性能改善方法和装置
CN108383391B (zh) 表面韧化的氧化铝纤维刚性隔热瓦多层复合材料、涂层组合物、制备方法及其应用
CN102211938B (zh) 一种碳化硅复合材料的吸波陶瓷及其制备方法
CN103288468A (zh) 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法
CN114920565A (zh) 一种粘结剂喷射打印碳化硅陶瓷复合材料的制造方法
CN108261928A (zh) 纯碳化硅陶瓷膜元件及其制备方法
CN103396738A (zh) 半无机化隔热透波涂层材料的制备方法
CN114538908B (zh) 一种耐高温烧蚀的柔性热防护涂层及其制备方法
CN102049514B (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
CN110330350A (zh) 一种纤维增韧氧化铝陶瓷的制备方法
CN113025946A (zh) 一种氧化锆热障涂层的制备方法
CN104926343A (zh) 含界面相的硅酸铝纤维增强氧化物陶瓷及其制备方法
CN108395267A (zh) 具有电磁功能的SiC纤维增韧SiBCN陶瓷基复合材料及制备方法
WO2022142168A1 (zh) 一种低熔点多孔陶瓷材料及其制备方法
CN110304946A (zh) 一种陶瓷基复合材料表面的宽温域抗氧化涂层及其制备方法
Wen et al. Effect of solid loading and carbon additive on microstructure and mechanical properties of 3D‐printed SiC ceramic
CN109437824A (zh) 3d打印多功能型mpc水泥基复合材料的制备方法
US4820562A (en) Metallizing composition for sintered ceramic article
GB2241943A (en) Surface-coated sic whiskers
CN114907145A (zh) 一种碳纤维复合材料表面碳化硅涂层胶及其制备使用方法
CN106588123A (zh) 一种陶瓷金属化用活化钼锰浆料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170426

WD01 Invention patent application deemed withdrawn after publication