CN106572988A - Inos抑制性组合物及其作为乳腺癌治疗剂的用途 - Google Patents

Inos抑制性组合物及其作为乳腺癌治疗剂的用途 Download PDF

Info

Publication number
CN106572988A
CN106572988A CN201580018474.1A CN201580018474A CN106572988A CN 106572988 A CN106572988 A CN 106572988A CN 201580018474 A CN201580018474 A CN 201580018474A CN 106572988 A CN106572988 A CN 106572988A
Authority
CN
China
Prior art keywords
cancer
cell
inos
pharmaceutical composition
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580018474.1A
Other languages
English (en)
Other versions
CN106572988B (zh
Inventor
张济宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Methodist Hospital
Original Assignee
Methodist Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Methodist Hospital filed Critical Methodist Hospital
Publication of CN106572988A publication Critical patent/CN106572988A/zh
Application granted granted Critical
Publication of CN106572988B publication Critical patent/CN106572988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/223Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of alpha-aminoacids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了用于治疗一种或多种哺乳动物癌症的方法,具体来说公开了用于治疗人类乳腺癌的方法,所述方法利用一种或多种iNOS途径抑制性化合物,其与一种或多种所选抗高血压剂、包括钙通道拮抗剂相组合,也可以与一种或多种常规化疗或抗癌治疗方案相组合。还公开了包含这些组合物的特定治疗配制品,它们在治疗难治、转移和复发癌症中的使用方法,以及在特别是人类三阴性乳腺癌中管控或逆转治疗耐药性的方法。

Description

INOS抑制性组合物及其作为乳腺癌治疗剂的用途
与相关申请的交叉引用
本申请要求2014年4月8日提交的美国临时专利申请61/976,956(待决;代理人案卷号37182.170)的优先权,所述临时专利申请的内容具体地通过明确参考整体并入本文。
关于联邦资助的研究或开发的陈述
本发明在美国国立卫生研究院(National Institutes of Health)授予的资助号为R01-CA138197的政府支持下做出。美国政府在本发明中具有一定权利。
联合研究协议的参与方名称
不适用。
技术领域
本发明总的来说涉及医药和肿瘤学领域。具体来说,本发明提供了用于治疗和/或改善人类癌症的一种或多种症状的改进的化疗组合物。在说明性实施方案中,提供了利用iNOS途径的一种或多种效应物的给药来治疗人类乳腺癌的方法。在示例性实施方案中,提供了单独或与一种或多种包括钙通道拮抗剂在内的抗高血压剂相组合的iNOS抑制剂、包括例如NG-单甲基-L-精氨酸(L-NMMA;C9H2ON4O4;MW248.28)的配制品作为治疗配制品,用于治疗哺乳动物乳腺癌,特别是用于在人类中治疗三阴性乳腺癌(TNBC)这种对常规化疗剂有抗性并且预后不良的难治的疾病形式、
背景技术
在过去几十年中,尽管乳腺癌生物学取得了重要进展,但晚期乳腺癌的治疗进步有限,患有对治疗有抗性的转移乳腺癌的女性的总体存活率几乎没变。值得注意的是,由于治疗抗性和当前疗法的失败,每年有约40,000名患有转移乳腺癌的女性死亡。癌症发生的经典模型可以被描述为随机的,其中通过积累恰当的突变组合,任何细胞都可以被转化。可替选的模型是细胞的亚群或克隆保留了关键的干细胞样特性,包括驱动癌发生的自我更新以及有助于细胞异质性的分化的能力。支持这种肿瘤内克隆异质性的实验证据首先由Dick等在人类白血病中报道。随后这些概念被某些研究组扩展到实体肿瘤,这些研究组证实了人类乳腺癌由以CD44+/CD24-/low3的细胞表面表达为特征的干细胞样细胞驱动。实体癌症的大规模测序分析提供了个体肿瘤内广泛的异质性的进一步证据。这种肿瘤内异质性可能是治疗抗性和治疗失败的主要贡献者。不同亚群可能伴有多样化的蛋白功能,其可能促进肿瘤适应并通过达尔文选择导致治疗失败。因此,已显示出在非均质主体肿瘤内具有干细胞样特性的细胞亚群是肿瘤起始和复发的原因。
通过在成胶质细胞瘤(GBM)、鳞状皮肤肿瘤和肠腺瘤中的谱系追踪实验,三个研究组最近独立地提供了具有干细胞样特性的细胞存在的直接和功能性证据,进一步证实了癌症的层级本质。这些独立的研究组证实了在主体肿瘤中只有一部分细胞具有克隆形成潜力,并且这部分细胞固有地对化疗有抗性。
三阴性乳腺癌
三阴性乳腺癌(TNBC)是一种侵略性和致死形式的癌症,其缺少***(ERα)、孕酮(PR)和人类表皮成长因子(HER-2)受体,没有获得批准的靶向治疗选择方案。尽管取得大量进展,但在TNBC患者中治疗抗性和转移仍是死亡的主因。对常规治疗的抗性和转移的发生可能由具有肿瘤引发能力的细胞亚群引起。化疗后的残余肿瘤富含CD44+/CD24-/low细胞,其表现出自我更新能力和间质特点。这些癌症干细胞(CSC)可以起到重新引发肿瘤生长和作为转移的种子的作用。因此,为了减少肿瘤负荷、复发以及向远端器官的转移,需要使用常规化疗和抗CSC化合物的组合治疗。不幸的是,目前没有这样的组合可用于诊所中的日常使用。
目前,对TNBC来说没有靶向的治疗。已发现诱导型一氧化氮合酶(iNOS)促进乳腺肿瘤的侵略性。以前的研究已证实高的内源性iNOS表达与不良的TNBC患者存活率相关并且可以预测不良的TNBC患者存活率。尽管到目前为止在乳腺癌的治疗中已取得大量进展,但临床医生仍然同意,对于开发新的化疗活性药剂以将其用于治疗、特别是TNBC的治疗中,仍存在显著需求。
事实上,对于在过度增殖障碍、特别是已变得对常规化疗剂有抗性的乳腺癌的治疗中有效的新药剂,仍存在显著的未满足的医疗需求。
乳腺癌患者中的高血压共病现象
高血压是在患有乳腺癌的女性中发病率提高的最常见障碍之一(Sarfati等,2013;Gampenrieder等,2014)。在转移和TNBC中,化疗诱导的高血压是增加患者死亡率的常见效应(Cameron等,2013;Fan等,2014)。因此,能够对抗化疗给药的不幸的高血压副作用的一种或多种抗高血压药物的共同给药,代表了改善患者健康和提高存活率的重要考虑。
本发明在用于治疗TNBC的体外和体内两种模型中证实了钙通道阻断剂(目前在诊所中用作传统的抗高血压药物)的共同给药的协同效应。
发明概述
本发明通过提供单独的或与一种或多种钙离子拮抗剂(慢通道阻断剂)相组合的iNOS抑制剂的配制品作为用于治疗哺乳动物癌症、特别是人类乳腺癌例如转移或TNBC的化疗剂,致力于解决相关肿瘤学和制药学领域中固有的这种以及其他未满足的缺陷。本发明还提供了在新的癌症治疗模式中使用和重新利用iNOS抑制性化合物的方法,其为需要这种治疗的患者提供了出人意料的益处。
在总体和一般性意义上,本发明首先提供了用于在需要的哺乳动物中治疗和/或改善癌症的一种或多种症状的药物组合物。在示例性实施方案中,这些化学治疗配制品包括:治疗有效量的至少第一iNOS抑制性化合物,其1)单独的,2)与下述药剂相组合:a)治疗有效量的一种或多种抗高血压剂例如钙通道拮抗剂;c)一种或多种常规化疗化合物、治疗化合物、诊断化合物或缓和化合物;b)治疗有效量的一种或多种抗高血压剂例如钙通道拮抗剂;或3)与来自于b)的抗高血压剂和来自于c)的一种或多种常规化合物一起。
在本发明的实践中,示例性的iNOS抑制性化合物包括但不限于NG-单甲基-L-精氨酸[L-NMMA]、(N-[[3-(氨基甲基)苯基]甲基]-乙脒)[1400W]、(N5-[亚氨基(硝基氨基)甲基]-L-鸟氨酸甲酯)[L-NAME]及其盐、衍生物和组合。
同样地,在本发明的实践中,示例性的钙通道拮抗剂包括但不限于选自氨氯地平、非洛地平、拉西地平、尼卡地平、尼伐地平、阿折地平及其组合的一种或多种抗高血压剂。
在说明性实施方案中,本发明人证实了当一种或多种iNOS抑制剂与一种或多种钙通道拮抗剂共同给药时,可以获得协同治疗结果。在一个这样的实施方案中,当将iNOS抑制剂L-NMMA和钙通道拮抗剂氨氯地平苯磺酸盐((±)-2-[(2-氨基乙氧基)甲基]4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二甲酸3-乙基-5-甲基酯单苯磺酸盐;C20H25CIN2O5·C6H6O3S;MW=567.1)共同给药到TNBC细胞系时,获得特别令人吃惊和出人意料的协同作用。
任选地,本发明的组合物还可以进一步包括一种或多种其他不同的iNOS抑制剂和/或一种或多种其他不同的抗高血压剂和/或一种或多种其他不同的常规治疗。
在某些实施方案中,本发明人设想了共同治疗的配制品,其包括与一种或多种其他活性成分配制在一起的一种或多种iNOS抑制性化合物,所述其他活性成分包括但不限于一种或多种抗高血压剂、抗肿瘤剂、细胞毒性剂、细胞抑制剂或化疗剂或其任何组合。
示例性的化疗剂包括但不限于抗癌化合物如环磷酰胺、多柔比星、5-氟尿嘧啶、多西他赛、紫杉醇、曲妥珠单抗、甲氨蝶呤、表柔比星、顺铂、卡铂、长春瑞滨、卡培他滨、吉西他滨、米托蒽醌、伊沙匹隆、艾日布林、拉帕替尼、卡莫司汀、氮芥、硫芥、四硝酸铂、长春花碱、依托泊苷、喜树碱、拓扑异构酶抑制剂(包括拓扑异构酶I和II抑制剂),以及它们的衍生物、类似物、盐、活性代谢物或一种或多种组合。
示例性的治疗剂包括但不限于一种或多种免疫调节剂、神经活性剂、消炎剂、抗血脂剂、激素、受体激动剂或拮抗剂或抗感染剂,或选自蛋白质、肽、抗体、酶、RNA、DNA、siRNA、mRNA、核酶、激素、辅因子、甾体化合物、反义分子的化合物,以及它们的组合。
同样地,本文公开的化学治疗配制品的给药可以使用一种或多种其他癌症疗法来增强,包括但不限于向正经历治疗的哺乳动物施用治疗有效量的辐射。
在本发明的实践中,所述公开的化学治疗组合物可以在单次给药中,或者如主持所述治疗方案的医疗提供者认为有必要,在从一周或多周至一月或多月的时间段内在多次给药中,***性给药到所述动物。
优选地,本文公开的iNOS抑制性抗癌组合物还包括适合于给药到哺乳动物宿主细胞、特别是人类宿主细胞的一种或多种可药用载体、缓冲剂、稀释剂、介质、赋形剂或其任何组合。
在另一个实施方案中,本发明提供了用于在需要的动物中治疗或改善癌症的一种或多种症状的方法。在总体和一般性意义上,这种方法至少包括向需要的动物给药有效量的一种或多种本文公开的化疗组合物历时足以在所述动物中治疗或改善所述癌症的一种或多种症状的时间的步骤。
在另一个实施方案中,本发明提供了用于在哺乳动物对象中治疗或改善癌症的一种或多种症状的方法。在总体和一般性意义上,所述方法至少包括向需要的哺乳动物对象给药治疗有效量的一种或多种本文公开的化疗组合物历时在所述对象中有效治疗或改善所述癌症的一种或多种症状的时间的步骤。
在某些实施方案中,本发明人设想了所公开的化学治疗配制品,在其中所述癌症被诊断或鉴定为难治、转移、复发或对治疗有抗性的癌症,包括例如其中所述癌症被诊断或鉴定为对治疗有抗性的三阴性乳腺癌的情形中,将是特别有用的。
本发明还提供了在需要的动物中治疗或改善癌症的一种或多种症状的方法。这种方法通常至少包括向所述动物单独地或与一种或多种钙通道拮抗剂相组合给药(***性地,或者在所述动物身体内或周围的一个或多个区域或位点处局部地)有效量的至少本文公开的第一化疗iNOS抑制性配制品或其类似物、激动剂、拮抗剂或衍生物或盐的步骤,所述给药历时足以在所述动物中治疗或改善所述癌症的一种或多种症状的时间。
另一方面,本发明还提供了用于在动物中抑制癌细胞或肿瘤生长的方法。在总体和一般性意义上,这种方法包括向需要的动物身体的一个或多个细胞或组织提供一定量的一种或多种本文公开的化疗iNOS抑制性配制品,其量和时间有效地抑制所述癌细胞或肿瘤的生长。
另一方面,本发明提供了用于在对象、优选为人类中治疗癌症的方法。在总体和一般性意义上,所述方法通常包括向需要的对象给药治疗有效量的一种或多种本文公开的iNOS抑制性化学治疗配制品,所述配制品的给药可以是单独的,或者与一种或多种钙通道拮抗剂例如本文公开的一种或多种抗高血压的钙通道拮抗剂化合物、一种或多种其他化疗剂、治疗有效量的电离辐射或其任何组合相组合。可以共同给药到所述对象的示例性的其他组合物包括但不限于一种或多种常规抗癌药物。或者,本发明的方法也可以包括一个或多个手术干预例如肿瘤切除,或者也可以任选地包括一个或多个治疗有效的电离辐射(即放疗)过程。
本发明还提供了在哺乳动物中治疗或改善癌症的一种或多种症状的方法。这些方法通常包括向所述哺乳动物给药有效量的本文所公开的iNOS抑制性化学治疗配制品,所述配制品的给药是单独的,或者与单独的一种或多种抗高血压剂、特别是钙通道拮抗剂相组合,或者进一步与一种或多种常规化疗剂相组合,给药的时间足以在所述哺乳动物中治疗或改善所述癌症的一种或多种症状。
本发明还提供了在动物对象中用于癌症疗法的药物组合物,其中所述组合物包含单独的或与一种或多种钙通道拮抗剂相组合的一种或多种本文公开的iNOS抑制性化学治疗配制品,并且可以包括将其用于在人类对象中治疗或改善恶性乳腺癌的一种或多种症状。
本发明还提供了改变、影响、破坏或杀死患有、被怀疑患有或已被诊断为患有一种或多种形式的哺乳动物癌症、包括但不限于乳腺癌、肺癌、***癌、纤维肉瘤、滑膜肉瘤、胰腺癌和其他形式的疾病的动物的身体内或附近的一个或多个哺乳动物细胞的方法。这些方法通常包括向一个或多个动物细胞提供单独的或与一种或多种抗高血压剂、包括特别是钙通道拮抗剂在内,相组合的治疗有效量的一种或多种本文公开的iNOS抑制性化学治疗组合物,其时间足以在所述动物中治疗和/或改善癌症的一种或多种症状。
本文还提供了改变、调节、控制、增加和/或减弱参与动物身体内或附近的过度增殖性细胞生长过程的至少一种组分、途径、酶或步骤的方法,所述方法包括向需要的对象的一个或多个细胞、组织和/或器官单独地或与一种或多种钙通道拮抗剂相组合提供有效量的一种或多种本文公开的iNOS抑制性化学治疗组合物,其时间有效地改变、调节、控制、增加和/或减弱参与这些细胞、组织、器官和/或身体内的过度增殖性细胞生长过程的至少一种组分、途径、酶或步骤。
本文还提供了治疗和/或改善哺乳动物癌症包括但不限于人类乳腺癌和对疗法有抗性的人类三阴性乳腺癌的至少一种症状的方法。
INOS抑制性化合物及其配制品
正如本文中提到的,本发明的iNOS抑制性化学治疗配制品可以作为单一癌症治疗方式,或者也可以与一种或多种其他化学治疗剂、诊断试剂和/或类似药剂相组合,包括但不限于一种或多种蛋白质、肽、多肽(包括但不限于酶、抗体、抗原、抗原结合片段等)、RNA分子(包括但不限于siRNA、iRNA、mRNA、tRNA和催化性RNA例如核酶等)、DNA分子(包括但不限于寡核苷酸、多核苷酸、基因、编码序列(CDS)、内含子、外显子、质粒、粘粒、噬菌粒、杆状病毒、载体[包括但不限于病毒载体、毒粒、病毒粒子等])、肽核酸、检测试剂、成像剂、造影剂、可检测气体、放射性核素等,以及一种或多种其他化疗剂、手术干预(例如肿瘤切除)、放疗等,或其任何组合,作为用于受影响患者的多因素或多焦点治疗计划的一部分。
本发明的化学治疗配制品还可以进一步任选地包括一种或多种其他组分以协助、促进或改进所述iNOS抑制性化学治疗配制品的递送,所述其他组分包括但不限于一种或多种脂质体、粒子、脂类复合物,并且可以进一步任选地包括一种或多种粘合剂、细胞表面活性剂、表面活性剂、脂类复合物、泡囊体(niosome)、醇质体(ethosome)、转运体(transferosome)、磷脂类、鞘脂类、鞘磷囊体(sphingosome)或其任何组合,并且可以任选地提供在包括一种或多种纳米粒子、微米粒子、纳米胶囊、微米胶囊、纳米球、微米球或其任何组合的药物配制品内。
所述药物组合物也可以与一种或多种可药用载体、稀释剂、赋形剂或其任何组合混合,并且可以进一步任选地配制成包括脂质体、表面活性剂、泡囊体(niosome)、醇质体(ethosome)、转运体(transferosome)、磷脂、鞘磷囊体(sphingosome)、纳米粒子、微米粒子或其任何组合。
优选地,本文公开的化学治疗配制品至少在约4.2至约8.2的pH下基本上稳定,更优选地在约5至约7.5的pH下基本上稳定。优选地,所述活性成分在它们待给药的动物的生理条件下具有显著活性。
化学治疗方法和用途
本发明的另一个重要方面涉及将所述公开的iNOS抑制性化学治疗配制品用于治疗或改善一种或多种形式的乳腺癌、包括例如对治疗有抗性的乳腺癌如三阴性乳腺癌的症状的方法。这些方法通常包括向哺乳动物(并且特别是需要的人类)给药一种或多种本文公开的抗癌组合物,其量和时间足以在受影响的哺乳动物中治疗乳腺癌(或者改善乳腺癌的一种或多种症状)。
在某些实施方案中,根据治疗癌症的需要,本文描述的化学治疗配制品可以在单一治疗方式中提供给所述动物(作为单次给药或者在从几小时至几天或几周的时间段内多次给药)。或者,在某些实施方案中,可能希望在几周至几个月或更长的一段时间内继续所述治疗,或将所述治疗与一种或多种其他治疗方式相组合。在其他实施方案中,可能希望与一种或多种现有的或常规的治疗方案相组合提供所述疗法。
本发明还提供了一种或多种所述公开的化学治疗组合物在制备用于治疗和/或改善癌症的一种或多种症状的药物中的用途,特别是在制备用于治疗和/或改善哺乳动物癌症例如人类乳腺癌的一种或多种症状的药物中的用途。
本发明还提供了一种或多种所述公开的iNOS抑制剂/钙通道拮抗剂配制品在制备用于治疗癌症、特别是治疗对治疗有抗性的人类三阴性乳腺癌的药物中的用途。
治疗试剂盒
治疗试剂盒包含一种或多种所述公开的iNOS抑制性配制品和在特定癌症治疗方式中使用所述试剂盒的说明书,其也代表了本发明的优选情况。这些试剂盒可以进一步任选地包括一种或多种其他抗癌化合物、一种或多种诊断试剂或一种或多种其他治疗性化合物、药物或类似物质。
本发明的试剂盒可以被包装以备商业流通,并且可以进一步任选地包括一种或多种适合于将所述化学治疗组合物递送到动物的递送装置(例如注射器、注射剂等)。这些试剂盒通常包括至少一个小瓶、试管、锥形瓶、烧瓶、注射器或其他容器,所述药物组合物可以被放置在其中并优选地分成适合的等分。在还提供第二药物的情况下,所述试剂盒也可以含有不同的第二容器,该第二组合物可以放置在其中。获得,可以将本文中公开的多种药物组合物制备成单一混合物例如悬液或溶液,并且可以包装在单一容器例如小瓶、锥形瓶、注射器、导管、插管、烧瓶或其他适合的单一容器中。
本发明的试剂盒通常还可以包括保留机构,其适合于包容所述小瓶或其他容器或将它们保持在严格限制的状态下以备商业销售,例如注塑或吹塑成型的塑料容器,所需小瓶或其他容器可以持留在其中以最小化或防止破裂、暴露于日光或其他不想要的因素,或允许包含在所述试剂盒内的组合物即开即用。
制药配制品
在某些实施方案中,本发明涉及将一种或多种化学治疗和/或诊断化合物配制成可药用配制品,单独地或与一种或多种其他诊断、预防和/或治疗方式相组合递送到动物的一个或多个细胞或组织。可药用赋形剂和载体溶液的配制对于本领域普通技术人员来说是公知的,为了将本文中描述的特定组合物用于各种不同的治疗方案而开发适合的剂量和治疗方案,也是公知的。
在某些情况下,将所述公开的化学治疗组合物在经过适合配制的药物介质中,通过一种或多种标准递送装置递送到动物身体内或周围的一个或多个细胞、组织或器官,包括但不限于皮下、肠胃外、静脉内、肌肉内、鞘内、经口、腹膜内、透皮、表面、通过口或鼻吸入或通过直接注射递送,将是合乎需要的。
给药方法也可以包括如美国专利号5,543,158、5,641,515和5,399,363中所描述的那些方式,每个所述专利具体地通过明确参考整体并入本文。可以在无菌水中制备所述活性化合物作为游离碱或可药用盐的溶液,并且可以与一种或多种表面活性剂例如羟丙基纤维素适合地混合。也可以制备在甘油、液体聚乙二醇、油或其混合物中的分散体。在常见储存和使用条件下,这些制备物含有防腐剂以防止微生物生长。
非限制性地,对于可注射水性溶液的给药来说,如有必要可以将所述溶液进行适合地缓冲,并且首先用足够的盐水或葡萄糖使液体稀释剂等渗。这些特定水性溶液特别适用于静脉内、肌肉内、皮下、透皮、真皮下和/或腹膜内给药。就此而言,可以将本发明的组合物配制在一种或多种可药用介质中,包括例如无菌水性介质、缓冲液、稀释剂等。例如,可以将给定剂量的活性成分溶解在特定体积的等渗溶液(例如等渗的基于NaCl的溶液)中,然后在提议的给药位点处注射,或者在适用于静脉内输注的介质(参见例如《Remington制药学》(Remington’s Pharmaceutical Sciences)第15版,pp.1035-1038和1570-1580)中进一步稀释。尽管取决于待治疗患者的状况、治疗程度和给药位点,剂量必然发生一定变化,然而负责给药的人将能够使用医学和制药学领域的普通知识确定适合于个体对象的正确给药治疗方案。
无菌可注射组合物可以通过将所公开的组合物并入到所需量的适合溶剂中,如果需要,所述溶剂可以含有几种上面列举的其他成分,然后进行过滤除菌,来制备。一般来说,分散体可以通过将所选的无菌活性成分并入到含有基本分散介质和所需的来自于上面列举的其他成分的无菌介质中来制备。本文公开的组合物也可以以中性或盐形式配制。
可药用盐包括酸加成盐(与蛋白质的游离氨基形成),并且其使用无机酸例如但不限于盐酸或磷酸或有机酸例如但不限于乙酸、草酸、酒石酸、扁桃酸等来形成。也可以从无机碱例如但不限于氢氧化钠、氢氧化钾、氢氧化铵、氢氧化钙或氢氧化铁和有机碱如异丙胺、三甲胺、组氨酸、普鲁卡因等,产生与游离羧基形成的盐。在配制后,将溶液以与剂量配制品相容的方式,以对于目标应用来说有效的量给药。所述配制品可以容易地以各种不同剂型给药,例如可注射溶液、表面用制剂、口服配制品包括持续释放胶囊、水凝胶、胶体、粘稠凝胶、透皮药剂、鼻内和吸入配制品等。
本文公开的化疗剂的量、剂量方案、配制品和给药,在从本发明的教导获益的普通技术人员的能力范围之内。然而,治疗有效(即药学有效)量的所公开的组合物的给药可能可以通过单次给药来实现,例如但不限于足以为经历这种程序的患者提供所需益处的量的递送药剂的单次注射。或者,在某些情形中,在相对短的或甚至相对长的时间段内提供多次或连续给药,可能是合乎需要的,正如可以由监督这些组合物向所选个体的给药的医学从业人员所决定的。
通常,一种或多种本文描述的组合物的配制品将至少含有化疗有效量的第一活性药剂。优选地,所述配制品可以含有至少约0.001%的每种活性成分,优选地至少约0.01%的所述活性成分,尽管所述活性成分的百分率当然可以改变,并且在方便的情况下可以在总配制品的基础上以约0.01至约90重量%或体积%或约0.1至约80重量%或体积%,或者更优选地约0.2至约60重量%或体积%的量存在。当然,每种组合物中活性化合物的量可以被准备成使得在所述化合物的任何给定的单元药剂中获得适合的剂量。本领域普通技术人员在制备这些药物配制品时应该考虑到多种因素例如溶解性、生物可利用性、生物t1/2、给药途径、产品储存期限以及其他药理学考虑因素,因此,各种不同的剂量和治疗方案可能是合乎需要的。
本文公开的化学治疗组合物的给药可以通过任何有效的方法来给药,包括但不限于通过肠胃外、静脉内、肌肉内或甚至腹膜内给药,正如例如在美国专利号5,543,158、5,641,515和5,399,363中所描述的(每个所述专利具体地通过明确参考整体并入本文)。作为游离碱或可药用盐的活性化合物的溶液,可以在适合地与表面活性剂例如羟丙基纤维素混合的水中或以其他类似的方式制备。适合于注射给药的药物形式包括无菌水性溶液或分散体,以及用于临时制备无菌可注射溶液或分散体的无菌粉剂,包括但不限于在美国专利号5,466,468中所描述的(所述专利具体地通过明确参考整体并入本文)。在所有情况下,所述形式必须是无菌的并且必须是流体,以便可以容易地注射。它至少必须在制造和储存条件下足够稳定,并且必须被防腐以对抗微生物例如病毒、细菌、真菌等的污染作用。
载体可以是溶剂或分散介质,包括但不限于水、乙醇、多元醇(例如甘油、丙二醇和液体聚乙二醇等或其组合)、一种或多种植物油,或其任何组合,尽管也可以包括其他可药用组分。
本文公开的药物配制品的适合的流体性,可以例如通过使用包衣例如卵磷脂、通过在分散体的情况下维护所需的粒子尺寸、通过使用表面活性剂或这些技术的任何组合来维持。微生物的作用的抑制或阻止,可以由一种或多种抗细菌剂或抗真菌剂例如但不限于对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸、硫柳汞等带来。在许多情况下,包含等渗剂将是优选的,例如但不限于一种或多种糖或氯化钠或其任何组合。可注射组合物的长期吸收可以通过在所述组合物中使用延迟吸收的药剂来产生,例如但不限于单硬脂酸铝、明胶或其组合。
尽管设想了***性给药在本发明的许多实施方案中是有效的,但是还设想了本文中公开的配制品适合于直接注射到身体中的一种或多种器官、组织、或细胞类型中。本公开的组合物的给药可以使用适合的手段来进行,包括相关医学领域的普通技术人员已知的领域。
本文公开的药物配制品不以任何方式限制到仅用于人类或甚至灵长动物或哺乳动物。在某些实施方案中,本文公开的方法和组合物可用于鸟类、两栖类、爬行类或其他动物物种。然而,在优选实施方案中,本发明的组合物优选被配制成在各种不同的诊断和/或治疗方案中给药到哺乳动物,特别是人类。本文公开的组合物也可以提供在可接受用于兽医给药的配制品中,包括但不限于给药到所选的家畜、珍稀或驯养动物、伴侣动物(包括宠物等)、非人类灵长动物,以及动物园动物或以其他方式圈禁的物种等。
附图说明
为了促进对本发明原理的理解,现在将参考在附图中说明的实施方案或实例,并且将使用专用语言对其进行描述。然而,应该理解,并不意图由此限制本发明的范围。对于本发明所属领域的普通技术人员来说,所描述的实施方案中的任何改变和进一步修改,以及本文所描述的本发明原理的任何进一步应用,将被视为是正常情况。
附图构成了本说明书的一部分,并且被包括在内用于显示本发明的某些情况。本申请含有至少一张彩图。带有彩图的本专利或专利申请出版物的拷贝将在提出请求并付出必要的费用后由专利与商标局(Patent and Trademark Office)提供。通过参考下述结合附图做出的描述,可以更好地理解本发明,在所述附图中相似的指称数字指示相似的要素,并且在所述附图中:
图1A、图1B、图1C、图1D、图1E和图1F说明了在浸润性TNBC中,增强的NOS2表达与不良的患者存活率相关。癌症基因组图谱(The Cancer Genome Atlas)(TCGA)数据库的Oncomine癌症微阵列分析(图1A和图1B)。图1A:在浸润性TNBC中与非TNBC相比更高的NOS2mRNA表达。P=3.85E-5,t-检验。图1B:在浸润性乳腺癌中高的NOS2表达与5年时的死亡相关。P=0.037,t-检验。Van de Vijver(n=69;p=0.04)(图1C)和Curtis(n=260;p=0.01)(图1D)(Wilcoxon检验)乳腺数据库中的Kaplan-Meier存活率分析显示,高的NOS2表达与TNBC患者的更糟糕的总体存活率相关。(图1E)TNBC人类样品的iNOS蛋白表达的免疫组织化学分析。弱至中等(3-4)、中等至强(5-6)和强(7),是为存活率的进一步分析建立的截止值。几个样品在肿瘤(T)和基质(S)细胞两者中均显示出表达(原始光学物镜:20×)。将用NOS2指导的shRNA(shRNA1)或空载体(EV)转染的MDA-MB-231细胞分别用作iNOS染色的阴性和阳性对照(原始光学物镜:10×)。复染剂:苏木精。图1F:当与低iNOS表达相比时,提高的iNOS表达与较低的患者存活率相关。TNBC人类患者样品的Kaplan-Meier存活率分析(n=83)。P=0.05,对数秩检验;
图2A、图2B、图2C、图2D、图2E和图2F说明了iNOS抑制剂对TNBC细胞系的致瘤性的影响。用1400W和L-NMMA处理96小时的MDA-MB-231和SUM159细胞系的增殖(图2A和图2B)、原始(图2C)和次生(图2D)乳腺微米球体(mammosphere)和迁移指数(图2E和图2F)。将结果归一化到介质。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001,**p<0.01,*p<0.05,单向ANOVA和Bonferroni事后检验;
图3A、图3B、图3C、图3D、图3E、图3F、图3G、图3H、图3I和图3J示出了iNOS敲减通过对HIF1α和内质网(ER)胁迫/TGFβ/AFT4/ATF3串扰的双重影响降低致瘤性和EMT。与空载体(shRNA-EV)相比,在用两种不同的NOS2指导的shRNA(shRNA1、shRNA2)转染的MDA-MB-231细胞中的增殖(图3A)、迁移(图3B)和自我更新能力(原始和次生乳腺微米球体)(图3C)。在用1400W处理(图3D)和shRNA介导的NOS2敲减(图3E)的MDA-MB-231和SUM159细胞系中NOS同工型(iNOS、eNOS、nNOS)和EMT转录因子的Western印迹分析。在MDA-MB-231和SUM159细胞中,选择性iNOS抑制降低了缺氧(HIF1α)、ER胁迫标志物(IRE1α、ATF4)(图3F)、phospho-Smad2/3、Smad2/3和成熟TGFβ蛋白的水平(图3G)。图3H:在MCF10A中,重组TGFβ1(10ng/mL,24小时)激活PERK/eIF2α/ATF4/ATF3轴。图3I:在MCF10A细胞中通过重组TGFβ1(10ng/mL)和1400W(4mM)的24小时的共同治疗对PERK/eIF2α/ATF4/ATF3轴的影响。在siRNA介导的NOS2敲减(siRNA20)的MCF10A细胞中96小时的iNOS、ATF4、ATF3和成熟TGFβ蛋白的水平。图3J:选择性iNOS抑制被假定通过对HIF1α、ER胁迫(IRE1α/XBP1)以及ATF4、ATF3与TGFβ之间的串扰的影响减弱了EMT和肿瘤细胞迁移。将结果归一化到空载体。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001,**p<0.01。单向ANOVA和Bonferroni事后检验;
图4A、图4B、图4C和图4D示出了在MDA-MB-231异种移植物中肿瘤初发和肺转移的减少。图4A:在每日注射L-NAME(80mg/kg,i.p.)后MDA-MB-231乳腺异种移植物的肿瘤体积(n=5/组)。双向ANOVA和Bonferroni事后检验。图4B:从肿瘤组织分离的癌细胞的原始和次生MSFE。Student’s t-检验。图4C:通过有限稀释法测定的肿瘤细胞的肿瘤初发能力。Fisher精确检验。图4D:在介质和L-NAME处理的小鼠的肺中MDA-MB-231L/G肿瘤细胞的发光。Student’s t-检验。将结果归一化到介质。数据被呈现为平均值±SEM。***p<0.001,**p<0.01,*p<0.05;
图5A、图5B、图5C、图5D、图5E和图5F说明了在MDA-MB-231异种移植物中L-NMMA的体内效应。图5A:用介质、L-NMMA、化疗和组合处理的MDA-MB-231乳腺异种移植物的肿瘤体积(n=10/组)。双向ANOVA和Bonferroni事后检验。图5B:在介质、L-NMMA、多西他赛和组合组中Ki67染色的说明性图像。原始光学物镜:10×。复染剂:苏木精。图5C:肿瘤异种移植物的细胞增殖被描绘为Ki67阳性细胞。从10个不同视野计数1,000个细胞并确定百分率。图5D:Chemo和Combo组中的核切开型半胱天冬酶-3染色;从10个不同视野计数1,000个细胞并确定百分率。图5E:从肿瘤组织分离的乳腺癌细胞的原始和次生MSFE。单向ANOVA和Bonferroni事后检验。图5F:通过有限稀释法测定的肿瘤细胞的肿瘤初发能力。Fisher精确检验。将结果归一化到介质。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001,**p<0.01,*p<0.05;
图6A、图6B、图6C、图6D和图6E示出了在TNBC的原位小鼠模型中L-NMMA的临床相关的药剂方案。图6A:给药一个周期的本研究中提出的药剂速率的小鼠的平均收缩压(n=5)。单向ANOVA和Bonferroni事后检验。图6B:在一个周期治疗的最后一次注射后30min和24小时的小鼠的平均收缩压(n=5)。单向ANOVA和Bonferroni事后检验。图6C:用介质、氨氯地平、多西他赛和组合(多西他赛+L-NMMA)处理的MDA-MB-231乳腺异种移植物的肿瘤体积(n=10/组)。双向ANOVA和Bonferroni事后检验。图6D:介质、化疗和联合处理的带有MDA-MB-231异种移植物的小鼠的Kaplan-Meier存活率曲线。Wilcoxon检验。图6E:用介质、氨氯地平、多西他赛和组合(多西他赛+L-NMMA)处理的SUM159乳腺异种移植物的肿瘤体积。双向ANOVA和Bonferroni事后检验。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001;
图7A和图7B示出了在用iNOS抑制剂处理的MDA-MB-231细胞中乳腺微米球体的代表性图像。在用1400W、L-NMMA(介质,1、2、4mM)和L-NAME(介质,1、2、5mM)处理96小时后原始(图7A)和次生(图7B)乳腺微米球体的说明性图像;
图8A和图8B示出了在用iNOS抑制剂处理的SUM159细胞中乳腺微米球体的代表性图像。在用1400W、L-NMMA(介质,1、2、4mM)和L-NAME(介质,1、2、5mM)处理96小时后原始(图8A)和次生(图8B)乳腺微米球体的说明性图像;
图9A、图9B、图9C、图9D和图9E示出了L-NAME和微摩尔浓度的1400W和L-NMMA对TNBC细胞系的致瘤性的影响。用L-NAME处理的MDA-MB-231和SUM159细胞系的增殖(图9A)、原始(图9B)和次生(图9C)乳腺微米球体。在MDA-MB-231和SUM159细胞中微摩尔浓度下的1400W(图9D)和L-NMMA(图9E)对迁移指数的影响。将结果归一化到介质。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001,**p<0.01,*p<0.05,单向ANOVA和Bonferroni事后检验;
图10A、图10B、图10C、图10D、图10E、图10F和图10G示出了在用iNOS抑制剂处理的TNBC细胞系中NOS同工型、EMT转录因子的迁移和Western印迹和缺氧。(图10A)在MDA-MB-231和SUM159细胞系中,在用L-NAME处理后的肿瘤细胞迁移。在用1400W(图10B)和L-NMMA(图10C)处理的MDA-MB-231和SUM159细胞中NOS同工型(iNOS、eNOS和nNOS)的Western印迹分析。在用微摩尔浓度的1400W(图10D)或L-NMMA(图10E)处理后MDA-MB-231和SUM159细胞中的EMT标志物蛋白水平。(图10F)在用L-NAME处理的MDA-MB-231和SUM159细胞系中NOS同工型和EMT转录因子的Western印迹分析。(图10G)在用1400W处理的MDA-MB-231和SUM159细胞中HIF1α蛋白水平相对于β-肌动蛋白的定量。结果被归一化到介质。数据被呈现为平均值±SEM。**p<0.01,*p<0.05,单向ANOVA和Bonferroni事后检验;
图11A、图11B、图11C、图11D、图11E、图11F、图11G、图11H和图11I示出了NOS2敲减降低细胞致瘤性、EMT转录因子、拼接的XBP1和Smad2/3信号传导。ER胁迫与TGFβ之间的串扰。与空载体(shRNA-EV)相比,用两种不同的NOS2指导的shRNA(shRNA1、shRNA2)转染的SUM159细胞的增殖(图11A)、迁移(图11B)和原始和次生乳腺微米球体(图11C)。图11D:shRNA介导的NOS2敲减的MDA-MB-231和SUM159细胞中的EMT转录因子Snail和Slug。图11E:在用两种不同的NOS2指导的siRNA(siRNA18、siRNA20;100nM siRNA)转染96小时的SUM159细胞中确认了Zeb1和Twist1蛋白水平的变化。图11F:来自于用1400W处理96小时的MDA-MB-231细胞的未拼接的XBP1(uXBP1)、拼接的XBP1(sXBP1)和β-肌动蛋白的RT-PCR cDNA扩增子。图11G:破译了NOS2、TGFβ1和ATF4/ATF3轴之间的联系的蛋白质-蛋白质相互作用分析(STRING9.1)。图11H:iNOS抑制剂1400W能够在用重组TGFβ1(10ng/mL)处理72小时下的MDA-MB-231细胞中减少Smad2/3信号传导。图11I:衣霉素(5μM)确认了ER胁迫与TGFβ之间通过ATF4/ATF3转录因子的串扰。结果被归一化到空载体。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001,**p<0.01,*p<0.05,单向ANOVA和Bonferroni事后检验;
图12A、图12B、图12C和图12D示出了在shRNA介导的NOS2敲减的细胞中乳腺微米球体和伤口愈合测定的代表性图像。在用两种不同的NOS2指导的shRNA(shRNA1、shRNA2)或空载体(sRNA-EV)转染的SUM159和MDA-MB-231细胞中,原始和次生乳腺微米球体(图12A和图12B)和迁移(伤口愈合测定)(图12C和图12D)的说明性图像;
图13A、图13B、图13C、图13D、图13E和图13F示出了在SUM159异种移植物中L-NMMA的体内效应。图13A:用介质、L-NMMA、化疗和组合处理的SUM159乳腺异种移植物的肿瘤体积(n=10/组)。双向ANOVA和Bonferroni事后检验。图13B:在介质、L-NMMA、化疗(多西他赛)和组合组中Ki67染色的说明性图像。原始光学物镜:10×。复染剂:苏木精。(图13C)肿瘤异种移植物的细胞增殖被描绘为Ki67阳性细胞。从10个不同视野计数1,000个细胞并确定百分率。单向ANOVA和Bonferroni事后检验。从肿瘤组织分离的乳腺癌细胞的原始和次生MSFE(图13D和图13E)。单向ANOVA和Bonferroni事后检验。图13F:通过有限稀释法测定的肿瘤细胞的肿瘤初发能力。Fisher精确检验。结果被归一化到介质。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001,**p<0.01,*p<0.05。
图14A、图14B、图14C、图14D、图14E和图14F示出了血浆和肿瘤组织中的NMMA水平。L-NMMA处理的异种移植物中的CD44+/CD24-/low群体。从用介质、L-NMMA、多西他赛和组合(多西他赛+L-NMMA)处理的小鼠的SUM159(图14A)和MDA-MB-231(图14B)异种移植物肿瘤组织分离的CD44+/CD24-/low细胞的流式细胞术分析(亲代的%)。图14C和图14D:通过LC-MS/MS进行的血浆和肿瘤组织(MDA-MB-231和SUM159异种移植物)中甲基精氨酸的比率测量定量(Student’s t-检验)。图14E:iNOS催化L-精氨酸向L-瓜氨酸+一氧化氮(NO)的反应。通过LC-MS/MS进行的SUM159异种移植物组织中瓜氨酸的比率测量定量(Student’s t-检验)。图14F:在用L-NMMA和1400W(4mM)处理0.5、2、6和24小时的SUM159细胞中的总一氧化氮生产。结果被归一化到介质。数据被呈现为平均值±SEM。****p<0.0001,***p<0.001,**p<0.01,*p<0.05,单向ANOVA和Bonferroni事后检验;
图15A、图15B、图15C、图15D、图15E和图15F示出了在MDA-MB-231细胞中钙通道拮抗剂对增殖的影响(在条的上方示出了增殖降低的百分率);
图16A、图16B、图16C、图16D、图16E和图16F示出了在SUM159细胞中钙通道拮抗剂对细胞增殖的影响(在条的上方示出了增殖降低的百分率);
图17A和图17B说明了三阴性乳腺癌的氨氯地平小鼠模型的抗肿瘤活性;
图18A和图18B示出了通过“伤口愈合”测定法评估MDA-MB-231和SUM159细胞的迁移。简单来说,将3×105个细胞铺板在6孔板中,直至在生长培养基中合生。将单层中的细胞用1400W(0、0.0001、0.001、0.01、0.1、1、2、4mM)在低血清条件(1%)下处理72小时,并在存在抑制剂的正常生长培养基中处理24小时(总共96小时)。然后在细胞单层中产生“伤口”。在0和12小时时获取图像。使用软件Image J确定伤口愈合能力。数据在三个独立实验中重复。将结果归一化到介质;
图19A和图19B示出了在MDA-MB-231和SUM159细胞系中通过Western印迹检测的选择性iNOS抑制对上皮-间质(EMT)诱导的因子的影响。将细胞用1400W(0.1、1、10、100μM、1、2、4mM)处理96小时。iNOS和EMT诱导的因子的蛋白质水平通过Western印迹来确定,使用了针对下述因子的抗体:iNOS(N-20)和Twist1(L-21)(Santa Cruz Biotechnology),Snail(C15D3),Slug(C19G7)和TCF8/Zeb1(D80D3)(Cell Signaling)(1:1000稀释)。使用β-肌动蛋白(Cell Signaling;1:2000)作为载样对照;并且
图20A、图20B、图20C和图20D示出了将MDA-MB-231和SUM159细胞(3×106)注射在雌性SCID浅褐色小鼠的右侧乳腺脂肪垫中(n=10/组)。临床相关的给药方案由两个循环组成,每个循环包括多西他赛(20mg/kg,i.p.,在第0天),12小时后与L-NMMA(在第1天400mg/kg,并且在随后4天200mg/kg,通过经口管饲法)和第0天的氨氯地平(10mg/kg,i.p.,每天,共6天)组合。单独的多西他赛以及盐水(i.p.)+无菌水(经口管饲法)被用作对照。L-NMMA与多西他赛的组合能够在MDA-MB-231和SUM159异种移植物中减少肿瘤生长(图20A和图20D)。氨氯地平阻止L-NMMA诱导的血压升高(图20B)。与单独的多西他赛相比,这种给药方案还在MDA-MB-231异种移植物中提高存活率(图20C)。****p<0.0001,***p<0.001。
序列简述
SEQ ID NO:1是根据本发明的一种情况使用的示例性DNA寡核苷酸正向引物。
SEQ ID NO:2是根据本发明的一种情况使用的示例性DNA寡核苷酸反向引物。
SEQ ID NO:3是根据本发明的一种情况使用的示例性DNA寡核苷酸正向引物。
SEQ ID NO:4是根据本发明的一种情况使用的示例性DNA寡核苷酸反向引物。
说明性实施方案的描述
下面描述本发明的说明性实施方案。为清晰起见,不是实际实施方案的所有特点都在本说明书中描述。当然,应该认识到,在任何这样的实际实施方案的开发中,为了实现开发者的特定目标必须做出大量实施方案特异性的决定,例如遵守与***相关和与商业相关的约束,这随着具体实施方案而变。此外,应该认识到,这种开发尝试可能是复杂且耗时的,但是对于与本公开具有利益关系的领域的普通技术人员来说是可以日常承担的。
我和我的合作者是首先证实了具有干细胞样特性的乳腺癌细胞固有地对常规治疗有抗性的研究组之一。自从这些最初的观察之后,其他研究组通过确立了这些细胞对常规化疗和放疗的抗性,确认了这一观点。这些以及其他研究也支持了我们的发现,即干细胞样细胞群体的增加与更糟的预后相关。这些发现具有基础性的临床意义。当前的癌症治疗剂的开发主要是基于鉴定在动物模型或临床试验中能够引起主体肿瘤消退的药剂;然而,专门聚焦于通过杀死活动周期或完全分化的细胞来引发肿瘤消退的药物可能放过关键的对疗法有抗性的细胞群体。这些观察最近已被扩展到乳腺癌,并且我已显示在主体原发肿瘤内有化学抗性的细胞亚群具有通过多种不同的适应性机制转移的倾向。
我还已经从患者的乳腺癌活检样品鉴定到致瘤特征,并且随后使用功能性方法从该基因集鉴定到新的治疗抗性靶点。使用所述致瘤特征中的477个基因的shRNA敲减(knockdown),进行了高通量的乳腺微米球体形成效率(MSFE)筛查。这种方法鉴定到两个靶蛋白RPL39和MLF2。RPL39以前被识别为是60S核糖体复合物的一个组分,位于X染色体上(XQ24),并且被提出在***发生和蛋白质翻译中发挥作用。MLF2位于12号染色体上,并可能参与染色体畸变和细胞防御应答。关于RPL39在癌症中的作用了解得很少,而对于MLF2来说,可用的知识甚至更加有限。已将MLF2在Ser 144、152和238上的一系列氨基酸修饰和体细胞突变(Phe80Cys)与结肠直肠癌相关联。尤其是,RPL39和MLF2的过表达增加了细胞迁移、增殖和乳腺球(mammosphere)的形成,表明了这两个基因在癌症中潜在重要的功能。对RPL39和MLF2的机制的详尽理解,是确认这两个基因作为新的癌症靶点的显著先决条件。通过使用癌症基因组图谱(The Cancer Genome Atlas)(TCGA)数据库进行RPL39和MLF2的互斥性分析,发现RPL39和MLF2专一地共同出现(p<0.00001),表明这两个基因具有共有的机制性途径。使用微阵列分析,鉴定到“西地那非(Viagra)的细胞效应”、即一氧化氮(NO)信号传导,是连接RPL39和MLF2两者的首要途径。然后通过使用RPL39和MLF2的过表达来诱导iNOS(诱导型一氧化氮合酶)蛋白并使用RPL39和MLF2的siRNA(小干扰核糖核酸)沉默来降低iNOS蛋白水平,确认了NP信号传导的作用。在文献中,NOS信号传导在乳腺癌生物学中的作用尚未被深入研究。到目前为止的报告表明高的NO浓度对癌细胞具有细胞毒性,而较低的NO浓度可以增加肿瘤生长。
以前已鉴定到两个新的癌基因(RPL39和MLF2)在治疗抗性和肺转移中发挥作用。已显示,NO信号传导的上调是这两个基因共同的机制性途径。在人类TNBC细胞系中,使用LNMMA抑制NO信号传导显示出减少了对治疗有抗性的细胞以及肺转移的数量。
药物配制品
本发明的药物配制品可以进一步包含一种或多种赋形剂、缓冲剂或稀释剂,其被特别配制成用于向人类患者给药。组合物可以进一步任选地包含一种或多种微米球、微米粒子、纳米球或纳米粒子,并且可以被配制成用于给药到正经历癌症、特别是乳腺癌治疗的人类的一个或多个细胞、组织、器官或身体。
可药用赋形剂和载体溶液的配制对于本领域技术人员来说是公知的,在各种不同的治疗方案中使用本文描述的特定组合物的适合的给药和治疗方案,包括例如但不限于口服、肠胃外、静脉内、鼻内、肿瘤内和肌肉内给药途径的开发,也是公知的。
通常,本发明的iNOS抑制性化学治疗配制品可以被配制成至少含有约0.1%或更多的活性化合物,尽管所述活性成分的百分率当然可以变化,并且在方便的情况下可以在总配制品的重量或体积的约1或2%至约70%或80%或更高之间。自然,每种诊断或治疗上有用的组合物中活性化合物的量可以被制备成使得在本文描述的化学治疗配制品的任何给定的单位药剂中可以获得所述诊断或治疗药剂的适合剂量。本领域技术人员在制备这些药物配制品时可以考虑到多种因素,例如溶解性、生物可利用性、生物半衰期、给药途径、产品储存期限以及其他药理学考虑因素,因此,各种不同的剂量和治疗方案可能是合乎需要的。
对于利用所公开的iNOS抑制性化学治疗配制品的组合物来说,所使用的组合物的具体量、给药的具体时间或剂量方案,在从本文的教示获益的本领域普通技术人员的能力范围之内。然而,有可能诊断或治疗有效量的本公开的配制品的给药,可以通过在能够有效地向经历这种治疗的患者提供所需化学治疗益处的时间内给药一剂或多剂所述配制品来实现。这些给药方案可以由监督化学治疗剂的给药的医学从业人员,根据具体的病症或患者、癌症的程度等来确定。
通常,在所公开的组合物中活性成分的配制品将含有对于给定患者的特定治疗方案来说有效的量。优选地,所述配制品可以含有至少约0.1%的每种活性成分,尽管所述活性成分的百分率当然可以改变,并且在方便的情况下可以在总配制品的基础上以约0.5至约80重量%或体积%,或者约1至约70重量%或体积%,或者更优选地约2至约50重量%或体积%的量存在。当然,活性化合物的量可以被准备成使得在所述化合物的任何给定的单元药剂中获得适合的剂量。本领域普通技术人员在制备这些药物配制品时应该考虑到多种因素例如溶解性、生物可利用性、生物t1/2、给药途径、产品储存期限以及其他药理学考虑因素,因此,各种不同的剂量和治疗方案可能是合乎需要的。
用于制备药物的组合物
本发明的另一个重要方面涉及在用于在动物例如脊椎动物中治疗或改善各种不同疾病、功能障碍或缺陷的症状的药物的制备中使用所公开的组合物(以及包含它们的配制品)的方法。特别设想了所公开的组合物在人类中一种或多种类型的癌症的化学治疗中,特别是在人类女性中TNBC的治疗中的使用。
这种使用通常包括向需要的哺乳动物给药一种或多种所公开的iNOS抑制性化学治疗组合物,给药的量和时间足以在受影响的哺乳动物中治疗、减轻或改善癌症的一种或多种症状。
包含一种或多种所公开的化疗剂的药物配制品也形成本发明的一部分,特别是那些进一步包括至少第一可药用赋形剂的组合物,其用于治疗或改善哺乳动物乳腺癌的一种或多种症状,特别是用于在人类女性中治疗或改善TNBC的一种或多种症状。
化学治疗剂及其配制品
一氧化氮(NO)是一种在癌细胞和肿瘤内表现出多效性的生物活性分子,具有浓度依赖性的促肿瘤和抗肿瘤效果。NO由三种不同的一氧化氮合酶(NOS)同工型生产:神经元的(nNOS/NOS1),可诱导的(iNOS/NOS2)和内皮的(eNOS/NOS3)。已发现在乳腺癌以及其他不同癌症如肺癌、结肠癌、黑素瘤和成胶质细胞瘤中iNOS的表达增加。以前的报道证实了在乳腺癌患者中iNOS的高表达、侵略性和不良预后之间的关联。最近,通过白介素-8(IL-8)、CD44、c-Myc(7)的诱导并且部分由于转录因子Ets-1的激活,已将iNOS的表达增加假定为患有基底细胞样***受体阴性乳腺癌的患者中存活率降低的预后因素。在本发明中,假设内源性iNOS表达的增强通过调节CSC的自我更新特性和肿瘤细胞迁移,通过促进肿瘤复发和转移而驱动不良的患者存活率。还进一步假设,与常规化疗相结合,内源iNOS的抑制降低了残留TNBC细胞的侵略性和间质特点以及向远端器官转移的数目,由此提高患有TNBC的患者的存活率。
在下面的实例中演示了使用不同的小分子抑制剂抑制iNOS,包括选择性iNOS抑制剂1400W(N-[[3-(氨基甲基)苯基]甲基]-乙脒)和两种泛NOS抑制剂L-NMMA(NG-单甲基-L-精氨酸)和L-NAME(N5-[亚氨基(硝基氨基)甲基]-L-鸟氨酸甲酯)。L-NMMA已在数以百计的患者中进行了用于心源性休克的深入研究,这便于将它立即转移到人类临床试验中而不需大量的临床前试验。
氨氯地平
氨氯地平是一种二氢吡啶钙拮抗剂,其抑制钙离子跨膜内流到血管平滑肌和心肌中。实验数据表明,氨氯地平结合于二氢吡啶和非二氢吡啶结合位点两者。心肌和血管平滑肌的收缩过程依赖于细胞外钙离子通过特异性离子通道移动到这些细胞内。氨氯地平选择性地抑制跨过细胞膜的钙离子内流,在完整动物中在治疗剂量下观察到对血管的更大效应。血清钙浓度不受氨氯地平影响。在生理pH范围内,氨氯地平是离子性化合物(pKa=8.6),它与钙通道受体的动力学相互作用的特征在于与受体结合位点的结合和解离速率缓慢,导致起效缓慢。
氨氯地平是一种外周动脉血管舒张剂,其直接作用于血管平滑肌以引起外周血管阻力降低和血压降低。氨氯地平缓解心绞痛的准确机制尚未被完全描述,但据认为包括下述方面:
劳力型心绞痛:在患有劳力型心绞痛的患者中,氨氯地平在任何给定的运动量下降低心脏工作所对抗的总外周阻力(后负荷)并降低心率-收缩压乘积,从而降低心肌需氧量。
血管痉挛性心绞痛:在实验动物模型和体外人类冠状血管中,已证实氨氯地平对钙、钾、肾上腺素、血清素和凝血恶烷A2类似物做出应答阻断收缩并恢复冠状动脉和小动脉中的血流。这种冠状动脉痉挛的抑制造成了氨氯地平在血管痉挛性(Prinzmetal型或变体)心绞痛中的有效性。
示例性定义
根据本发明,多核苷酸、核酸区段、核酸序列等包括但不限于DNA(包括且不限于基因组或基因组外DNA)、基因、肽核酸(PNA)、RNA(包括但不限于rRNA、mRNA和tRNA)、核苷和适合的核酸区段,其从天然来源获得,通过化学方法合成、修饰或通过其他方式完全或部分通过人工制备或合成。
除非另有定义,否则本文中使用的所有技术和科学术语具有与本发明所属领域的普通技术人员所通常理解的相同的意义。尽管在本发明的实践或试验中可以使用与本文描述的相似或等同的任何方法和组合物,但优选的方法和组合物在本文中描述。出于本发明的目的,为清晰和易于参考起见,下列术语如下所定义:
根据长期沿用的专利法惯例,当在本申请包括权利要求书中使用时,没有具体数量的指称是指“一个或多个”。
本文中使用的术语“约”和“大约”可互换使用,并且通常应该被理解为是指在给定数字周围的一定范围的数字,并且指称在所叙述的数字范围内的所有数字(例如,除非另有陈述,否则“约5至15”意味着“约5至约15”)。此外,本文中的所有数值范围应该被理解为包括所述范围内的每个整数。
“生物相容的”是指材料在暴露于活细胞时,将支持所述细胞的适合的细胞活性而不在所述细胞中引起不想要的效应,例如细胞生活周期的变化、细胞增殖速率的变化或细胞毒性效应。
当在本文中使用时,术语“缓冲剂”包括一种或多种组合物或其水性溶液,其在向包含所述缓冲剂的溶液或组合物添加酸或碱时抗拒pH的波动。这种对pH变化的抵抗力是由这些溶液的缓冲性能造成的,并且可以是所述组合物中包含的一种或多种特定化合物的功能。因此,表现出缓冲活性的溶液或其他组合物被称为缓冲剂或缓冲溶液。缓冲剂通常不具有无限的维持溶液或组合物的pH的能力;相反,它们通常能够维持一定范围内的pH,例如约5至7的pH。
当在本文中使用时,术语“载体”意图包括如果适用的话,在制药上对于给药到相关动物来说可接受的或对于治疗或诊断目的来说可接受的任何溶剂、分散介质、包衣、稀释剂、缓冲剂、等渗剂、溶液、悬液、胶体、惰性物质等或其组合。
当在本文中使用时,术语“有效量”是指能够治疗或改善疾病或病症或者能够产生目标治疗效果的量。
当在本文中使用时,术语“例如”仅用于举例而不意图限制,并且不应被解释为仅仅指称在本说明书中明确列举的那些条目。
当在本文中使用时,短语“需要治疗”是指由护理提供者例如医生或兽医做出的患者需要治疗(或者将以一种或多种方式从治疗获益)的判断。这种判断可以在各种不同因素的基础上做出,这些因素在护理提供者的专业知识范围之内,并且可以包括患者作为疾病状态的结果而患有可以通过例如本文中提出的一种或多种化合物或药物组合物来治疗的疾病的知识。
当在本文中使用时,术语“试剂盒”可用于描述包含至少一套本发明的试剂、组分或药物配制品组合物的便携的自包含的封闭包装的各种变化形式。任选地,这种试剂盒可以包含例如在实验室或临床应用中使用所述被包含的组合物的一套或多套说明书。
本文中使用的术语“天然存在的”当应用于物体时,是指所述物体可以在自然界中被发现这一事实。例如,存在于可以从自然界中的来源分离的生物体(包括病毒)中并且没有在实验室中通过人工进行有意修饰的多肽或多核苷酸序列,是天然存在的。当在本文中使用时,可能按照经典遗传学选择性繁育的实验室啮齿动物株系,被认为是天然存在的动物。
当在本文中使用时,术语“核酸”包括下述一种或多种类型:多脱氧核糖核苷酸(含有2-脱氧-D-核糖),多核糖核苷酸(含有D-核糖),以及作为嘌呤或嘧啶碱基或修饰的嘌呤或嘧啶碱基的N-糖苷的任何其他类型的多核苷酸(包括无碱基位点)。本文中使用的术语“核酸”还包括核糖核苷或脱氧核糖核苷的聚合物,所述核苷通常通过子单元之间的磷酸二酯键、但在某些情况下通过硫代磷酸酯、甲基膦酸酯等共价键合。“核酸”包括单链和双链DNA以及单链和双链RNA。示例性的核酸包括但不限于gDNA、hnRNA、mRNA、rRNA、tRNA、微小RNA(miRNA)、小干扰RNA(siRNA)、小核仁RNA(snORNA)、小核RNA(snRNA)和小时序RNA(stRNA)等,及其任何组合。
本文中使用的术语“患者”(也可以互换地称为“接受者”、“宿主”或“对象”)是指可以充当本文中所讨论的一种或多种静脉通路装置的接受者的任何宿主。在某些情况下,所述接受者是脊椎动物,其意图是指任何动物物种(并且优选为哺乳动物物种例如人类)。在某些实施方案中,“患者”是指任何动物宿主,包括但不限于人类和非人类灵长动物、鸟类、爬行类、两栖类、牛科动物、犬科动物、山羊、豚鼠、乌鸦、epines、马科动物、猫科动物、山羊、兔、野兔、狼、鼠科动物、绵羊、猪、racines、狐狸等,包括但不限于驯养家畜、畜牧或迁徙动物或鸟类、外来或动物园物种以及伴侣动物、宠物和在兽医从业人员照管下的任何动物。
短语“可药用的”是指当给药于人类时,特别是当给药于人眼时,不产生过敏或类似不良反应的分子实体和组合物。含有蛋白质作为活性成分的水性组合物的制备在本领域中是公知的。通常,这些组合物被制备成可注射液,作为液体溶液或作为悬液。或者,它们可以制备成适合于在注射前溶解或悬浮在液体中的固体形式。
本文中使用的“可药用盐”是指保留母体化合物的生物活性并且不提供任何不想要的毒理效应的盐。这些盐的实例包括但不限于与无机酸例如盐酸、氢溴酸、硫酸、磷酸、硝酸等形成的酸加成盐,与有机酸例如乙酸、草酸、酒石酸、琥珀酸、马来酸、延胡索酸、葡萄糖酸、柠檬酸、苹果酸、抗坏血酸、苯甲酸、鞣酸、帕莫酸(双羟萘酸)、海藻酸、萘甲酸、聚谷氨酸、萘磺酸、萘二磺酸、聚半乳糖醛酸形成的盐,与多价金属阳离子例如锌、钙、铋、钡、镁、铝、铜、钴、镍、镉等形成的盐,与从N,N'-二苯甲基乙二胺或乙二胺形成的有机阳离子形成的盐,及其组合。
本文中使用的术语“多肽”意图涵盖单个“多肽”以及多个“多肽”,并包括两个或更多个氨基酸的任一个或多个链。因此,当在本文中使用时,术语包括但不限于“肽”、“二肽”、“三肽”、“蛋白质”、“酶”、“氨基酸链”和“连续氨基酸序列”都被涵盖在“多肽”的定义之内,并且术语“多肽”可以代替任何这些术语使用或与任何这些术语互换使用。所述术语还包括已经历一种或多种翻译后修饰的多肽,所述修饰包括例如但不限于糖基化、乙酰化、磷酸化、酰胺化、衍生化、蛋白水解切割、翻译后加工或包含一个或多个非天然存在的氨基酸的修饰。在本领域中存在用于多核苷酸和多肽结构的常规命名法。例如,单字母和三字母缩写被广泛用于描述氨基酸:丙氨酸(A;Ala),精氨酸(R;Arg),天冬酰胺(N;Asn),天冬氨酸(D;Asp),半胱氨酸(C;Cys),谷氨酰胺(Q;Gln),谷氨酸(E;Glu),甘氨酸(G;Gly),组氨酸(H;His),异亮氨酸(I;Ile),亮氨酸(L;Leu),甲硫氨酸(M;Met),苯丙氨酸(F;Phe),脯氨酸(P;Pro),丝氨酸(S;Ser),苏氨酸(T;Thr),色氨酸(W;Trp),酪氨酸(Y;Tyr),缬氨酸(V;Val)和赖氨酸(K;Lys)。本文描述的氨基酸残基优选处于“L”异构体形式。然而,采取“D”异构体形式的残基可以替换任何L-氨基酸残基,只要保留所述多肽的所需性质即可。
本文中使用的术语“预防”、“抑制”是指在疾病状态的临床症状发作之前将化合物单独或包含在药物组合物中给药,以便阻止所述疾病状态的任何症状、情况或特征。这种预防和抑制无需绝对被视为在医学上有用的。
“蛋白质”在本文中可以与“肽”和“多肽”互换使用,并且包括合成、重组或体外生产的肽和多肽以及在将核酸序列给药到宿主动物或人类对象中之后在体内表达的肽和多肽两者。术语“多肽”优选地意图是指任何氨基酸链长,包括长度为约2至约20个氨基酸残基的短肽,长度为约10至约100个氨基酸残基的寡肽,以及长度为约100个或更多氨基酸残基的较长多肽。此外,该术语还意图包括酶,即包括至少一个氨基酸聚合物的有功能的生物分子。本发明的多肽和蛋白质还包括将被或已被翻译后修饰并包括添加到骨架氨基酸链的任何糖或其他衍生物或偶联物的多肽和蛋白质。
当在本文中使用时,“纯化”意味着与许多其他化合物或实体分离开。化合物或实体可以是部分纯化的,显著纯化的或纯的。化合物或实体当从基本上所有其他化合物或实体中取出时,被认为是纯的,即纯度优选为至少约90%,更优选为至少约91%、92%、93%、94%、95%、96%、97%、98%、99%,或高于99%。部分或显著纯化的化合物或实体,可以移除至少50%、至少60%、至少70%或至少80%的在天然情况下与其一起存在的材料,例如细胞材料如细胞蛋白质和/或核酸。
本文中使用的术语“对象”描述了可以向其提供使用本发明的组合物的治疗的生物体,包括哺乳动物例如灵长动物。可以从本公开的治疗方法获益的哺乳动物物种包括但不限于猿、黑猩猩、猩猩、人类、猴、驯养动物例如狗和猫、家畜例如马、牛、猪、绵羊、山羊和鸡,以及其他动物例如小鼠、大鼠、豚鼠和仓鼠。
当在本文中使用时,与组分的量相关联的术语“显著不含”或“基本上不含”是指组合物含有少于约10重量%、优选地少于约5重量%、更优选地少于约1重量%的化合物。在优选实施方案中,这些术语是指少于约0.5重量%、少于约0.1重量%或少于约0.01重量%。
当在本文中使用时,术语“质粒”或“载体”是指由遗传材料(即核酸)构成的遗传构建物。通常,质粒或载体含有在细菌宿主细胞例如大肠杆菌中有功能的复制原点,和用于检测包含所述质粒的细菌宿主细胞的选择标记。本发明的质粒和载体可以包括本文中所描述的一个或多个遗传元件,其被排列成使得***的编码序列可以在适合的表达细胞中转录和翻译。此外,所述质粒或载体可以包括一个或多个核酸区段、基因、启动子、增强子、激活子、多克隆区或其任何组合,包括从一个或多个天然和/或人造来源获得或从其衍生的区段。
术语“基本上如在SEQ ID NO:X中提出的序列”意味着所述序列显著对应于SEQ IDNO:X的一部分,并具有相对少的核苷酸(或者在多肽序列的情形中是氨基酸)与SEQ ID NO:X的核苷酸(或氨基酸)不一致或者是其生物功能等同物。术语“生物功能等同物”在本领域中是公知的,并且在本文中被进一步详细定义。因此,特别考虑到了与本文中提供的一个或多个核苷酸序列有约85%至约90%或更优选地约91%至约95%或甚至更优选地约96%至约99%的核苷酸一致或功能上等同的序列,可用于本发明的实践。
适合于本发明的标准杂交条件包括例如在50%甲酰胺、5×Denhardt溶液、5×SSC、25mM磷酸钠、0.1%SDS和100μg/ml变性鲑鱼***DNA中,在42℃杂交16h,然后用0.1×SSC、0.1%SDS溶液在60℃连续清洗1hr,以除去所需量的背景信号。用于本发明的较低严紧性杂交条件包括例如在35%甲酰胺、5×Denhardt溶液、5×SSC、25mM磷酸钠、0.1%SDS和100μg/ml变性鲑鱼***DNA或大肠杆菌DNA中,在42℃杂交16h,然后用0.8×SSC、0.1%SDS在55℃连续清洗。本领域技术人员将会认识到,可以容易地调整条件以获得所需的严紧性水平。
自然,本发明还涵盖了与本文中特别提出的至少一个或多个特定核苷酸序列互补、基本上互补和/或显著互补的核酸区段。“互补的”核酸序列是能够按照标准的Watson-Crick互补法则进行碱基配对的序列。当在本文中使用时,术语“互补序列”意味着显著互补的核酸序列,正如可以通过上面提出的相同核苷酸比较所评估的,或者被定义为能够在相对严紧的条件例如上文刚刚描述的条件下杂交到一个或多个本文公开的特定核酸区段。
如上所述,本发明的探针和引物可以具有任何长度。通过为序列指派数值,例如第一残基为1,第二残基为2等,可以提出定义给定序列内包含的所有探针或引物的算法:
n至n+y,其中n是从1至所述序列的最后数字的整数,并且y的探针或引物的长度减去1,其中n+y不超过所述序列的最后数字。因此,对于25个碱基对的探针或引物(即“25-mer”)来说,探针或引物的集合对应于序列整个长度上的碱基1至25、碱基2至26、碱基3至27、碱基4至28等。同样地,对于35个碱基对的探针或引物(即“35-mer”)来说,示例性的引物或探针序列包括但不限于对应于所述序列整个长度上的碱基1至35、碱基2至36、碱基3至37、碱基4至38等的序列。同样地,对于40-mer来说,这样的探针或引物可能对应于从第一碱基对至bp 40、从序列的第二bp至bp 41、从第三bp至bp 42等的核苷酸序列,而对于50-mer来说,这样的探针或引物可能对应于从bp 1至bp 50、从bp 2至bp 51、从bp 3至bp 52、从bp4至bp 53等延伸的核苷酸序列。当在本文中使用时,“治疗”是指向对象提供任何类型的医学或手术管理。治疗可以包括但不限于向对象给药包含治疗剂的组合物。“治疗”包括向对象给药或施用本发明的化合物或组合物,其目的是例如治愈、逆转、减轻疾病、障碍或病症或疾病、障碍或病症的一种或多种症状或表现,降低其严重性,抑制其发展或降低其可能性。在某些情况下,本发明的组合物也可以预防性给药,即在所述病症的任何症状或表现发生之前给药,其中这种预防是得到批准的。通常,在这些情况下,对象将是作为家族史、医疗记录或完成指示随后发生这种疾病或障碍的倾向性的一种或多种诊断或预后测试的结果,已被诊断为有发生这种疾病或障碍的“风险”的对象。
术语“治疗实践时长”意味着活性药剂成为治疗有效的所必需的时长。术语“治疗有效的”是指症状的严重性和/或频率的降低,症状和/或隐含的病因的消除,阻止症状和/或它们的隐含病因的出现,以及损伤的改善或修复。
“治疗剂”可以是可以在对象的靶位点中产生所需生物效应的任何生理上或药理上有活性的物质。所述治疗剂可以是化疗剂、免疫抑制剂、细胞因子、细胞毒性剂、溶核化合物、放射活性同位素、受体和前体药物活化酶,其可以是天然存在的或通过合成或重组方法或其任何组合来生产。受到经典的多药物抗性影响的药物例如长春花生物碱(例如长春花碱和长春新碱)、蒽环类药物(例如多柔比星和道诺霉素)、RNA转录抑制剂(例如放线菌素-D)和微管稳定化药物(例如紫杉醇),作为治疗剂可能具有特殊用途。细胞因子也可用作治疗剂。这些细胞因子的实例是淋巴因子、单核因子和传统的多肽激素。癌症化疗剂可能是优选的治疗剂。对于抗癌药剂和其他治疗剂的更详细描述,本领域技术人员可以参考大量指导手册,包括但不限于《医生桌面参考》(Physician's Desk Reference)和Goodman与Gilman的《治疗剂的药理学基础》(Pharmacological Basis of Therapeutics)第10版,Hardman等主编,2001。
“转录调控元件”是指单独地或与一个或多个其他核酸序列相组合激活转录的多核苷酸序列。转录调控元件可以例如包含一个或多个启动子、一个或多个响应元件、一个或多个负调控元件和/或一个或多个增强子。
当在本文中使用时,“转录因子识别位点”和“转录因子结合位点”是指多核苷酸序列或序列基序,其被鉴定为是一个或多个转录因子的序列特异性相互作用的位点,所述相互作用通常采取直接的蛋白质-DNA结合的形式。通常,转录因子结合位点可以通过DNA足迹法、凝胶迁移率变动分析法等来鉴定,和/或可以在已知共有序列基序的基础上或通过本领域技术人员已知的其他方法来预测。
“转录单元”是指一段核苷酸序列,其包含至少第一结构基因,所述结构基因可操作连接到至少第一顺式作用的启动子序列,并任选地可操作连接到所述结构基因序列的高效转录所必需的一个或多个其他顺式作用的核酸序列,和至少第一远端调控元件,其可能为可操作地置于启动子和/或增强子元件控制之下的结构基因序列的适合的组织特异性和发育转录所需,以及高效转录和翻译所必需的任何其他顺式序列(例如多腺苷化位点、mRNA稳定性控制序列等)。
术语“显著互补”当用于定义氨基酸或核酸序列时,意味着特定主题序列例如寡核苷酸序列与所选序列的全部或一部分显著互补,因此将特异性结合到mRNA的编码所选序列的部分。就此而言,所述序列通常与mRNA“靶”序列高度互补,并且在所述序列的整个互补部分中具有不超过约1、约2、约3、约4、约5、约6、约7、约8、约9或约10个左右的碱基错配。在许多情况下,可能希望所述序列是精确匹配的,即与所述寡核苷酸特异性结合的序列完全互补,因此沿着互补区段具有零错配。就此而言,高度互补的序列通常相当特异性地结合到mRNA的靶序列区,因此在降低和/或甚至抑制靶mRNA序列翻译成多肽产物中非常高效。
显著互补的核酸序列与所述核酸特异性结合的相应核酸靶序列的互补性(或“精确匹配的%”)超过约80%,并且更优选地与所述核酸特异性结合的相应靶序列的互补性超过约85%。如上所述,在某些情况下,希望将甚至更显著互补的核酸序列用于本发明的实践,并且在这种情况下,所述核酸序列与所述核酸特异性结合的相应靶序列的互补性超过约90%,并且在某些实施方案中与所述核酸特异性结合的相应靶序列的互补性可能超过约95%,甚至与所述设计的核酸特异性结合的靶序列的全部或一部分的互补性高达并包括约96%、约97%、约98%、约99%和甚至约100%精确匹配。
任何所公开的核酸序列的百分相似性或百分互补性,可以例如通过使用可以从University of Wisconsin Genetics Computer Group(UWGCG)获得的GAP计算机程序6.0版比较序列信息来确定。所述GAP程序利用了Needleman和Wunsch(1970)的比对方法。简单来说,GAP程序将相似性定义为相似的比对符号(即核苷酸或氨基酸)的数目除以两个序列中的较短者中的符号总数。用于GAP程序的优选缺省参数包括:(1)用于核苷酸的一元比较矩阵(含有对于一致来说为1并且对于不一致来说为0的值),以及Gribskov和Burgess的加权比较矩阵(1986),(2)每个间隙的罚分为3.0,每个间隙中的每个符号附加0.10罚分,以及(3)对于末端间隙来说没有罚分。
当在本文中使用时,术语“转化的细胞”意图意味着其核酸整体已通过在其中引入一个或多个外源多核苷酸而被改变的宿主细胞。
当在本文中使用时,术语“转化”意图总体描述在宿主细胞或原生质体中引入外源多核苷酸序列(例如病毒载体、质粒或重组DNA或RNA分子)的过程,其中所述外源多核苷酸被并入到至少第一染色体中或能够在被转化的宿主细胞内自主复制。转染、电穿孔和“裸”核酸摄入,都代表了用一个或多个多核苷酸转化宿主细胞所使用的技术的实例。
当在本文中使用时,术语“治疗”是指在疾病状态的临床症状发生之后给药一种或多种化合物(单独地或包含在一种或多种药物组合物中),以便减轻或消除所述疾病状态的任何症状、情况或特征。这种治疗不必绝对被视为在医学上是有用的。就此而言,术语“治疗”可以是指治疗或改善或减轻疾病或其一种或多种症状的程度或严重性,不论是在其发展折磨患者之前还是之后。
在某些实施方案中,使用与适合的可检测标志物(即“标记物”)相组合的本发明的一个或多个核酸区段是有利的,例如在杂交测定法中使用标记的多核苷酸探针确定给定靶序列的存在的情形中。在本领域中,已知广泛的各种适合的指示性化合物和组合物可用于标记寡核苷酸探针,包括但不限于能够在适合的测定法中被检测的荧光、放射活性、酶或其他配体例如亲和素/生物素等。在特定实施方案中,人们也可以使用一种或多种荧光标记物或酶标签例如脲酶、碱性磷酸酶或过氧化物酶来代替放射活性或其他在环境上不太理想的试剂。在酶标签的情形中,已知比色测量、产色或产荧光指示性物质可提供用于检测对于人眼来说可见的样品的方法,或者通过分析方法如闪烁照相、荧光测量、分光光度法等,以鉴定与含有一个或多个互补或显著互补的核酸序列的样品的特异性杂交。在其中两个或更多个标记的探针被同时或顺序检测的所谓的“多重”测定法的情况下,可能希望用具有第一检测特性或参数(例如最大发射和/或激发光谱)的第一标记物标记第一寡核苷酸探针,并且用具有不同的第二检测特性或参数的第二标记物(即分立的或者可以与所述第一标记物区分开的)标记第二寡核苷酸探针。对于分子遗传学领域的普通技术人员来说,多重测定法的使用时公知的,特别是在遗传扩增/检测方案的背景中。
在整个本文中使用的段落标题仅用于组织目的,并且不应被解释为限制所描述的主题内容。在本申请中引用的所有文献或文献的部分,包括但不限于专利、专利申请、文章、书籍和论文,在此明确地为任何目的整体通过参考并入本文。在一个或多个并入的文献和类似材料所定义的术语与该术语在本申请中的定义发生冲突的情况下,以本申请为准。
具体实施方式
实施例
包含下面的实施例以演示本发明的优选实施方案。本领域技术人员应该认识到,在下面的实施例中公开的技术代表了由本发明人发现的在本发明的实践中正常运作的技术,因此可以被当作构成了本发明实践的优选方式。然而,根据本公开,本领域技术人员应该认识到在被公开的特定实施方案中可以做出许多改变并且仍能获得相同或相似的结果,而不背离本发明的精神和范围。
实施例1–INOS抑制作为针对TNBC的有效的靶向疗法
正如上面指出的,TNBC是一种侵略形式的乳腺癌,没有有效的靶向疗法。通过提高肿瘤侵略性,iNOS与乳腺癌患者中不良的存活率相关。据推测,内源iNOS的抑制通过调节上皮-间质转变(EMT)诱导因子,通过减少肿瘤初发和转移来降低TNBC侵略性。
本实施例描述了使用iNOS抑制剂作为TNBC的靶向疗法。在83个人类TNBC组织中测定iNOS蛋白水平,并将其与临床结果相关联。在iNOS抑制后,在体外评估增殖、乳腺球形成效率、迁移、EMT转录因子。在TNBC小鼠模型中,内源iNOS靶向被评估为潜在的疗法。
通过基因表达以及免疫组织化学分析,将高的内源iNOS表达与TNBC患者中更糟的预后相关联。选择性iNOS(1400W)和泛NOS(L-NMMA和L-NAME)抑制剂在体外减少细胞增殖、CSC自我更新和细胞迁移,并且抑制EMT转录因子(Snail、Slug、Twist1和Zeb1)。观察到HIF1α、内质网胁迫(IRE1α/XBP1)和ATF4/ATF3与TGFβ之间的串扰的减少。iNOS抑制显著降低肿瘤生长,减少细胞增殖,并降低肺转移的数量以及肿瘤初发和自我更新能力。在L-NMMA在TNBC中成功降低肿瘤生长和提高存活率的基础上,本发明人提出了通过重新利用总的来说iNOS抑制剂、特别是泛NOS抑制剂L-NMMA(其已被深入调查用于心源性休克)作为抗癌治疗剂的有效的靶向治疗方案。
材料和方法
Oncomine基因表达数据分析。通过癌症基因组图谱(TCGA)数据库的Oncomine癌症微阵列数据库分析,调查了在人类三阴性乳腺癌中NOS2mRNA表达的相对水平(n=593)。获得了两个不同基因表达数据集的患者存活率分析。
细胞培养。间质样三阴性乳腺癌细胞系MDA-MB-231和SUM159分别购自美国典型培养物保藏中心(American Type Culture Collection)和Asterand。除非另有指明,否则将细胞每日用1400W(0.1、1、10、100μM;1、2、4mM)、L-NMMA(0.1、1、10、100μM;1、2、4mM)或L-NAME(0.1、1、10、100μM;1、2、5mM)处理96小时。乳腺球形成效率(MSFE)、细胞增殖和迁移测定法在下文中详述。
免疫组织化学。将人类患者、MDA-MB-231和SUM159原位肿瘤组织的石蜡包埋的切片与抗iNOS(1:50稀释)或抗Ki67(1:100稀释)抗体温浴。将载片用苏木精复染。其他信息包含在下文中。
动物研究。将雌性SCID浅褐色小鼠(4-5周龄)饲养在标准实验室条件下(22℃;12hr/12hr光/暗周期并自由取用食物和水)。所有动物程序和实验流程使用学术和联邦批准的动物护理和使用指南(Animal Care and Use guidelines)来进行。详细信息在下文中描述。
统计分析。数据被呈现为平均值±SEM。p值小于0.0被认为是显著的。
试剂。N-[[3-(氨基甲基)苯基]甲基]-乙脒(1400W)和N5-[亚氨基(硝基氨基)甲基]-L-鸟氨酸甲酯(L-NAME)购自Cayman Chemical。Tilarginine(NG-单甲基-L-精氨酸)(L-NMMA)来自于Enzo Life Sciences并由Arginox Pharmaceuticals善意提供。衣霉素和重组人TGF-β1(CHO细胞来源的)分别从Abcam和Peprotech获得。抗iNOS(N-20)、抗eNOS(C-20)、抗nNOS(R-20)、抗Twist1(L-21)、抗Twist1(2C1a)、抗ATF3(C-19)和抗CREB-2(C-20)(ATF4)抗体来自于Santa Cruz Biotechnology,Inc。抗Snail(C15D3)、抗Slug(C19G7)、抗TCF8/Zeb1(D80D3)、抗PERK(C33E10)、抗TGFβ、抗phospho-Smad2(Ser465/467)/Smad3(Ser423/425)(D6G10)、抗Smad2/3、抗IRE1α(14C10)、抗phospho-PERK(Thr980)(16F8)、抗PERK(C33E10)、抗phospho-eIF2α(Ser51)(119A11)、抗eIF2α、抗β-肌动蛋白(13E5)、抗兔和抗小鼠IgG(HRP偶联的)抗体从Cell Signaling Technology Inc获得。抗HIF1α(EP1215Y)抗体来自于Abcam。对于免疫组织化学来说,抗Ki67(SP6)抗体来自于Abcam,抗iNOS(K13-A)抗体购自Novus Biologicals,抗切开的半胱天冬酶-3(Asp175)抗体来自于CellSignaling。XBP1和β-肌动蛋白的PCR引物来自于Invitrogen。小鼠抗人类CD24-FITC抗体(克隆ML5)和小鼠抗人类CD44-APC抗体(克隆G44-26)来自于BD Biosciences。抗小鼠I类MHC(H-2Kd)-PE抗体(克隆SF1-1.1.1)来自于eBioscience。
细胞培养和乳腺球形成效率测定法。间质样三阴性乳腺癌细胞系MDA-MB-231和SUM159(分别购自美国典型培养物保藏中心(American Type Culture Collection)和Asterand),在它们的EMT标志物的高表达、转移性质、CD44+/CD24-细胞的百分率(MDA-MB-231:~80-90%;SUM159:~40-50%)和iNOS蛋白质水平的基础上被选择。细胞在增补有10%胎牛血清(Thermo Scientific)和1%抗生素-抗真菌剂(Gibco)的Dulbecco改良的Eagle培养基(DMEM)(Gibco)中生长。在1X PBS中制造iNOS抑制剂(1400W、L-NMMA和L-NAME)的储用溶液。在向细胞添加之前,将抑制剂在细胞培养基中进一步稀释。除非另有指明,否则将细胞每日用1400W(0.1、1、10、100μM;1、2、4mM)、L-NMMA(0.1、1、10、100μM;1、2、4mM)或L-NAME(0.1、1、10、100μM;1、2、5mM)处理96hrs。对于乳腺球形成效率(MSFE)测定来说,将2,000个(SUM159)和5,000个(MDA-MB-231)细胞/孔培养在0.5%甲基纤维素(MethoCultH4100,StemCell Technologies)和增补有10%MammoCult增殖增补物、4μg/mL肝素和0.48μg/mL氢化可的松(StemCell Technologies)的MammoCult基本培养基中。在用1、2和4mM(1400W和L-NMMA)或1、2和5mM L-NAME处理96小时后,使用集落计数器(GelCount,OxfordOptronicx)对原始乳腺球(MS)进行扫描和计数。通过用乳腺球数目除以细胞数目来评估原始MSFE。在用胰蛋白酶消化原始MS后,将单细胞在不存在处理的情况下生长在0.5%甲基纤维素和乳腺球培养基(如上所述)中。对次生MS进行扫描、计数,并对次生MSFE进行评估。对于肺转移的小鼠模型来说,将MDA-MB-231细胞用基于萤光素酶/GFP的双重报告基因质粒转染,并使用1mg/mL杀稻瘟菌素(InvivoGen)选择稳定的克隆(MDA-MB-231L/G)。
细胞增殖测定法。使用WST-1方法测定iNOS抑制对细胞增殖的影响。简单来说,将500个(SUM159)和1,000个(MDA-MB-231)细胞/孔铺板在96孔板中,并用1、2和4mM(1400W和L-NMMA)或1、2和5mM L-NAME处理96小时。通过添加预混的WST-1试剂(Clontech)测定增殖率。在37℃温浴3小时后,在450nm处(参比波长690nm)读取吸收值。
细胞迁移能力。使用“伤口愈合测定法”测定细胞迁移。简单来说,将3×105个细胞/孔生长在6孔板中直至合生。将单层中的细胞在饥饿条件(1%血清)下用不同浓度的1400W、L-NMMA和L-NAME处理72小时。为了避免对细胞增殖的影响,在抑制剂存在下将低血清培养基改变为常规生长培养基24小时(总共96小时)。然后用100-μL移液器头在细胞单层中产生“伤口”。在0小时时获取图像,并允许细胞愈合所述伤口12小时。伤口愈合能力使用软件Image J来确定。数据在三个独立实验中重复。
慢病毒介导的shRNA敲减。GIPZ NOS2慢病毒shRNA克隆(shRNA1-V3LHS_360691;shRNA2-V2LHS_111769)和GIPZ慢病毒空载体shRNA对照购自Thermo Scientific。将MDA-MB-231和SUM159细胞用慢病毒粒子和聚凝胺(6μg/mL)(Sigma-Aldrich)处理48小时。带有shRNA的细胞克隆使用嘌呤霉素(2μg/mL)(Sigma-Aldrich)选择1周。然后收获细胞并将其铺板,用于增殖、乳腺球、伤口愈合和Western印迹测定。
siRNA介导的NOS2敲减。将SUM159和MDA-MB-231细胞用混杂siRNA siRNA18(s9618)或siRNA20(s9620)(Silencer Select,Ambion)转染96小时。简单来说,将在6孔板中生长的细胞(100,000个细胞/孔)在含有包装在Lipofectamine RNAiMAX(Invitrogen)中的NOS2siRNA或混杂siRNA(100nM)的无血清、无抗生素/抗真菌剂的DMEM培养基中转染6小时。添加完全DMEM培养基并将细胞生长96小时。
在SUM159细胞中的一氧化氮生产。将细胞在无酚红且无血清的DMEM培养基中用L-NMMA或1400W处理24小时。在0、0.5、2、6和24小时获取细胞培养上清液的等分试样,使用硝酸盐/亚硝酸盐荧光测定试剂盒(Cayman Chemical),按照制造商的说明书测定硝酸盐+亚硝酸盐(总一氧化氮)生产。
Western印迹。将细胞以2.5×105个细胞/孔的密度在含有或不含iNOS抑制剂的6孔板中培养96小时。将细胞重悬浮在1X裂解缓冲液(Cell Signaling Technology,Inc.)和1X蛋白酶/磷酸酶抑制剂混合物(Thermo Scientific)中。将样品(30μg蛋白质)在含有β-巯基乙醇(Sigma Aldrich)的4X LDS样品缓冲液(Thermo Scientific)中煮沸,并在4-20%聚丙烯酰胺凝胶(Bio-Rad)中进行SDS-PAGE电泳。将蛋白质转移到硝酸纤维素膜(Bio-Rad)上,通过在含有5%脱脂奶粉的1X Tris缓冲盐水(TBS)中温浴1hr来避免非特异性结合。将膜与第一抗体(1:1,000稀释;抗β-肌动蛋白抗体,1:2,000稀释)在4℃温浴过夜。在清洗并与适合的第二抗体温浴1hr(1:2,000稀释)后,将膜清洗并与增强化学发光底物温浴。蛋白质条带在放射自显影胶片(Denville Scientific,Inc.)中显影。
拼接的XBP1的RT-PCR分析。使用Rneasy微量试剂盒(Qiagen)从MDA-MB-231和SUM159细胞提取总RNA,并使用iScript cDNA合成试剂盒(Bio-Rad),按照制造商的说明书合成cDNA。PCR扩增(50ng cDNA)使用2.5U/μL Taq DNA聚合酶(天然的,5U/μL)、0.2mMdNTP、1.5mM MgCl2(50mM)和0.5μM每种引物来进行。所述引物是:
XBP1-正向5′-GGGTCCAAGTTGTCCAGAATGC-3′(SEQ ID NO:1)
XBP1-反向5′-TTACGAGAGAAAACTCATGGC-3′(SEQ ID NO:2)
β-肌动蛋白-正向5′-CTGGAACGGTGAAGGTGACA-3′(SEQ ID NO:3)
β-肌动蛋白-反向5′-AAGGGACTTCCTGTAACAATGCA-3′(SEQ ID NO:4)
PCR条件是95℃5min 1个循环,95℃30sec、50℃1min和68℃1min共25个循环,然后是68℃5min 1个循环。将cDNA扩增子在2%琼脂糖中分离。
免疫组织化学。使用Tris-HCl缓冲液(pH=9.0)对人类患者、MDA-MB-231和SUM159原位肿瘤组织的石蜡包埋的切片进行抗原修复,并使用过氧化氢阻断5min。然后将人类患者样品和异种移植物肿瘤在室温下与抗iNOS(1:50稀释)、抗Ki67(1:100稀释)和抗切开的半胱天冬酶-3(1:50)抗体温浴1hr。将样品用基于过氧化物酶的EnVision试剂盒(Dako)显色,并与阴性对照进行比较以消除假阳性。将载片用苏木精复染。iNOS评分方法:强度(0-3):阴性,弱,中等,强;分布(0-4):<10%,10-30%,>30-50%,>50-80%,>80%。可以将总分值分成4组:阴性(0-1),弱(2-3),中等(4-5)和强(6-7)。用NOS2指导的shRNA(shRNA1)或空载体(EV)转染的MDA-MB-231细胞分别被用作iNOS染色的阴性和阳性对照。
动物研究。将雌性SCID浅褐色小鼠(4-5周龄)(Harlan Laboratories)饲养在标准实验室条件下(22℃;12小时/12小时光/暗周期,并自由取用食物和水)。将MDA-MB-231或SUM159细胞(3×106个)注射到右侧乳腺脂肪垫中。在肿瘤达到150-200mm3后,将小鼠随机分成如下不同的组(n=10/组):1)介质(盐水,i.p.),2)L-NMMA(80mg/kg或200mg/kg,i.p.,每日),3)多西他赛(20mg/kg),4)联合(L-NMMA和多西他赛)。
对于预防肺转移的研究来说,如上所述移植MDA-MB-231L/G细胞。将小鼠随机分组并在细胞注射后48小时开始处理(n=5/组):1)介质(盐水,i.p.),2)L-NAME(80mg/kg,i.p.,每日,共35日)。在注射萤光素之前,将肺取出并在冷DMEM+10%FBS+1%抗生素/抗真菌剂中清洗。然后,将肺在含有50μM萤光素的冷DMEM培养基中温育10min。这种方案避免了在肺提取与暴露于萤光素之间的时间流逝。使用IVIS-200体内成像***(Perkin Elmer,Inc.)检测荧光癌细胞。
临床相关的给药方案由两个循环组成,每个循环包括多西他赛(20mg/kg,i.p.,在第0天),12小时后与L-NMMA(在第1天400mg/kg,并且在随后4天200mg/kg,通过经口管饲法)和第0天的氨氯地平(10mg/kg,i.p.,每天,共6天)组合。单独的多西他赛以及盐水(i.p.)+无菌水(经口管饲法)被用作对照。
自我更新和肿瘤初发能力,分别通过MSFE和有限稀释测定法,在从肿瘤组织分离的单细胞中确定。简单来说,将乳腺肿瘤组织捣碎,在含有100U/mL 3型胶原蛋白酶(Worthington)和0.8U/mL分散酶(Gibco)的DMEM:F12培养基中,在37℃消化45min。MSFE如上所述在分离的单细胞中测定。有限稀释测定法(LDA)通过将5×104或2×104个从肿瘤组织分离的细胞注射到SCID浅褐色小鼠的乳腺脂肪垫中来进行(n=12/组)。CD44+/CD24-/low细胞群体的流式细胞术分析使用已发表的方法来测定。
通过液相色谱-串联质谱(LC-MS/MS)进行代谢物情况分析。如前所述(2)制备来自于动物研究(每日给药L-NMMA)的MDA-MB-231和SUM159异种移植物组织以及血浆样品。将L-NMMA(200mg/kg)通过管饲法经口给药到雌性SCID浅褐色小鼠(n=5)。在L-NMMA给药之前(基线,0小时)和之后(0.5、2、12、24小时)抽取血液。用于代谢物情况分析的LC-MS/MS平台在以前描述过。血浆和肿瘤组织中甲基精氨酸(L-NMMA)和瓜氨酸的比率测量定量被确定为离子丰度水平。
血压测量。在15只雌性SCID浅褐色小鼠中进行3天的血压(BP)测量(基础BP),随后用如下所述的一个循环的临床相关给药方案进行处理(n=5/组):氨氯地平(10mg/kg,i.p.)共6天(始于第0天),L-NMMA(200mg/kg,管饲法)共5天(始于第1天),以及组合(L-NMMA+氨氯地平)。通过在周期处理的最后连续三天将使用计算机鼠尾血压测量仪(BP-2000Series II,Visitech)获得的20个血压测量值中的最后10个的平均值进行平均,确定每日平均血压。
统计分析。所有数据使用GraphPadTM Prism软件(GraphPad Sofware,Inc.)进行分析。数据被呈现为平均值±SEM。两个组之间的统计学显著性通过双尾Student’s t-检验进行分析。具有超过三个组的实验使用单向ANOVA(方差分析),然后使用Bonferroni事后检验来分析。肿瘤体积的统计分析通过双向ANOVA和Bonferroni事后检验来评估。在有限稀释测定法中使用Fisher精确检验来确定显著差异。存活比例使用Kaplan-Meier方法来评估,并使用Wilcoxon或对数秩检验进一步分析。将增殖、MSFE、迁移指数和Ki67染色归一化到介质组(100%)。小于0.05的p-值被认为是显著的。
结果
在浸润性TNBC中提高的iNOS表达与不良的患者存活率相关。在不同癌症类型中,iNOS已被描述是转移的介导物。在Erα阴性乳腺癌患者中,已将iNOS的高表达与不良的存活率相联系。本发明人假设在TNBC中提高的iNOS表达与不良的患者存活率和转移相关。
进行了乳腺癌中NOS2表达(iNOS mRNA表达)的Oncomine癌症微阵列数据库分析。癌症基因组图谱(TCGA)数据库的分析显示,与非TNBC(n=250)相比,在浸润性TNBC患者样品(n=46)中NOS2mRNA表达明显更高(倍数变化1.425,p=3.85×10-5,Student’s t-检验)(图1A)。患者存活率分析证实了在患有浸润性导管乳腺癌的患者(n=79)中提高的NOS2表达与更糟的5年存活率之间的关联性(倍数变化1.275,p=0.037,Student’s t-检验)。其中,46个样品是TNBC(n=37个具有高的NOS2表达;n=9个具有低的iNOS表达)(图1B)。本发明人和同事进一步检查了在两个其他TNBC患者数据库中NOS2表达是否与更糟的存活率相关。Van de Vijver(n=69个样品)和Curtis(n=260个样品)数据库的分析证实,在TNBC患者中NOS2的高表达与存活率相关(图1C和图1D)。
接下来,本发明人和同事在83个手术切除的TNBC原发乳腺癌样品中通过免疫组织化学检查了iNOS蛋白表达,并将表达与已知的患者结果相关联。iNOS主要在细胞质中,但是某些细胞表现出细胞质和核定位两者(图1E)。总体评分显示iNOS水平在14个样品(16.9%)中为弱至中等(分值3-4)(图1E、图3和图4),在50个样品(60.2%)中为中等至强(分值5-6)(图1E),并且在19个样本(22.9%)中为强(分值7)(图1E)。使用Kaplan-Meier分析,将这种分层用于分析iNOS表达与患者存活率的相关性。与mRNA挖掘分析(图1C和图1D)相一致,本发明人证实了与低的iNOS表达相比,提高的iNOS蛋白水平与更糟的患者存活率相关(p=0.05,卡方检验)(图1F)。这些结果证实,在浸润性TNBC中通过mRNA和蛋白质表达增加iNOS,与不良的患者存活率相关。
iNOS的抑制降低TNBC细胞的致瘤性。本发明人和同事在SUM159和MDA-MB-231细胞系中,评估了在用选择性iNOS抑制剂1400W和泛NOS抑制剂L-NMMA和L-NAME处理96小时后iNOS抑制对增殖的影响(图2A)。高浓度的1400W(1、2和4mM)在两种细胞系中能够显著减少增殖(图2A)。在用L-NAME处理后观察到类似的结果(图9A)。在最高浓度(4mM)下,L-NMMA在两种细胞系中显示出抗增殖活性(图2B)。
对治疗的抗性和转移可能由非均质的原发癌症内的癌症干细胞(CSC)亚群引起,所述亚群可以起到重新引发肿瘤生长和作为转移种子的作用。在这里,本发明人和同事通过使用乳腺球形成效率(MSFE)测定法,调查了iNOS抑制对癌症干细胞自我更新的影响。在两种细胞系中,iNOS抑制降低了原始乳腺球(MS)的MSFE(图2C)。对于L-NAME来说,发现了类似的效果(图9B)。对于所有被试验的抑制剂,本发明人在两种细胞系中鉴定到次生MSFE的降低(图2D;图9C)。由于所述发现显示出在浸润性TNBC中iNOS表达提高(图1A),因此本发明人使用伤口愈合测定法进一步调查了iNOS在细胞迁移中的作用。使用1400W的选择性iNOS抑制,在毫摩尔(图2E)和微摩尔范围(图9D)内在两种细胞系中引起迁移的显著的剂量依赖性降低。L-NMMA处理的细胞显示出迁移能力的降低(图2F)。微摩尔范围内的较低浓度并不一致并且效率较低(图9E)。对于L-NAME来说,发现了相似的结果(图10A)。在shRNA介导的iNOS(NOS2)敲减的MDA-MB-231(图3A、图3B和图3C)和SUM159细胞(图11A、图11B和图11C)中,这些结果得到进一步确认。合在一起,结果表明基础水平的iNOS对TNBC细胞系的CSC自我更新和迁移特性具有重要作用,对增殖具有不太显著的影响。
内源iNOS的抑制可以通过减弱HIF1α和内质网(ER)胁迫/TGFβ/AFT4/ATF3串扰,损害EMT和细胞迁移。在肿瘤侵入和转移期间,极化的上皮细胞向***的分化转化(EMT)被唤起。因此,本发明人在间质样TNBC MDA-MB-231和SUM159细胞中,通过Western印迹考察了iNOS抑制对EMT诱导性转录因子的影响。本发明人首先检查了在选择性或全面抑制后对NOS同工型(iNOS、eNOS和nNOS)的影响(图3D;图10B、图10C和图10F)。所述发现揭示,在毫摩尔(图3D)和微摩尔浓度(图10D)下,使用1400W的选择性iNOS阻断在两种细胞系中引起EMT转录因子Snail、Slug和Twist1的蛋白质水平降低。在毫摩尔浓度下,Zeb1的蛋白质水平降低(图3D)。尽管一致性较低,但对于泛NOS抑制剂观察到了相似的结果(图10E和图10F)。使用shRNA的iNOS敲减与Zeb1和Twist1的蛋白质水平降低相关(图3E)。Snail和Slug仅在SUM159中被阻断(图11D);本发明人在两周的克隆选择后,在MDA-MB-231中发现了相似的结果。在SUM159细胞中,通过瞬时iNOS敲减验证了Zeb1和Twist1的降低(图11E)。总的来说,这些数据表明选择性iNOS抑制高效地减少TNBC细胞系的迁移,并且这一致地与EMT转录因子的减少相关联。
不同的途径负责诱导EMT和肿瘤细胞迁移;其中,一氧化氮是HIF1α和内质网(ER)胁迫的共性。所述发现表明,在两种细胞系中,选择性iNOS抑制引起缺氧(HIF1α)(图3F;图10G)和ER胁迫标志物IRE1α/拼接的XBP1(图3F;图11F)以及ATF4(图3F)的剂量依赖性的减少(拼接的XBP1在SUM159细胞中没有检测到,数据未示出)。功能性蛋白质-蛋白质相互作用(STRING 9.1)分析揭示出iNOS与TGFβ1之间的联系(图11G)。研究证实,在不存在(图3G)和存在重组TGFβ1(10ng/mL,72小时)(图11H)的情况下,1400W能够通过未确定的机制抑制TGFβ信号传导(phospho-Smad2/3、Smad2/3和成熟的TGFβ)。另外的蛋白质-蛋白质相互作用分析显示出ATF4与ATF3之间的相互作用(图11G),两者都激活与TGFβ相互作用的转录因子。实验通过ATF4/ATF3和TGFβ验证了ER胁迫之间的串扰(图11I);同样地,重组TGFβ1(10ng/mLfor,24小时)诱导PERK/eIF2α/ATF4/ATF3轴(图3H)。结果显示,用iNOS抑制剂1400W(4mM)和重组TGFβ1共同处理24小时,能够不依赖于PERK/eIF2α途径抑制ATF4和ATF3蛋白质水平被TGFβ1的刺激。这一结果在siRNA介导的iNOS(NOS2)敲减的细胞中得到进一步确认(图3I)。总的来说,这些数据证实,iNOS抑制可以通过减弱ER胁迫(IRE1α/XBP1)和ATF4、ATF3与TGFβ之间的串扰来减少EMT和肿瘤细胞迁移。
在三阴性乳腺癌的小鼠模型中,iNOS抑制降低肿瘤生长、肿瘤初发能力并阻止肺转移。在所述体外数据的基础上,本发明人接下来调查了在肺转移的小鼠模型中,iNOS抑制是否能够防止肿瘤初发和乳腺肿瘤细胞的转移。向带有MDA-MB-231异种移植物的小鼠每天提供80mg/kg L-NAME的i.p.注射,共35天。L-NAME显著降低肿瘤生长(p=0.001)(图4A)以及原始MS的MSFE(图4B)。当与介质组相比时,次生MSFE也减少,但是不显著(图4B)。此外,使用有限稀释测定法(LDA),通过将从肿瘤组织分离的单细胞(5×105或1×105个细胞)注射到右侧乳腺脂肪垫中,评估了CSC的肿瘤初发能力。使用5×105个细胞,在1.5周时,介质组的所有动物(n=5)发展出肿瘤,而使用L-NAME的处理产生3/5个肿瘤。使用1×105个细胞,在2.5周时,与L-NAME处理组(0/5个肿瘤)相比,在介质组中观察到了相同的结果(p<0.05,Fisher精确检验)(图4D)。
随后,本发明人检查了在TNBC异种移植物模型中iNOS抑制是否能够抑制向肺的转移。基于萤光素酶/GFP的MDA-MB-231(MDA-MB-231L/G)异种移植物小鼠模型模拟了患者中向肺的转移过程。在这种肺转移模型中,细胞在植入后~35天从原发肿瘤向肺转移。将MDA-MB-231 L/G细胞注射到SCID小鼠的右侧乳腺脂肪垫中,并每天提供80mg/kg L-NAME,共35天。在萤光素存在下肺的离体成像显示,与L-NAME组相比,介质组中的荧光更高(图4C)。这些结果表明,每日使用L-NAME的iNOS抑制也可以在TNBC小鼠模型中防止向肺的转移。
为了将这些结果转换到将来的临床试验中,选择泛NOS抑制剂L-NMMA用于另外的深入研究。尽管L-NMMA以前已被调查用于心源性休克,并且已被给药到数千位具有该适应症的患者,但本发明提供了首次报道的将这种化合物重新用于抗癌适应症,并且在这些结果之前几乎没有数据建议这种化合物是可能有效作为抗癌治疗剂的临床前药剂。
为了回答这一问题,首先向带有SUM159异种移植物的小鼠单独地或与多西他赛(20mg/kg)相组合提供每天80mg/kg L-NMMA的注射。在10天后,在组之间没有观察到差异效应,并将每天剂量提高到200mg/kg。肿瘤生长被单独或与多西他赛相组合给药的L-NMMA高效阻断(图13A)。通过免疫组织化学(Ki67),本发明人将这些结果与肿瘤细胞增殖相关联。与L-NMMA和组合组相比,在介质和化疗组中观察到更高的增殖速率(图13B和图13C)。本发明人接下来通过MSFE测定法分析了对CSC自我更新的影响。多西他赛显示出从乳腺癌组织分离的单个肿瘤细胞的原始和次生MSFE的急剧提高。通过添加L-NMMA(组合组),这种增加被高效阻断(图13D)。流式细胞术分析显示在化疗后CD44+/CD24-/low群体略微增加(图14A)。LDA显示在使用5×104个细胞7周时,介质、L-NMMA、多西他赛和组合组分别表现出12/12、4/12、12/12、6/12个肿瘤。在第9周时观察到肿瘤初发能力的显著降低,因为使用2×104个细胞的不同组在介质、L-NMMA、多西他赛和组合中分别产生7/12、0/12、3/12、0/12个肿瘤(p<0.05,Fisher精确检验)(图14E)。
然后在不同TNBC小鼠模型中调查了单独或与多西他赛相组合的L-NMMA的作用。向带有MDA-MB-231异种移植物的小鼠提供多西他赛(20mg/kg,在第0和21天)和200mg/kg L-NMMA(每天),共31天。首先,与介质相比,在L-NMMA组中发现了肿瘤生长降低,但是在多西他赛和组合组之间没有变化(图5A)。这些结果进一步与L-NMMA和组合组中较低的增殖速率相关联,正如通过免疫组织化学观察到的(图5B和图5C)。另外,在多西他赛处理的异种移植物中发现了较高的凋亡水平;这些结果可能抵消了相对于组合组的高增殖速率(图5D)。与介质和单独的化疗组相比,L-NMMA和组合组两者的原始MS较少。L-NMMA处理能够减少次生MS,但是对于组合组来说没有观察到变化(图5E)。流式细胞术分析显示CD44+/CD24-/low群体没有变化(图14B)。LDA显示,使用5×104个细胞,在5周时介质处理和多西他赛处理的组分别表现出12/12和8/12个肿瘤,并且在L-NMMA处理(1/12)和组合处理(4/12)的异种移植物中显著减少。在6周后,与介质和多西他赛组(分别为6/12和8/12)相比,在L-NMMA和组合物两者中观察到减少(分别为3/12和5/12)(p<0.05,Fisher精确检验)(图5F)。所述研究证实,在处理完成后24小时,L-NMMA血浆水平被快速清除(图14C),然而它积累在肿瘤组织中(图14D),并抑制L-精氨酸通过iNOS向L-瓜氨酸和NO的转化(图14E)。这种抑制引起总NO生产的减少,正如在SUM159细胞中看到的(图14F)。总的来说,这些结果证实了使用L-NMMA的体内iNOS抑制降低肿瘤生长、细胞增殖和CSC的肿瘤初发能力,并且肺转移显著减少。
具有潜在临床应用的L-NMMA和多西他赛的高效给药方案。在临床上,L-NMMA通过抑制组成型eNOS引起急性血压(BP)升高。在这里,描述了在TNBC的两种不同小鼠模型(MDA-MB-231和SUM159异种移植物)中,iNOS抑制剂(在这种情况下是L-NMMA)与抗高血压剂(在本实施例中是氨氯地平)一起使用两个循环的具有弱化持续时间的治疗方案。每两周以20mg/kg给药标准的多西他赛。L-NMMA在化疗后24小时以200mg/kg提供5天,所述剂量与以前的临床报告相当。使用钙通道阻断剂氨氯地平(10mg/kg,每天给药共6天,i.p.)抵消血压增高。在小鼠中,与基线水平(120mmHg)相比,口服L-NMMA显著提高平均收缩压(147mmHg),并且这种升高被氨氯地平(10mg/kg)高效逆转(图6A)。这种BP的升高时暂时的,并在最后一次注射L-NMMA后24小时消失(图6B)。
L-NMMA与多西他赛的组合能够在MDA-MB-231原位模型中降低肿瘤生长(图6C)。与多西他赛处理的组相比,这种给药方案还提高了存活率(p=0.0001,Wilcoxon检验)(图6D)。在SUM159异种移植物中发现了类似结果(图6E)。总的来说,数据显示本文中提出的给药方案有效地降低肿瘤生长,并导致更高的存活率。通过对于流程的至少一部分来说将iNOS抑制剂与抗高血压剂的给药合并,可以最小化和/或克服iNOS抑制剂的短暂提高BP的麻烦的不利副作用。
iNOS抑制剂疗法与一种或多种常规化疗剂例如多西他赛的进一步组合提供了额外的协同治疗益处,并代表了在难治、转移和TNBC患者中克服治疗抗性的新的策略。
正如本文中讨论的,TNBC是极具侵略性且致命的癌症形式,缺少有效的靶向疗法。TNBC患者显示出转移和肿瘤复发的较高风险。在患有基底细胞样***受体阴性乳腺癌的患者中,iNOS水平预测了更糟的存活率,并且已提出它通过调节癌症干细胞(CSC)以及细胞的转移倾向性而提高肿瘤侵略性。本发明是证实了iNOS途径的抑制可以通过影响细胞增殖、CSC自我更新和/或细胞迁移来降低TNBC细胞的致瘤性的第一份报告。本申请中提呈的体内研究证实了几种示例性小分子iNOS抑制剂例如L-NMMA作为用于癌症患者、包括患有难治癌症例如TNBC的患者的新的靶向疗法的效能,并提供了将这些结果立即转换到人类临床试验中的需求。
这些实例证实了NOS2在浸润性TNBC中通常增加,并且与患有浸润性乳腺癌的患者的不良存活率相关。显示的其他数据证实了在83个人类TNBC患者样品中通过免疫组织化学检测到的高iNOS蛋白质水平也与恶化的患者结果相关,这与较早时在ERα阴性和浸润性乳腺癌中的报告相一致。Van de Vijver和Curtis数据库以及TNBC患者样品的Kaplan-Meier分析强烈地表明,高的iNOS表达与TNBC患者中不良的总体存活率相关。这些观察还确定了在某些癌症患者亚组中,增加的iNOS表达可能预测不良的预后。
已将iNOS表达与肿瘤级别和乳腺癌细胞的侵略性的提高相关联。本发明描述了iNOS对TNBC细胞的CSC自我更新、肿瘤初发和迁移能力的影响。iNOS抑制剂的抗肿瘤活性以前已在表皮样癌、口腔癌、成胶质细胞瘤和乳腺癌中报道,并且与体外和体内发现相一致。已描述在成胶质细胞瘤中iNOS表达的提高通过促进肿瘤初发而对常规疗法抗性有贡献。此外,在ERα阴性乳腺癌中,iNOS可能通过调节CD44和c-Myc来影响CSC自我更新。本发明人第一次证实了在TNBC的体外和体内模型两者中,iNOS抑制降低CSC自我更新和肿瘤初发。
取决于内源水平,一氧化氮可能促进或抑制转移事件。以前已研究过NOS抑制剂对转移的作用,但是隐含的机制仍不清楚。早期的研究证实了泛NOS抑制剂L-NAME可以在鼠科动物乳腺癌模型(EMT-6细胞)中降低肿瘤生长和肺转移。同样地,L-NAME抑制两种转移性乳腺细胞系(C3L5和C10)的侵入和迁移潜力。在使用转移的人类腺癌HRT-18细胞的另一项研究中,通过每天用500μM选择性iNOS抑制剂1400W处理显著降低了侵入性。更近些时候,在口腔腺样囊性癌的小鼠模型中显示了1400W显著抑制自发性肺转移。
本实施例证实了在TNBC的体内模型中,iNOS抑制减少细胞迁移和肺转移。已建议,NO和iNOS可能通过诱导IL-8和CXC趋化因子受体4而引起早期转移。CSC表现出间质特点,引起细胞迁移和转移增加。iNOS抑制减少CSC自我更新和肿瘤初发,从而表明针对这一途径的抑制剂可以逆转肿瘤细胞向更加类似间质的表型的转变。与对细胞迁移的影响相一致,在所有试验过的TNBC细胞系中,选择性iNOS抑制和NOS2敲减减少驱动EMT的转录因子。
为了更好地理解内源iNOS抑制在减少EMT转录因子中的效应的机制,分析了iNOS选择性抑制剂1400W的影响。EMT可以由不同的信号传导途径如TGFβ、Wnt/β-连环蛋白、Notch、Hedgehog和多种生长因子促进。EMT转录因子(Snail、Slug、Twist1或Zeb1)被多种多样的中间效应物如c-Myc、Ets、HIF1α或NFκB激活。另外,在甲状腺、肺泡上皮和人类肾近端小管细胞中,通过PERK、XBP1或Grp78的激活已将ER胁迫与EMT相关联。有趣的是,在这些不相干的信号传导网络中,iNOS是HIF1α与ER胁迫之间的共同特征。在结肠癌细胞中,来自于内源iNOS的NO生产的抑制能够降低HIF1α稳定作用和蛋白质水平。转录因子Twist1、Snail、Slug、Zeb1等直接或间接受到HIF1α影响。
另外,缺氧诱导ER胁迫和解折叠蛋白应答(UPR),并且最近通过在缺氧条件下PERK/ATF4/LAMP3臂的激活,已将它与迁移和乳腺癌细胞中的球体形成相关联。所述结果表明,iNOS抑制与通过ER胁迫ATF4/ATF3轴的TGFβ信号传导的削弱相关。已知在颅骨成骨细胞中TGFβ刺激ATF4蛋白水平以抑制分化。某些状况例如通过PERK/eIF2α轴的ER胁迫可以激活ATF4,进而诱导ATF3转录,而ATF3本身是一种激活性转录因子,其与Twist-1合作增强TGFβ、乳腺球形成和EMT。
经这些结果转换到临床实践中,代表了这一新发现中的下一个步骤。L-NMMA是一种泛NOS抑制剂,已在几项循环休克的临床试验中进行深入研究。在心源性休克试验中,L-NMMA被证明是安全的,并且除了暂时可逆性高血压之外几乎没有不利事件。在血压正常的患者中,在输注白介素-2之前将L-NMMA给药到转移性肾细胞癌患者。3至6mg/kg的剂量不引起临床明显的副作用,并且BP保持不变。在12mg/kg的剂量水平下,患者经历最多25mmHg的收缩BP增加而没有任何临床症状,并且在停止L-NMMA输注后快速恢复正常。确定具有临床适用性的安全有效的治疗方案,是这些临床前研究的主要挑战。本研究中的给药速率,在以前在脓毒性休克患者中的临床试验的基础上选择并进行了修改。这些结果证明,通过在化疗后与氨氯地平一起提供L-NMMA的5天的弱化治疗方案,可以限制肿瘤生长。以前在脓毒性休克患者中报道了最长14天的L-NMMA的随机安慰剂对照的双盲研究。随后的治疗方案由2.5mg/kg/hr的初始剂量,随后以不同速率进行调整(0.5、1、2.5、5、7.5、10、15和20mg/kg/hr)所构成。当前使用L-NMMA作为抗癌治疗剂的剂量方案远低于以前在文献中对脓毒性休克所报道的。
总而言之,本实施例提供了关于在TNBC患者中提高的内源iNOS表达与不良的存活率之间的关联性的新证据。已证实,使用iNOS抑制剂的靶向疗法不仅抑制肿瘤细胞增殖,而且抑制CSC自我更新和迁移,降低肿瘤生长、肿瘤初发和肺转移的数目。转移事件的抑制可能是由HIF1α、ER胁迫(IRE1α/拼接的XBP1)和TGFβ/ATF4/ATF3轴的抑制引起的EMT转录因子的减少造成的。从这些结果,定义了一种使用本文描述的化合物在体内降低肿瘤生长并提高存活率的靶向治疗方案,并确立了在TNBC患者中靶向这条途径的临床试验的重要性。
实施例2–钙通道拮抗剂的效果
材料和方法
体外细胞增殖测定。将间质样TNBC细胞系MDA-MB-231和SUM159生长在增补有10%胎牛血清和1%抗生素/抗真菌剂的DMEM中。在DMSO中制备各种不同的钙通道拮抗剂(氨氯地平、尼卡地平、硝苯地平、非洛地平、依拉地平、地尔硫卓、维拉帕米、拉西地平、尼索地平、尼群地平、尼伐地平、阿折地平、巴尼地平、贝尼地平、依福地平、乐卡地平、普拉地平、马尼地平)的储用溶液。使用WST-1方法测定对细胞增殖的影响。简单来说,将1,000个(SUM159)和2,000个(MDA-MB-231)细胞/孔铺板在96孔板中,并用不同浓度(0、1、5和10μM)的钙通道拮抗剂处理72小时。通过添加预混的WST-1试剂确定增殖速率。在37℃下温育3小时后,在450nm处读取光吸收(参比波长为690nm)。将结果针对介质(100%)进行归一化。当增殖减少≥30%时,拮抗剂被认为是有活性的。
动物研究。将雌性SCID浅褐色小鼠(4-5周龄)饲养在标准实验室条件下(22℃;12hr/12hr光/暗周期,并自由取用食物和水)。将MDA-MB-231或SUM159细胞(3×106个)注射到右侧乳腺脂肪垫中。在肿瘤达到150–200mm3后,将小鼠随机分成如下所述的不同组(n=5/组):1)介质(盐水,i.p.),2)氨氯地平(10mg/kg,i.p.),在第0和14天两个循环(每个循环每天给药共6天)。所有动物程序和实验流程得到批准并完全遵守学术和联邦动物使用和护理指南。
结果
体外细胞增殖。在两种不同的TNBC细胞系(MDA-MB-231和SUM159)中证实了几种钙通道拮抗剂的抗增殖效能。结果显示,在MDA-MB-231(图15A、图15B、图15C、图15D、图15E和图15F)和SUM159(图16A、图16B、图16C、图16D、图16E和图16F)两者中,在用氨氯地平、非洛地平、拉西地平、尼卡地平、尼伐地平和阿折地平处理后增殖表现出剂量依赖性的而降低。在这些图中,在条的上方示出了增殖降低的百分率。
动物研究。从TNBC的体内模型获得的数据显示,氨氯地平(10mg/kg)的给药能够限制MDA-MB-231和SUM159原位肿瘤的生长(分别为图17A和图17B)。从体外结果鉴定到的最有效的拮抗剂(氨氯地平、非洛地平、拉西地平、尼伐地平和阿折地平)也可以在适合的TNBC动物模型(包括例如MDA-MB-231和SUM159)中试验体内抗肿瘤活性。~20mg/kg i.p.的剂量被认为是在有效范围内。
参考文献:
下面的参考文献,在它们为本文中阐述的内容提供示例性的程序或其他细节补充的意义上,具体地整体通过参考并入本文:
ALEXANDER,JH等,Tilarginine乙酸酯在急性心肌梗死和心源性休克患者中的效应:TRIUMPH随机对照试验(Effect of tilarginine acetate in patients with acutemyocardial infarction and cardiogenic shock:the TRIUMPH randomized controlledtrial),JAMA,297(15):1657-1666(Apr.2007)。
AL-HAJJ,M等,致瘤乳腺癌细胞的前瞻性鉴定(Prospective identification oftumorigenic breast cancer cells),Proc.Nat’l.Acad.Sci.USA,100:3983-3988(2003)。
ALLRED,DC等,通过免疫组织化学分析检测的乳腺癌中的预后和预测因子(Prognostic and predictive factors in breast cancer by immunohistochemicalanalysis),Mod.Pathol.,11:155-168(1998)。
AMBS,S等,人类结肠腺瘤中频繁的一氧化氮合酶-2表达:与肿瘤血管发生和结肠癌演进的牵连(Frequent nitric oxide synthase-2expression in human colonadenomas:implication for tumor angiogenesis and colon cancer progression),Cancer Res.,58(2):334-341(Jan.1998)。
BABYKUTTY,S等,通过经cGMP-PKG-ERK信号传导途径的活化来上调MMP-2/9,一氧化氮在结肠癌细胞的迁移/侵入中的隐伏作用(Insidious role of nitric oxide inmigration/invasion of colon cancer cells by upregulating MMP-2/9 viaactivation of cGMP-PKG-ERK signaling pathways),Clin.Exp.Metastasis,29(5):471-492(Jun.2012)。
BROWN,RW等,在腋窝***阴性乳腺癌中Ki-67与S-期分数相比的预后价值(Prognostic value of Ki-67 compared to S-phase fraction in axillary node-negative breast cancer),Clin.Cancer Res.,2:585-592(1996)。
BULUT,AS等,在良性和恶性乳腺上皮中诱导型一氧化氮合酶表达的重要性:151例病例的免疫组织化学研究(Significance of inducible nitric oxide synthaseexpression in benign and malignant breast epithelium:an immunohistochemicalstudy of 151cases),Virchows Arch.,447(1):24-30(Jul.2005)。
BURKE,AJ等,在癌症演进中一氧化氮的阴和阳(The yin and yang of nitricoxide in cancer progression),Carcinogenesis,34(3):503-512(Mar.2013)。
CAMERON,D等,在三阴性乳腺癌中含有贝伐单抗的辅助疗法(BEATRICE):随机3期试验的原始结果(Adjuvant bevacizumab-containing therapy in triple-negativebreast cancer(BEATRICE):primary results of a randomised,phase 3trial),LancetOncol.,14(10):933-942(Sept.2013)。
CAMPBELL,PJ等,使用基因组广度的大规模并行成对末端测序鉴定癌症中的体细胞获得性重排(Identification of somatically acquired rearrangements in cancerusing genome-wide massively parallel paired-end sequencing),Nat.Genet.,40:722-729(2008)。
CAMPBELL,PJ等,转移性胰腺癌中基因组不稳定性的模式和动力学(The patternsand dynamics of genomic instability in metastatic pancreatic cancer),Nature,467:1109-1113(2010)。
CARLISLE,RE等,在人类近端小管上皮中TDAG51介导上皮向间质的转变(TDAG51mediates epithelial-to-mesenchymal transition in human proximal tubularepithelium),Am.J.Physiol.Renal Physiol.,303(3):F467-F481(Aug.2012)。
CHANG,JC等,在乳腺癌患者中***固定的石蜡包埋的核心活检样品的基因表达模式预测多西他赛的化学敏感性(Gene expression patterns in formalin-fixed,paraffin-embedded core biopsies predict docetaxel chemosensitivity in breastcancer patients),Breast Cancer Res.Treat.,108:233-240(2008)。
CHANG,JC等,基因表达情况分析用于在乳腺癌患者中预测对多西他赛的治疗响应(Gene expression profiling for the prediction of therapeutic response todocetaxel in patients with breast cancer),Lancet,362:362-369(2003)。
CHANG,JC等,在乳腺癌患者中通过基因表达情况分析确定对多西他赛的抗性和不完全应答的模式(Patterns of resistance and incomplete response to docetaxel bygene expression profiling in breast cancer patients),J.Clin.Oncol.,23(6):1169-1177(Feb.2005)。
CHEN,J等,在化疗后有限的细胞群体传播成胶质细胞瘤生长(A restricted cellpopulation propagates glioblastoma growth after chemotherapy),Nature,488(7412):522-526(Aug.2012)。
CHEN,Q等,在小鼠中非靶向血浆代谢物情况分析揭示出黄嘌呤氧化还原酶失活的广泛***性结果(Untargeted plasma metabolite profiling reveals the broadsystemic consequences of xanthine oxidoreductase inactivation in mice),PLoSOne,7(6):e37149doi:10.1371/journal.pone.0037149(Jun.2012)。
CHINJE,EC等,在MDA231肿瘤中17β-***处理调节一氧化氮合酶活性并与生长和辐射应答有牵连(17β-Oestradiol treatment modulates nitric oxide synthaseactivity in MDA231 tumour with implications on growth and radiationresponse),Br.J.Cancer,86(1):136-142(Jan.2002)。
CHOWDHURY,R等,在结肠癌细胞中内源生产的一氧化氮负责缺氧诱导的HIF-1α稳定化作用(Nitric oxide produced endogenously is responsible for hypoxia-induced HIF-1αstabilization in colon carcinoma cells),Chem.Res.Toxicol.,25(10):2194-2202(Oct.2012)。
COTTER,G等,LINCS,难治性心源性休克的治疗中的LNAME(一种NO合酶抑制剂)(LINCS,LNAME(a NO synthase inhibitor)in the treatment of refractorycardiogenic shock),Eur.Heart J.,24:1287-1295(2003)。
COTTER,G等,L-NMMA(一种一氧化氮合酶抑制剂)在心源性休克的治疗中有效(L-NMMA(a nitric oxide synthase inhibitor)is effective in the treatment ofcardiogenic shock),Circulation,101:1358-1361(2000)。
CREIGHTON,CJ等,在常规疗法后残留的乳腺癌表现出间质以及肿瘤初发特点(Residual breast cancers after conventional therapy display mesenchymal aswell as tumor-initiating features),Proc.Nat’l.Acad.Sci.USA,106(33):13820-13825(Aug.2009)。
CROWLEY,J和ANKERST,DP,《临床肿瘤学中的统计学手册》(Handbook ofstatistics in clinical oncology)(第二版),Boca Raton,Chapman&Hall/CRC Press(2006)。
CURTIS,C等,2000个乳腺肿瘤的基因组和转录组结构体系揭示出新的亚类(Thegenomic and transcriptomic architecture of 2,000breast tumours reveals novelsubgroups),Nature,486(7403):346-352(Apr.2012)。
DAUB,H等,激酶选择性富集能够跨细胞周期进行蛋白激酶组的定量磷酸化蛋白质组分析(Kinase-selective enrichment enables quantitative phosphoproteomics ofthe kinome across the cell cycle),Mol.Cell,31:438-448(2008)。
DAVE,B等,上皮-间质转变,癌症干细胞和治疗抗性(Epithelial-mesenchymaltransition,cancer stem cells and treatment resistance),Breast Cancer Res.,14(1):202(Jan.2012)。
DAVE,B等,在人类异种移植物模型中选择性小分子stat3抑制剂减少乳腺癌肿瘤初发细胞并提高无复发存活率(Selective small molecule stat3inhibitor reducesbreast cancer tumor-initiating cells and improves recurrence free survival ina human-xenograft model),PLoS One7(8):e30207(Aug.2012)。
DERY,MA等,在乳腺癌中内质网胁迫诱导PRNP朊病毒蛋白基因表达(Endoplasmicreticulum stress induces PRNP prion protein gene expression in breastcancer),Breast Cancer Res.,15(2):R22(Mar.2013)。
DIEHN,M等,在癌症干细胞中反应性氧物质水平与放射抗性的关联性(Association of reactive oxygen species levels and radioresistance in cancerstem cells),Nature,458(7239):780-783(Apr.2009)。
DRIESSENS,G等,通过克隆分析确定肿瘤生长的模式(Defining the mode oftumour growth by clonal analysis),Nature,488(7412):527-30(Aug.2012)。
EDWARDS,P等,肿瘤细胞一氧化氮在体外抑制细胞生长,但在体内刺激肿瘤发生和实验性肺转移(Tumor cell nitric oxide inhibits cell growth in vitro,butstimulates tumorigenesis and experimental lung metastasis in vivo),J.Surg.Res.,63(1):49-52(Jun.1996)。
EYLER,CE等,一氧化氮合酶-2促进神经胶质瘤干细胞增殖和肿瘤生长(Gliomastem cell proliferation and tumor growth are promoted by nitric oxidesynthase-2),Cell,146(1):53-66(Jul.2011)。
FAN,M等,磷酸化的VEGFR2和高血压:在抗血管发生疗法中指示晚期乳腺癌的VEGF依赖性的潜在生物标志物(Phosphorylated VEGFR2 and hypertension:potentialbiomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy),Breast Cancer Res.Treat.,143(1):141-151(Jan.2014)。
GAMPENRIEDER,SP等,高血压作为转移性乳腺癌中贝伐单抗的预测性标志物:来自于回顾性配对分析的结果(Hypertension as a predictive marker for bevacizumab inmetastatic breast cancer:results from a retrospective matched-pair analysis),Anticancer Res.,34(1):227-233(Jan.2014)。
GERLINGER,M等,通过多区域测序揭示的肿瘤内非均质性和分支进化(Intratumorheterogeneity and branched evolution revealed by multiregion sequencing),N.Engl.J.Med.,366:883-892(Mar.2012)。
GINESTIER C等,ALDH1是正常和恶性人类乳腺干细胞的标志物和不良临床结果的预测物(ALDH1is a marker of normal and malignant human mammary stem cells anda predictor of poor clinical outcome),Cell Stem Cell,1(5):555-567(Nov.2007)。
GLYNN,SA等,在***受体阴性乳腺癌患者中增加的NOS2预测不良的存活率(Increased NOS2 predicts poor survival in estrogen receptor-negative breastcancer patients),J.Clin.Invest.,120(11):3843-3854(Nov.2010)。
GRALOW,JR,乳腺癌2004:临床前沿的进展和承诺(Breast cancer2004.Progressand promise on the clinical front),Phys.Med.,21(Suppl1):2(2006)。
GRISHAM,MB等,一氧化氮I:一氧化氮及其代谢物的生理化学:在炎症中的牵连(Nitric oxide I.Physiological chemistry of nitric oxide and its metabolites:implications in inflammation),Am.J.Physiol.,276(Pt.1):G315-G321(Feb.1999)。
HOPE,KJ等,急性髓性白血病源自于自我更新能力不同的白血病干细胞类别的层次结构(Acute myeloid leukemia originates from a hierarchy of leukemic stemcell classes that differ in self-renewal capacity),Nat.Immunol.,5(7):738-743(Jul.2004)。
IGNARRO,LJ,一氧化氮的生理学和病理生理学(Physiology andpathophysiology of nitric oxide),Kidney Int.Suppl.,55:S2-S5(Jun.1996)。
JADESKI,LC等,一氧化氮通过刺激肿瘤细胞迁移、侵入性和血管生成来促进鼠类乳腺肿瘤生长和转移(Nitric oxide promotes murine mammary tumour growth andmetastasis by stimulating tumour cell migration,invasiveness andangiogenesis),Int.J.Cancer,86(1):30-39(Apr.2000)。
JIANG,Y等,深度测序揭示出在B细胞淋巴瘤中与复发相关的克隆进化模式和突变事件(Deep-sequencing reveals clonal evolution patterns and mutation eventsassociated with relapse in B-cell lymphomas),Genome Biol.,15(8):432(Aug.2014)。
KASAP,C等,DrugTargetSeqR.,一种分析药物靶的基于基因组学和CRISPR-Cas9的方法(DrugTargetSeqR.,a genomics-and CRISPR-Cas9-based method to analyze drugtargets),Nat.Chem.Biol.,10(8):626-628(Aug.2014)。
KILBOURN,RG等,在循环休克中一氧化氮合酶抑制剂的有益和有害效果:从实验和临床研究学到的知识(Beneficial versus detrimental effects of nitric oxidesynthase inhibitors in circulatory shock:lessons learned from experimentaland clinical studies),Shock,7(4):235-246(Apr.1997)。
KILBOURN,RG等,减轻白介素-2的副作用的策略:抗低血压剂NG-单甲基-L-精氨酸的评估(Strategies to reduce side effects of interleukin-2:evaluation of theantihypotensive agent NG-monomethyl-L-arginine),Cancer J.Sci.Am.,6(Suppl.1):S21-S30(Feb.2000)。
KIM,RK等,分部辐射诱导的一氧化氮促进神经胶质瘤干细胞样细胞的扩增(Fractionated radiation-induced nitric oxide promotes expansion of gliomastem-like cells),Cancer Sci.,104(9):1172-1177(Sept.2013).。
KORKAYA,H等,乳腺癌干细胞、细胞因子网络和肿瘤微环境(Breast cancer stemcells,cytokine networks,and the tumor microenvironment),J.Clin.Invest.,121(10):3804-3809(Oct.2011)。
KUEFER,MU等,脊髓发育不良/髓性白血病因子2(MLF2)的cDNA克隆、组织分布和染色体定位(cDNA cloning,tissue distribution,and chromosomal localization ofmyelodysplasia/myeloid leukemia factor2(MLF2)),Genomics,35(2):392-396(Jul.1996)。
LANDIS,MD等,亲代来源的乳腺肿瘤异种移植物促进个性化的癌症疗法(Patient-derived breast tumor xenografts facilitating personalized cancer therapy),Breast Cancer Res.,15(1):201(Jan.2013)。
LAPIDOT,T等,在移植到SCID小鼠中后引发人类急性髓性白血病的细胞(A cellinitiating human acute myeloid leukaemia after transplantation into SCIDmice),Nature,367(6464):645-648(Feb.1994)。
LEE,HE等,初次***性治疗后癌症干细胞群体的增加时乳腺癌中的不良预后因素(An increase in cancer stem cell population after primary systemic therapy isa poor prognostic factor in breast cancer),Br.J.Cancer,104:1730-1738(May2011)。
LI,X等,致瘤性乳腺癌细胞对化疗的固有抗性(Intrinsic resistance oftumorigenic breast cancer cells to chemotherapy),J.Nat’l.Cancer Inst.,100(9):672-679(Apr.2008)。
LIAN,N等,转化生长因子β通过波形蛋白活化转录因子4(ATF4)轴抑制成骨细胞分化(Transforming growth factorβsuppresses osteoblast differentiation via thevimentin activating transcription factor 4(ATF4)axis),J.Biol.Chem.,287(43):35975-35984(Oct.2012)。
LOIBL,S等,诱导型一氧化氮合酶的早期表达在人类乳腺癌中的作用(The roleof early expression of inducible nitric oxide synthase in human breastcancer),Eur.J.Cancer,41(12):265-271(Jan.2005)。
LOPEZ,A等,一氧化氮合酶抑制剂546C88的多中心随机安慰剂对照的双盲研究:在脓毒性休克患者中对存活率的影响(Multiple-center,randomized,placebo-controlled,double-blind study of the nitric oxide synthase inhibitor 546C88:effect onsurvival in patients with septic shock),Crit.Care Med.,32(1):21-30(Jan.2004)。
MASSI,D等,良性和恶性皮肤黑素细胞病灶中诱导型一氧化氮合酶的表达(Inducible nitric oxide synthase expression in benign and malignant cutaneousmelanocytic lesions),J.Pathol.,194(2):194-200(Jun.2001)。
MATRONE,C等,在永久性中脑动脉堵塞后HIF-1α显示出与iNOS基因的启动子的结合活性(HIF-1αreveals a binding activity to the promoter of iNOS gene afterpermanent middle cerebral artery occlusion),J.Neurochem.,90(2):368-378(Jul.2004)。
MOHSIN,SK等,曲妥珠单抗新辅助疗法在原发乳腺癌中诱导凋亡(Neoadjuvanttrastuzumab induces apoptosis in primary breast cancers),J.Clin.Oncol.,23(11):2460-2468(Apr.2005)。
MOLINA,H等,使用电子转移解吸串联质谱进行磷酸化肽的整体蛋白质组情况分析(Global proteomic profiling of phosphopeptides using electron transferdissociation tandem mass spectrometry),Proc.Nat’l.Acad.Sci.USA,104(7):2199-2204(Feb.2007)。
MUROHARA,T等,一氧化氮合酶对组织缺血做出响应调节血管生成(Nitric oxidesynthase modulates angiogenesis in response to tissue ischemia),J.Clin.Invest.,101(11):2567-2578(Nov.1998)。
NADANO,D等,编码与核糖体蛋白L39同源的蛋白质的人类基因在睾丸中正常表达并在多种癌细胞中去阻遏(A human gene encoding a protein homologous toribosomal protein L39 is normally expressed in the testis and derepressed inmultiple cancer cells),Biochim.Biophys.Acta,1577(3):430-436(Sept.2002)。
NAGELKERKE,A等,缺氧通过未折叠蛋白应答的PERK/ATF4/LAMP3臂刺激乳腺癌细胞的迁移(Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response),Breast Cancer Res.,15(1):R2(Jan.2013)。
NOUSIAINEN,M等,人类有丝***纺锤体的磷酸化蛋白质组分析(Phosphoproteomeanalysis of the human mitotic spindle),Proc.Nat’l.Acad.Sci.USA,103(14):5391-5396(Apr.2006)。
OHTSU,N等,一氧化氮合酶或环加氧酶-2的抑制剂对过表达COX-2的人类KB癌细胞的抗肿瘤效应(Antitumor effects of inhibitors of nitric oxide synthase orcyclooxygenase-2on human KB carcinoma cells overexpressing COX-2),Oncol.Rep.,24(1):31-36(Jul.2010)。
OKAYAMA,H等,NOS2增强KRAS诱导的肺癌症发生、炎症和microRNA-21表达(NOS2enhances KRAS-induced lung carcinogenesis,inflammation,and microRNA-21expression),Int.J.Cancer,132(1):9-18(Jan.2013)。
PAN,YX等,通过在氨基酸限制后控制响应性基因的转录调控的协调的氨基酸探查性响应程序激活AFE3基因(Activation of the ATF3gene through a co-ordinatedamino acid-sensing response programme that controls transcriptionalregulation of responsive genes following amino acid limitation),Biochem.J.,401(1):299-307(Jan.2007)。
PANG,Y等,髓系细胞中的TGF-β信号传导为肿瘤转移所需(TGF-βsignaling inmyeloid cells is required for tumor metastasis),Cancer Discov.,3(8):936-951(Aug.2013)。
RADISAVLJEVIC,Z,由一氧化碳失活的肿瘤抑制物Rb在人类乳腺癌细胞中促进有丝***(Inactivated tumor suppressor Rb by nitric oxide promotes mitosis inhuman breast cancer cells),J.Cell Biochem.,92(1):1-5(May 2004)。
RHODES,DR等,Oncomine 3.0:18,000个癌基因表达情况集合中的基因、途径和网络(Oncomine 3.0:genes,pathways,and networks in a collection of 18,000 cancergene expression profiles),Neoplasia,9(2):166-180(Feb.2007)。
SARFATI,D等,使用管理性数据鉴定癌症群体中重要的共病现象:流行性和对存活率的影响(Identifying important comorbidity among cancer populations usingadministrative data:Prevalence and impact on survival),AsiaPac.J.Clin.Oncol.,doi:10.1111/ajco.12130(Dec.2013)。
SCHEPERS,AG等,谱系追踪揭示出小鼠肠道腺癌中的Lgr5+干细胞活性(Lineagetracing reveals Lgr5+stem cell activity in mouse intestinal adenomas),Science,337(6095):730-735(Aug.2012)。
SCHOTT,AF等,γ-分泌酶抑制剂和多西他赛在人类乳腺肿瘤上的临床前和临床研究(Preclinical and clinical studies of gamma secretase inhibitors withdocetaxel on human breast tumors),Clin.Cancer Res.,19(6):1512-1524(Mar.2013)。
SEN,S等,线粒体相关的一氧化氮合酶活性抑制细胞色素c氧化酶:与乳腺癌的牵连(Mitochondrial-associated nitric oxide synthase activity inhibitscytochrome c oxidase:implications for breast cancer),Free Radic.Biol.Med.,57:210-220(Apr.2013)。
SHAH,NP等,在慢性期和急变期慢性髓性白血病中多个BCR-ABL激酶结构域突变赋予对酪氨酸激酶抑制剂伊马替尼(STI571)的多克隆抗性(Multiple BCR-ABL kinasedomain mutations confer polyclonal resistance to the tyrosine kinaseinhibitor imatinib(STI571)in chronic phase and blast crisis chronic myeloidleukemia),Cancer Cell,2(2):117-125(Aug.2002)。
SIEGERT,A等,人类结肠直肠腺癌细胞系的一氧化氮促进肿瘤细胞侵入(Nitricoxide of human colorectal adenocarcinoma cell lines promotes tumour cellinvasion),Br.J.Cancer,86(8):1310-1315(Apr.2002)。
SINGH,SK等,在人类脑肿瘤中癌症干细胞的鉴定(Identification of a cancerstem cell in human brain tumors),Cancer Res.,63(18):5821-5828(Sept.2003)。
SJOBLOM,T等,人类乳腺癌和结肠直肠癌的共有编码序列(The consensus codingsequences of human breast and colorectal cancers),Science,314(5797):268-274(Oct.2006)。
SMALLEY,M和ASHWORTH,A,干细胞和乳腺癌,进行中的领域(Stem cells andbreast cancer.A field in transit),Nat.Rev.Cancer,3:832-844(Nov.2003)。
STINGL,J和CALDAS,C,乳腺癌的分子非均质性和癌症干细胞假说(Molecularheterogeneity of breast carcinomas and the cancer stem cell hypothesis),Nat.Rev.Cancer,7(10):791-799(Oct.2007)。
STORER,BE,I期临床试验中MTD的小样品置信集(Small-sample confidence setsfor the MTD in a phase I clinical trial),Biometrics,49(4):1117-1125(Dec.1993)。
SUDA,O等,在内皮一氧化氮合酶缺陷小鼠中使用N(ω)-硝基-L-精氨酸甲酯的长期治疗引起动脉粥样硬化性冠状动脉病变(Long-term treatment with N(omega)-nitro-L-arginine methyl ester causes arteriosclerotic coronary lesions inendothelial nitric oxide synthase-deficient mice),Circulation,106(13):1729-1735(Sept.2002)。
SWITZER,CH等,在***受体阴性乳腺癌中Ets-1是致癌一氧化氮信号传导的转录介导物(Ets-1 is a transcriptional mediator of oncogenic nitric oxidesignaling in estrogen receptor-negative breast cancer),Breast Cancer Res.,14(5):R125(Sept.2012)。
TAKAOKA,K等,在口底腺样囊性癌的异种移植小鼠模型中一氧化氮合酶抑制剂和CXC趋化因子受体-4拮抗剂对肿瘤生长和转移的影响(Effect of a nitric oxidesynthase inhibitor and a CXC chemokine receptor-4 antagonist on tumor growthand metastasis in a xenotransplanted mouse model of adenoid cystic carcinomaof the oral floor),Int.J.Oncol.,43(3):737-745(Sept.2013)。
TANEI,T等,通过醛脱氢酶1表达鉴定到的乳腺癌干细胞与对乳腺癌的基于紫杉醇和表柔比星的顺序化疗的抗性的关联性(Association of breast cancer stem cellsidentified by aldehyde dehydrogenase 1expression with resistance tosequential Paclitaxel and epirubicin-based chemotherapy for breast cancers),Clin.Cancer Res.,15(12):4234-4241(Jun.2009)。
TANG,CH等,由GSNOR缺陷驱动的肝癌发生被iNOS抑制所阻止(Hepatocarcinogenesis driven by GSNOR deficiency is prevented by iNOSinhibition),Cancer Res.,73(9):2897-2904(May 2013)。
TANJORE,H等,肺泡上皮细胞对内质网胁迫做出响应经历上皮向间质的转变(Alveolar epithelial cells undergo epithelial-to-mesenchymal transition inresponse to endoplasmic reticulum stress),J.Biol.Chem.,286(35):30972-30980(Sept.2011)。
THAM,YL等,在具有大的局部晚期乳腺癌的患者中对多西他赛新辅助疗法的临床响应预测了改善的结果(Clinical response to neoadjuvant docetaxel predictsimproved outcome in patients with large locally advanced breast cancers),Breast Cancer Res.Treat.,94(3):279-284(Dec.2005)。
THIERY,JP等,发育和疾病中的上皮-间质转变(Epithelial-mesenchymaltransitions in development and disease),Cell,139(5):871-890(Nov.2009)。
THOMSEN,LL等,人类乳腺癌中的一氧化氮合酶活性(Nitric oxide synthaseactivity in human breast cancer),Br.J.Cancer,72(1):41-44(Jul.1995)。
TOWNSEND,DM等,硝化胁迫诱导的蛋白质二硫键异构酶的s-谷胱甘肽化导致未折叠蛋白质应答的激活(Nitrosative stress-induced s-glutathionylation of proteindisulfide isomerase leads to activation of the unfolded protein response),Cancer Res.,69(19):7626-7634(Oct.2009)。
TRIUMPH调查人员等,在患有急性心肌梗死和心源性休克的患者中tilarginine乙酸酯的效应:TRIUMPH随机对照试验(Effect of tilarginine acetate in patients withacute myocardial infarction and cardiogenic shock.the TRIUMPH randomizedcontrolled trial),JAMA,297(15):1657-1666(Apr.2007)。
UECHI,T等,人类核糖体蛋白基因的完整图谱:80个基因向细胞遗传学图谱的指派和与人类障碍的牵连(A complete map of the human ribosomal proteingenes.assignment of 80 genes to the cytogenetic map and implications forhuman disorders),Genomics,72(3):223-230(Mar.2001)。
ULIANICH,L等,在PC Cl3甲状腺细胞中ER胁迫与去分化和上皮向间质转变样表型相关(ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3thyroid cells),J.Cell Sci.,121(Pt.4):477-486(Feb.2008)。
VAKKALA,M等,原位和浸润性乳腺癌中诱导型一氧化氮合酶的表达、凋亡和血管发生(Inducible nitric oxide synthase expression,apoptosis,and angiogenesis inin situ and invasive breast carcinomas),Clin.Cancer Res.,6(6):2408-2416(Jun.2000)。
VAN DE VIJVER,MJ等,作为乳腺癌中存活率的预测物的基因表达特征(A gene-expression signature as a predictor of survival in breast cancer),N.Engl.J.Med.,347(25):1999-2009(Dec.2002)。
VERMEULEN,PB等,人类实体肿瘤中血管生成的定量,关于评估方法和判据的国际共识(Quantification of angiogenesis in solid human tumours.,“an internationalconsensus on the methodology and criteria of evaluation),Eur.J.Cancer,32A(14):2474-2484(Dec.1996)。
VOUTSADAKIS,IA,调控癌症的上皮-间质转变的遍在蛋白-蛋白酶体***和信号传导途径(The ubiquitin-proteasome system and signal transduction pathwaysregulating Epithelial Mesenchymal transition of cancer),J.Biomed.Sci.,19:67(Jul.2012)。
WACKER,SA等,使用转录组测序鉴定药物作用和抗性的机制(Usingtranscriptome sequencing to identify mechanisms of drug action andresistance),Nat.Chem.Biol.,8(3):235-237(Feb.2012)。
WINK,DA等,各种不同的一氧化氮供体试剂对过氧化氢介导的毒性的影响:一氧化氮形成与保护之间的之间关联性(The effect of various nitric oxide-donor agentson hydrogen peroxide-mediated toxicity:a direct correlation between nitricoxide formation and protection),Arch.Biochem.Biophys.,331(2):241-248(Jul.1996)。
YANG,MH和WU,KJ,TWIST被缺氧诱导性因子-1(HIF-1)的激活:与转移和发育的牵连(TWIST activation by hypoxia inducible factor-1(HIF-1):implications inmetastasis and development),Cell Cycle,7(14):2090-2096(Jul.2008)。
YASUOKA,H等,乳腺癌中的细胞质CXCR4表达:被一氧化氮的诱导和与***转移和不良预后的相关性(Cytoplasmic CXCR4expression in breast cancer:induction bynitric oxide and correlation with lymph node metastasis and poor prognosis),BMC Cancer,8:340(Nov.2008)。
YIN,X等,适应性响应基因ATF3在乳腺癌细胞中增强TGFβ信号传导和引发癌症的细胞特点(ATF3,an adaptive-response gene,enhances TGF{beta}signaling andcancer-initiating cell features in breast cancer cells),J.Cell Sci.,123(Pt.20):3558-3565(Oct.2010)。
ZHANG,X等,表型稳定、生物学和种族多样化的患者来源的人类乳腺癌异种移植物模型的可更新的组织资源(A renewable tissue resource of phenotypically stable,biologically and ethnically diverse,patient-derived human breast cancerxenograft models),Cancer Res.,73(15):4885-4897(Aug.2013)。
ZHONG,Q等,内质网胁迫在肺泡上皮细胞的上皮-间质转变中的作用:错误折叠的表面活性蛋白的影响(Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells:effects of misfoldedsurfactant protein),Am.J.Respir.Cell Mol.Biol.,45(3):498-509(Sept.2011)。
ZHOU,L等,癌症干细胞在乳腺癌中的预后作用:已发表的文献的元分析(Theprognostic role of cancer stem cells in breast cancer:a meta-analysis ofpublished literatures),Breast Cancer Res.Treat.,122(3):795-801(Aug.2010)。
应该理解,本文中描述的实例和实施方案仅仅是出于说明的目的,本领域技术人员将根据它提出各种不同的修改或改变,这些修改或改变将被包含在本申请的精神和范围以及权利要求书的范围之内。本文中引用的所有参考文献(包括出版物、专利申请和专利)通过参考并入本文,其程度等同于将每个参考文献单独并具体地指明整体通过参考并入本文并陈述。除非在本文中另有指明,否则本文中对数值范围的叙述仅仅意图充当单个地指称落于所述范围内的每个单独的值的速记方法,并且每个单独的值被并入到本说明书中,如同它在本文中被单个地叙述。
本文中使用术语例如“包含”、“具有”、“包括”或“含有”来指称一个或多个要素的本发明的任何方面或实施方案的描述,意图为“由所述一个或多个特定要素构成”、“基本上由所述要素构成”或“显著包含所述要素”的本发明的类似的方面或实施方案提供支持,除非另有陈述或被上下文明确否定(例如,在本文中被描述为包含特定要素的组合物,应该被理解为也描述了由该要素构成的组合物,除非另有陈述或被上下文明确否定)。
本文中公开和提出权利要求的所有组合物和方法,可以根据本公开不经过多实验做出并执行。尽管在本文中已根据示例性实施方案描述了本发明的组合物和方法,但对于本领域技术人员来说,显然可以对所述组合物、方法和/或方法的步骤或步骤顺序做出改变,而不违背本发明的精神、范围和概念。更具体来说,显然可以用化学和/或生理学相关的某些化合物代替本文中描述的一种或多种化合物,同时仍能实现相同或相似的结果。正如对于相关领域的普通技术人员来说显而易见的,所有这些替换和/或修改都被视为在由权利要求书所定义的本发明的精神、范围和概念之内。

Claims (26)

1.一种药物组合物,其包含:
1)化疗有效量的第一iNOS抑制剂;以及
2)治疗有效量的:
a)第一抗高血压剂;
b)第一化疗剂;或
c)a)与b)的组合。
2.根据权利要求1的药物组合物,其中所述第一iNOS抑制剂包含NG-单甲基-L-精氨酸[L-NMMA]、(N-[[3-(氨基甲基)苯基]甲基]-乙脒)[1400W]或(N5-[亚氨基(硝基氨基)甲基]-L-鸟氨酸甲酯)[L-NAME]。
3.根据权利要求1或权利要求2的药物组合物,其中所述第一抗高血压剂包含第一钙通道拮抗剂。
4.根据前述权利要求任一项的药物组合物,其中所述第一抗高血压剂包含选自氨氯地平、阿雷地平、阿折地平、巴尼地平、贝尼地平、西尼地平、氯维地平、地尔硫卓、依福地平、芬地林、非洛地平、戈洛帕米、依拉地平、拉西地平、乐卡地平、马尼地平、尼卡地平、硝苯地平、尼莫地平、尼索地平、尼群地平、尼伐地平、普拉地平和维拉帕米的第一钙通道拮抗剂。
5.根据前述权利要求任一项的药物组合物,其还包含3)不同的第二iNOS抑制剂。
6.根据前述权利要求任一项的药物组合物,其还包含d)一种或多种免疫调节剂、神经活性剂、消炎剂、抗血脂剂、激素、受体激动剂、受体拮抗剂、抗感染剂、蛋白质、肽、抗体、抗原结合片段、酶、RNA、DNA、siRNA、mRNA、核酶、激素、辅因子、甾体化合物、反义分子、不同的第二抗高血压剂、不同的第二化疗剂或其任何组合。
7.根据前述权利要求任一项的药物组合物,其中所述第一化疗剂包含一种或多种抗肿瘤化合物、一种或多种细胞毒性化合物、一种或多种细胞抑制剂,或其任何组合。
8.根据前述权利要求任一项的药物组合物,其中所述第一化疗剂选自环磷酰胺、多柔比星、5-氟尿嘧啶、多西他赛、紫杉醇、曲妥珠单抗、甲氨蝶呤、表柔比星、顺铂、卡铂、长春瑞滨、卡培他滨、吉西他滨、米托蒽醌、伊沙匹隆、艾日布林、拉帕替尼、卡莫司汀、氮芥、硫芥、四硝酸铂、长春花碱、依托泊苷、喜树碱及其任何组合。
9.根据前述权利要求任一项的药物组合物,其中i)所述第一iNOS抑制剂包含L-NMMA;并且ii)所述第一抗高血压剂包含氨氯地平或所述第一化疗剂包含多西他赛。
10.根据前述权利要求任一项的药物组合物,其中i)所述第一iNOS抑制剂包含L-NMMA;ii)所述第一抗高血压剂包含氨氯地平,并且iii)所述第一化疗剂包含多西他赛。
11.根据前述权利要求任一项的药物组合物,其还包含脂质体、表面活性剂、泡囊体、醇质体、转运体、磷脂、鞘磷囊体、纳米粒子、微米粒子或其任何组合。
12.根据前述权利要求任一项的药物组合物,其还包含可药用载体、缓冲剂、稀释剂、介质、赋形剂或其任何组合。
13.根据前述权利要求任一项的药物组合物,其被配制用于哺乳动物给药,优选地用于人类给药。
14.根据前述权利要求任一项的药物组合物,其被改造并配置成治疗试剂盒的一部分,所述治疗试剂盒包含所述组合物和至少第一套用于将所述组合物给药到需要的人类的使用说明。
15.根据前述权利要求任一项的药物组合物,其用于治疗、预防或改善哺乳动物癌症的一种或多种症状。
16.根据前述权利要求任一项的药物组合物,其用于治疗、预防或改善人类乳腺癌、特别是人类的对疗法有抗性、转移或三阴性乳腺癌的一种或多种症状。
17.根据权利要求1至16任一项的药物组合物,其用于治疗。
18.根据权利要求1至16任一项的药物组合物,其用于在哺乳动物对象中治疗癌症。
19.根据权利要求1至13任一项的药物组合物在制备用于在哺乳动物中治疗或改善癌症的一种或多种症状的药物中的用途。
20.根据权利要求19的用途,用于制备用于治疗人类乳腺癌,特别是难治、对治疗有抗性、复发、转移或三阴性乳腺癌的药物。
21.一种在需要的动物中治疗或改善癌症的一种或多种症状的方法,所述方法包括向所述动物给药有效量的根据权利要求1至16任一项的药物组合物历时足以在所述动物中治疗或改善所述癌症的一种或多种症状的时间。
22.根据权利要求21的方法,其中所述癌症被诊断为或被鉴定为难治、转移、复发或对治疗有抗性的癌症。
23.根据权利要求21或权利要求22的方法,其中所述癌症被诊断为或被鉴定为对治疗有抗性或转移的癌症,特别是对治疗有抗性的三阴性人类乳腺癌。
24.根据权利要求21至23任一项的方法,其中所述方法还包括向所述动物施加治疗有效量的辐射。
25.根据权利要求19至24任一项的方法,其中所述药物组合物在单次给药中或在一天或更多天的时间段内、在一周或更多周的时间段内或在一月或更多月或更长的时间段内的一系列多次给药中,被***性给药到所述动物。
26.根据权利要求19至25任一项的方法,其中所述药物组合物还包含根据权利要求1至16任一项所述的不同的第二化疗剂或不同的第二iNOS抑制剂。
CN201580018474.1A 2014-04-08 2015-04-08 Inos抑制性组合物及其作为乳腺癌治疗剂的用途 Active CN106572988B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461976956P 2014-04-08 2014-04-08
US61/976,956 2014-04-08
PCT/US2015/025009 WO2015157471A1 (en) 2014-04-08 2015-04-08 Inos-inhibitory compositions and their use as breast cancer therapeutics

Publications (2)

Publication Number Publication Date
CN106572988A true CN106572988A (zh) 2017-04-19
CN106572988B CN106572988B (zh) 2022-04-08

Family

ID=53008865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580018474.1A Active CN106572988B (zh) 2014-04-08 2015-04-08 Inos抑制性组合物及其作为乳腺癌治疗剂的用途

Country Status (9)

Country Link
US (4) US20170020835A1 (zh)
EP (2) EP3967303A1 (zh)
JP (4) JP2017515800A (zh)
KR (1) KR20160143775A (zh)
CN (1) CN106572988B (zh)
AU (1) AU2015243537B2 (zh)
CA (1) CA2979530C (zh)
SG (1) SG11201607795UA (zh)
WO (1) WO2015157471A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897357A (zh) * 2020-07-06 2022-01-07 北京大学 Twist1基因编辑***及其在制备治疗三阴性乳腺癌的产品中的应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2445932B1 (en) 2009-06-26 2018-02-28 Soricimed Biopharma Inc. Soricidin derived peptides and methods for the detection of trpv-6 cancers and drug delivery
JP2017515800A (ja) * 2014-04-08 2017-06-15 ザ・メソジスト・ホスピタル iNOS阻害組成物および乳がん治療薬としてのその使用
WO2016062272A1 (zh) * 2014-10-24 2016-04-28 朗齐生物医学股份有限公司 免疫疾病用药物在制备抑制癌症的医药组合物中的应用
KR20220101204A (ko) 2016-03-02 2022-07-19 에자이 알앤드디 매니지먼트 가부시키가이샤 에리불린-기반 항체-약물 콘주게이트 및 사용 방법
WO2017163243A1 (en) * 2016-03-22 2017-09-28 Hadasit Medical Research Services And Development Ltd. Modulation of calcium channel splice variant in cancer therapy
US20200038509A1 (en) * 2016-10-14 2020-02-06 Baylor College Of Medicine Radiofrequency field hyperthermia and solid tumor immunomodulation
EP3648764A4 (en) * 2017-07-03 2021-03-31 Menri Group Ltd. TREATMENT OF CANCER WITH DIHYDROPYRIDINES
US11642365B2 (en) * 2017-09-22 2023-05-09 John Mansell Compositions and methods for treatment of sepsis-related disorders
WO2019108920A1 (en) * 2017-12-01 2019-06-06 Soricimed Biopharma Inc. Trpv6 inhibitors and combination therapies for treating cancers
KR102217010B1 (ko) * 2018-01-26 2021-02-18 재단법인 대구경북첨단의료산업진흥재단 칼슘 채널 억제제 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
KR102212699B1 (ko) 2019-08-12 2021-02-05 한국원자력의학원 유방암 예방 또는 치료용 조성물
WO2024063566A1 (ko) * 2022-09-22 2024-03-28 (의) 삼성의료재단 종양 혈관 파괴용 약학 조성물
WO2024063569A1 (ko) * 2022-09-22 2024-03-28 (의) 삼성의료재단 종양 혈관 파괴용 약학 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123777A2 (en) * 2006-03-30 2007-11-01 Duke University Inhibition of hif-1 activation for anti-tumor and anti-inflammatory responses
US7678391B2 (en) * 2000-04-26 2010-03-16 Queen's University At Kingston Formulations and methods of using nitric oxide mimetics against a malignant cell phenotype
WO2011032000A2 (en) * 2009-09-10 2011-03-17 New York University Method for protection of antimicrobial and anticancer drugs from inactivation by nitric oxide
CN103732229A (zh) * 2011-08-02 2014-04-16 安斯泰来制药株式会社 基于药剂的联用的癌症治疗方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3121152A1 (de) * 1981-05-22 1982-12-09 Schering Ag, 1000 Berlin Und 4619 Bergkamen "verwendung der kombination eines aromatase-hemmers mit einem antiandrogen zur prophylaxe und therapie der prostatahyperplasie"
US4658957A (en) * 1985-01-28 1987-04-21 Abbott Laboratories Utility tray
US5466468A (en) 1990-04-03 1995-11-14 Ciba-Geigy Corporation Parenterally administrable liposome formulation comprising synthetic lipids
US5399363A (en) 1991-01-25 1995-03-21 Eastman Kodak Company Surface modified anticancer nanoparticles
US5543158A (en) 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
IE80468B1 (en) 1995-04-04 1998-07-29 Elan Corp Plc Controlled release biodegradable nanoparticles containing insulin
US5747532A (en) 1995-11-21 1998-05-05 Medinox, Inc. Combinational therapeutic methods employing nitric oxide scavengers and compositions useful therefor
GB9625895D0 (en) 1996-12-13 1997-01-29 Riley Patrick A Novel compound useful as therapeutic agents and assay reagents
WO1999000129A1 (en) 1997-06-30 1999-01-07 Dreyer Evan B Calcium blockers to treat proliferative vitreoretinopathy
US6890904B1 (en) 1999-05-25 2005-05-10 Point Therapeutics, Inc. Anti-tumor agents
US8431117B2 (en) 1999-08-30 2013-04-30 David S Terman Sickled erythrocytes with anti-tumor agents induce tumor vaso-occlusion and tumoricidal effects
GB0008269D0 (en) 2000-04-05 2000-05-24 Astrazeneca Ab Combination chemotherapy
WO2001082916A2 (en) 2000-05-03 2001-11-08 Tularik Inc. Combination therapeutic compositions and methods of use
AU2003208228A1 (en) * 2002-03-06 2003-09-16 Cellegy Pharmaceuticals, Inc Formulations and methods of using nitric oxide mimetics in cancer treatment
US20050271596A1 (en) 2002-10-25 2005-12-08 Foamix Ltd. Vasoactive kit and composition and uses thereof
WO2005082407A1 (en) 2003-11-03 2005-09-09 Musc Foundation For Research Development Use of quercetin and resveratrol to treat and prevent oral cancer
US7572799B2 (en) 2003-11-24 2009-08-11 Pfizer Inc Pyrazolo[4,3-d]pyrimidines as Phosphodiesterase Inhibitors
TW200635587A (en) 2004-12-01 2006-10-16 Kalypsys Inc Inducible nitric oxide synthase dimerization inhibitors
JP2008537538A (ja) * 2005-02-11 2008-09-18 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Vegf拮抗剤及び降圧剤の治療的組み合わせ
TW200803855A (en) 2006-02-24 2008-01-16 Kalypsys Inc Quinolones useful as inducible nitric oxide synthase inhibitors
WO2007101213A2 (en) 2006-02-28 2007-09-07 Kalypsys, Inc. Novel 2-oxo-1,2,3,4-tetrahydropyrimidines, bicyclic pyrimidine diones and imidazolidine-2,4-diones useful as inducible nitric oxide synthase inhibitors
US20080069904A1 (en) 2006-07-18 2008-03-20 Oronsky Bryan T Inhibition of angiogenesis through nitric oxide tachyphylaxis
WO2008046459A1 (en) 2006-10-16 2008-04-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Treatment of chemotherapy- or radiotherapy-resistant tumors using an l1 interfering molecule
WO2008103615A1 (en) 2007-02-21 2008-08-28 Kalypsys, Inc. Isoquinolines useful as inducible nitric oxide synthase inhibitors
TW200924772A (en) 2007-08-27 2009-06-16 Kalypsys Inc Heterobicyclic-substituted quinolones useful as nitric oxide synthase inhibitors
CA2775370A1 (en) * 2008-09-24 2010-04-01 Nitrogenix Inc. Nitric oxide releasing amino acid ester compound, composition and method of use
JP2017515800A (ja) * 2014-04-08 2017-06-15 ザ・メソジスト・ホスピタル iNOS阻害組成物および乳がん治療薬としてのその使用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678391B2 (en) * 2000-04-26 2010-03-16 Queen's University At Kingston Formulations and methods of using nitric oxide mimetics against a malignant cell phenotype
WO2007123777A2 (en) * 2006-03-30 2007-11-01 Duke University Inhibition of hif-1 activation for anti-tumor and anti-inflammatory responses
WO2011032000A2 (en) * 2009-09-10 2011-03-17 New York University Method for protection of antimicrobial and anticancer drugs from inactivation by nitric oxide
CN103732229A (zh) * 2011-08-02 2014-04-16 安斯泰来制药株式会社 基于药剂的联用的癌症治疗方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897357A (zh) * 2020-07-06 2022-01-07 北京大学 Twist1基因编辑***及其在制备治疗三阴性乳腺癌的产品中的应用

Also Published As

Publication number Publication date
US20200306371A1 (en) 2020-10-01
US11357850B2 (en) 2022-06-14
US20170020835A1 (en) 2017-01-26
CN106572988B (zh) 2022-04-08
JP2020128445A (ja) 2020-08-27
JP2022159552A (ja) 2022-10-17
EP3967303A1 (en) 2022-03-16
US20170224814A1 (en) 2017-08-10
JP2020128446A (ja) 2020-08-27
JP2017515800A (ja) 2017-06-15
KR20160143775A (ko) 2016-12-14
US20200016265A1 (en) 2020-01-16
EP3129015A1 (en) 2017-02-15
CA2979530A1 (en) 2015-10-15
AU2015243537B2 (en) 2020-10-22
EP3129015B1 (en) 2021-07-14
SG11201607795UA (en) 2016-10-28
CA2979530C (en) 2023-10-03
WO2015157471A1 (en) 2015-10-15
AU2015243537A1 (en) 2016-10-06
US10420838B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
CN106572988A (zh) Inos抑制性组合物及其作为乳腺癌治疗剂的用途
Issa et al. Therapeutic implications of menin inhibition in acute leukemias
Cao et al. Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid carcinoma
WO2020051342A1 (en) Methods for treating metastatic disease using ribosome biogenesis inhibitor cx 5461
WO2021228814A1 (en) Mdm2 inhibitor response prediction method
Somaiah et al. acccaaaccMDM2-p53 in Liposarcoma: The Need for Targeted Therapies With Novel Mechanisms of Action
US20220288067A1 (en) Treatment of cancer with cdk inhibitors
US20190271703A1 (en) Biomarkers and treatments for metastatic cancer
US12024707B2 (en) Methods and compositions for modulating lncRNAs and methods of treatment based on lncRNA expression
US20210277395A1 (en) Methods and compositions for modulating lncrnas and methods of treatment based on lncrna expression
Classen The dysregulation of BRCA1, PTEN, or CHK1 influences therapy resistance of breast cancer cells by affecting DNA repair and DNA replication stress signaling
Jones Targeting Vulnerabilities in Cell State and Calcium Signaling for the Treatment of Lung Cancer
Bizzaro Preclinical Models to study the Biology and Therapy of Ovarian Cancer
Blay et al. Soft tissue sarcomas: are all soft tissue sarcomas treated with the same drugs?
CN107249579A (zh) 涉及增生性疾病的组合物和方法
Quang Identification of genetic and epigenetic alterations in pediatric high-grade astrocytomas
Imbastari Impact of MACC1 in Cargo Specific Clathrin-Mediated Endocytosis
Laurie Identification of Cancer Stem Cells: Applications for a Spy1 Clinical Trial
Raoof Targeting FGFR to Overcome EMT-related Resistance to EGFR Inhibition in EGFR-mutated Non-small Cell Lung Cancer
WO2022159852A1 (en) Methods and compositions for treating adenoid cystic carcinoma
US20220218708A1 (en) Methods for treating smarcb1 deficient cancer or pazopanib resistant cancer
Pan The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression
Ran UNDERSTANDING AND TARGETING ETV1 IN SARCOMA PATHOGENESIS
Furlow Mutations in a Mechanosensitive Channel Enable Intravascular Metaststic Cell Survival
Niclou et al. Precision medicine for cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant