CN106564932A - 一种pete器件用阴极材料 - Google Patents

一种pete器件用阴极材料 Download PDF

Info

Publication number
CN106564932A
CN106564932A CN201610932926.3A CN201610932926A CN106564932A CN 106564932 A CN106564932 A CN 106564932A CN 201610932926 A CN201610932926 A CN 201610932926A CN 106564932 A CN106564932 A CN 106564932A
Authority
CN
China
Prior art keywords
pete
cathode material
compound
cathode
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610932926.3A
Other languages
English (en)
Inventor
张丽丽
任保国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201610932926.3A priority Critical patent/CN106564932A/zh
Publication of CN106564932A publication Critical patent/CN106564932A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • C01G17/006Compounds containing, besides germanium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/308Semiconductor cathodes, e.g. cathodes with PN junction layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Abstract

本发明涉及一种PETE器件用阴极材料。本发明属于光电热电发电技术领域。一种PETE器件用阴极材料,为硅与锗形成二元固溶体化合物,半导体化合物分子式为SixGe1‑x,x=5‑30%;化合物有元素硼(B)掺杂,掺杂比例为0.02‑0.08mol%;纳米结构生成有两种方式:一种是在合金粉末中添加氮化硼(BN)或是碳60(C60)纳米颗粒,添加重量比例为0.2‑0.5wt%;另一种方式是在合金粉未中添加铝纳米颗粒作为造孔剂,添加比例为1‑5vol%,然后将烧结后的材料切成2‑5mm厚的薄片,放在80℃‑120℃的质量浓度为40%‑80%的硝酸中腐蚀。本发明能有效增加材料的散射中心,显著提高阴极材料的电子发射率,有利于阴极对太阳光的吸收,效果明显,适用范围广等。

Description

一种PETE器件用阴极材料
技术领域
本发明属于光电热电发电技术领域,特别是涉及一种PETE器件用阴极材料。
背景技术
PETE器件又叫光子增强型热离子发射器件,能够同时利用光和热来发电,具有双重发电优势,同时较太阳电池耐受温度更高(超过200℃),成本很低(所需要的半导体材料数量极少)。该器件结构与热离子发射器件相似,均为真空平板结构,具有阴阳两电极,不同的是其阴极为P型半导体。该种器件的发电原理为:阴极吸收光子,电子经热激发从价带跃迁到导带;电子扩散至阴极表面,克服势垒发射至真空;阳极收集电荷形成电流。
根据PETE器件的工作原理,其阴极材料在整个能量转换过程中担负着非常重要的作用,对阴极材料的要求为可以吸收较多的热量,同时具有更多的散射中心,以增强电子发射能力。
目前,公开的技术文献资料报道,现今PETE器件研究选用的阴极材料多为均质P型半导体材料,存在电子发射率较低和对太阳光吸收能力较弱等技术问题。
发明内容
本发明为解决公知技术中存在的技术问题而提供一种PETE器件用阴极材料。
本发明的目的是提供一种能有效增加材料的散射中心,显著提高阴极材料的电子发射率,有利于阴极对太阳光的吸收,效果明显,适用范围广等特点的PETE器件用阴极材料。
本发明PETE器件用阴极材料所采取的技术方案是:
一种PETE器件用阴极材料,其特点是:PETE器件用阴极材料为硅与锗形成二元固溶体化合物,半导体化合物分子式为SixGe1-x,x=5-30%;化合物有元素硼(B)掺杂,掺杂比例为0.02-0.08mol%;纳米结构生成有两种方式:一种是在合金粉末中添加氮化硼(BN)或是碳60(C60)纳米颗粒,添加重量比例为0.2-0.5wt%;另一种方式是在合金粉未中添加铝纳米颗粒作为造孔剂,添加比例为1-5vol%,然后将烧结后的材料切成2-5mm厚的薄片,放在80℃-120℃的质量浓度为40%-80%的硝酸中腐蚀。
本发明PETE器件用阴极材料还可采取以下方案:
所述的PETE器件用阴极材料,其特点是:添加造孔剂的PETE器件用阴极材料,硝酸中腐蚀时间为2-5min。
所述的PETE器件用阴极材料,其特点是:阴极材料合金采用中频熔炼的方法合成,合金采用放电等离子体烧结成型。
本发明具有的优点和积极效果是:
PETE器件用阴极材料由于采用了本发明全新的技术方案,与现有技术相比,本发明纳米结构的引入,可有效增加材料的散射中心,显著提高阴极材料的电子发射率;而纳米结构自身的较高的结晶度和较低的缺陷密度,也有利于阴极对太阳光的吸收,具有效果明显,适用范围广等优点。
附图说明
图1是实施例2制备的PETE器件用阴极材料样品SEM照片。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
参阅附图1。
实施例1
一种PETE器件用阴极材料,制备Si90Ge10+0.05mol%B样品。PETE器件用阴极材料选取带隙宽度较大的硅Si与锗Ge形成二元固溶体化合物材料,在该化合物进行元素硼(B)掺杂,形成半导体化合物的分子式为Si90Ge10+0.05mol%B。纳米结构生成方式:在合金粉末中添加氮化硼(BN)或是碳60(C60)纳米颗粒;烧结后的材料切成2mm-5mm厚的薄片,放在80℃-120℃的浓度为40%-80%的硝酸中腐蚀2min-5min。材料合金采用中频熔炼的方法合成,合金采用放电等离子体烧结(SPS)快速烧结成型。
PETE器件用阴极材料,常温下,电子逸出功为4.32ev,较常规掺杂B的Si材料的逸出功(约4.4ev)降低;具有纳米结构的样品的逸出功较没有纳米结构样品的逸出功有明显的降低。
实施例2
一种PETE器件用阴极材料,制备Si90Ge10+0.05mol%B和加入2vol%Al造孔剂的材料样品。PETE器件用阴极材料选取带隙宽度较大的硅Si与锗Ge形成二元固溶体化合物材料,在该化合物进行元素硼(B)掺杂,形成半导体化合物的分子式为Si90Ge10+0.05mol%B。纳米结构生成方式:在合金粉膜中添加铝Al纳米颗粒作为造孔剂,添加比例为2vol%,然后将烧结后的材料切成2mm-5mm厚的薄片,放在80℃-120℃的浓度为40%-80%的硝酸中腐蚀2min-5min;材料合金采用中频熔炼的方法合成,合金采用放电等离子体烧结(SPS)快速烧结成型。
PETE器件用阴极材料,常温下,电子逸出功为4.08ev,较常规掺杂B的Si材料的逸出功(约4.4ev)有明显降低;具有纳米结构的样品的逸出功较没有纳米结构样品的逸出功有很大程度的降低。
本实施例能有效增加材料的散射中心,显著提高阴极材料的电子发射率,有利于阴极对太阳光的吸收,具有效果明显,适用范围广等特点。

Claims (3)

1.一种PETE器件用阴极材料,其特征是:PETE器件用阴极材料为硅与锗形成二元固溶体化合物,半导体化合物分子式为SixGe1-x,x=5-30%;化合物有元素硼掺杂,掺杂比例为0.02-0.08mol%;纳米结构生成有两种方式:一种是在合金粉末中添加氮化硼或是碳60纳米颗粒,添加重量比例为0.2-0.5wt%;另一种方式是在合金粉未中添加铝纳米颗粒作为造孔剂,添加比例为1-5vol%,然后将烧结后的材料切成2-5mm厚的薄片,放在80℃-120℃的质量浓度为40%-80%的硝酸中腐蚀。
2.根据权利要求1所述的PETE器件用阴极材料,其特征是:硝酸中腐蚀时间为2-5min。
3.根据权利要求1或2所述的PETE器件用阴极材料,其特征是:阴极材料合金采用中频熔炼的方法合成,合金采用放电等离子体烧结成型。
CN201610932926.3A 2016-10-25 2016-10-25 一种pete器件用阴极材料 Pending CN106564932A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610932926.3A CN106564932A (zh) 2016-10-25 2016-10-25 一种pete器件用阴极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610932926.3A CN106564932A (zh) 2016-10-25 2016-10-25 一种pete器件用阴极材料

Publications (1)

Publication Number Publication Date
CN106564932A true CN106564932A (zh) 2017-04-19

Family

ID=60414396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610932926.3A Pending CN106564932A (zh) 2016-10-25 2016-10-25 一种pete器件用阴极材料

Country Status (1)

Country Link
CN (1) CN106564932A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633327A (zh) * 2012-08-14 2014-03-12 三星Sdi株式会社 复合负极活性材料、包括该材料的锂电池及其制备方法
CN103996826A (zh) * 2013-02-15 2014-08-20 三星Sdi株式会社 负极活性物质及各自包含该负极活性物质的负极和锂电池
CN104011918A (zh) * 2011-10-26 2014-08-27 耐克森有限公司 用于二次电池的电极组合物
CN104067417A (zh) * 2012-12-12 2014-09-24 株式会社Lg化学 二次电池用电极、包含其的二次电池和线缆型二次电池
CN105720259A (zh) * 2014-12-23 2016-06-29 三星Sdi株式会社 负极活性物质和包含负极活性物质的锂电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011918A (zh) * 2011-10-26 2014-08-27 耐克森有限公司 用于二次电池的电极组合物
CN103633327A (zh) * 2012-08-14 2014-03-12 三星Sdi株式会社 复合负极活性材料、包括该材料的锂电池及其制备方法
CN104067417A (zh) * 2012-12-12 2014-09-24 株式会社Lg化学 二次电池用电极、包含其的二次电池和线缆型二次电池
CN103996826A (zh) * 2013-02-15 2014-08-20 三星Sdi株式会社 负极活性物质及各自包含该负极活性物质的负极和锂电池
CN105720259A (zh) * 2014-12-23 2016-06-29 三星Sdi株式会社 负极活性物质和包含负极活性物质的锂电池

Similar Documents

Publication Publication Date Title
Bhaumik et al. Copper oxide based nanostructures for improved solar cell efficiency
Lu et al. The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction
Zhao et al. CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application
Wang et al. ZnO/ZnSxSe1− x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption
CN102544195B (zh) 太阳能电池及其制作方法
Mao et al. Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance
Zhang et al. Enhanced thermoelectric performance of CuGaTe 2 based composites incorporated with nanophase Cu 2 Se
WO2014097963A1 (ja) 酸化亜鉛系透明導電膜
Shen et al. In situ formation of CsPbBr 3/ZnO bulk heterojunctions towards photodetectors with ultrahigh responsivity
Itthibenchapong et al. Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers
Xu et al. High-performance MoO x/n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer
Kim et al. Effect of basicity of glass frits on electrical properties of Si solar cells
Mandati et al. Enhanced photoresponse of Cu (In, Ga) Se 2/CdS heterojunction fabricated using economical non-vacuum methods
Xu et al. MoO 2 Sacrificial Layer for Optimizing Back Contact Interface of Cu 2 ZnSn (S, Se) 4 Solar Cells
Nair et al. Prospect of double perovskite over conventional perovskite in photovoltaic applications
Xu et al. 9.63% efficient flexible Cu 2 ZnSn (S, Se) 4 solar cells fabricated via scalable doctor-blading under ambient conditions
Ahn et al. CoAl2O4–Fe2O3 pn nanocomposite electrodes for photoelectrochemical cells
Zhao et al. Enhanced hole extraction by electron-rich alloys in all-inorganic CsPbBr 3 perovskite solar cells
Huang et al. A robust hydrothermal sulfuration strategy toward effective defect passivation enabling 6.92% efficiency Sb2S3 solar cells
Kim et al. Morphological conversion of dipolar core–shell Au–Co nanoparticles into beaded Au–Co 3 O 4 nanowires
Zhang et al. Efficient photovoltaic devices based on p-ZnSe/n-CdS core–shell heterojunctions with high open-circuit voltage
Akram et al. Arrays of ZnO/CuInxGa1− xSe2 nanocables with tunable shell composition for efficient photovoltaics
CN106564932A (zh) 一种pete器件用阴极材料
Lin et al. Study of interface properties between Cu2ZnSnS4 thin films and metal substrates
Zhao et al. A comprehensive optimization strategy: potassium phytate-doped SnO 2 as the electron-transport layer for high-efficiency perovskite solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170419