CN106548926B - 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置 - Google Patents

多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置 Download PDF

Info

Publication number
CN106548926B
CN106548926B CN201610954680.XA CN201610954680A CN106548926B CN 106548926 B CN106548926 B CN 106548926B CN 201610954680 A CN201610954680 A CN 201610954680A CN 106548926 B CN106548926 B CN 106548926B
Authority
CN
China
Prior art keywords
layer
microcrystal silicon
metallic film
silicon layer
polysilicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610954680.XA
Other languages
English (en)
Other versions
CN106548926A (zh
Inventor
卜倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201610954680.XA priority Critical patent/CN106548926B/zh
Publication of CN106548926A publication Critical patent/CN106548926A/zh
Priority to US15/715,942 priority patent/US10283355B2/en
Application granted granted Critical
Publication of CN106548926B publication Critical patent/CN106548926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Abstract

本发明涉及显示领域,提供了一种多晶硅层的制备方法为:在衬底基板的微晶硅层上沉积一层多孔的金属薄膜;将形成有金属薄膜的衬底基板放入包括有氟化氢和氧化剂的混合溶液中刻蚀;完成刻蚀后,依次用酸溶液及去离子水洗涤,得到处理后的微晶硅层;在所述处理后的微晶硅层上沉积非晶硅层,经激光退火处理,形成多晶硅层。本发明还提供一种薄膜晶体管,其多晶硅层由所述方法制备得到。本发明利用金属薄膜作为催化剂,催化微晶硅层刻蚀,使微晶硅层表面形成生长方向一致,大小均一的硅晶种。在所述硅晶种基础上经过沉积非晶硅并激光退火形成晶粒尺寸350‑360nm,3σ<140nm的多晶硅,晶粒生长方向一致,有效控制了晶界出现的区域。

Description

多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置
技术领域
本发明涉及显示领域,特别涉及一种多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置。
背景技术
薄膜晶体管主要是由源极、漏极、栅极、有源层、栅绝缘层构成,其中有源层和栅绝缘层是决定薄膜晶体管性能的两个关键层。根据有源层的材料不同,可以将薄膜晶体管分为单晶硅薄膜晶体管(c-Si TFT)、非晶硅薄膜晶体管(a-Si TFT)、多晶硅薄膜晶体管(p-SiTFT)、有机薄膜晶体管(OTFT)和氧化锌薄膜晶体管(ZnO TFT)。
其中,多晶硅薄膜晶体管由于具有较高的电子迁移率、开口率高、较快的响应速度、能大幅缩小组件尺寸、分辨率高、可以制作集成化驱动电路等优点,更加适合于大容量的高频显示,有利于提高显示器的成品率和降低生产成本,而得到广泛的应用。
在多晶硅薄膜晶体管的在制备工艺中,多晶硅层通常由非晶硅经低压化学气象沉积、固相结晶、金属诱导或激光退火等方法转化为多晶硅。目前,制作多晶硅层常用准分子激光退火方法,该方法的基本原理为利用高能量的准分子激光照射到非晶硅薄膜表面,使非晶硅融化、冷却、再结晶,实现从非晶硅到多晶硅的转变。准分子激光退火法制备的低温多晶硅薄膜的晶粒大、空间选择性好、晶内缺陷少、电学特性好,已成为目前在较低温度下制备多晶硅层的主要方法。
虽然准分子激光退火的方法容易实现大面积的多晶硅成膜,但是在制备过程中仍存在着无法有效控制晶粒生长方向,晶粒均一性较差的缺点,进而无法有效的控制晶界出现的区域。
发明内容
本发明要解决的技术问题是提供一种多晶硅层的制备方法、多晶硅薄膜晶体管、阵列基板及显示装置,本发明所述方法可以有效控制晶粒生长方向,并提高晶粒尺寸,得到具有较好晶化效果的多晶硅的薄膜晶体管。
本发明公开了一种多晶硅层的制备方法,包括以下步骤:
在衬底基板的微晶硅层上沉积一层多孔的金属薄膜;
将形成有金属薄膜的衬底基板放入包括有氟化氢和氧化剂的混合溶液中刻蚀;
完成刻蚀后,依次用酸溶液及去离子水洗涤,得到处理后的微晶硅层;
在所述处理后的微晶硅层上沉积非晶硅层,经激光退火处理,形成多晶硅层。
优选的,所述金属薄膜采用银、金或者铂。
优选的,所述金属薄膜采用银,在所述微晶硅层上沉积一层多孔的金属薄膜的方法为:
将形成微晶硅层后的衬底基板放入3-5mol/L氟化氢和0.01-0.03mol/L硝酸银的混合溶液中,沉积银层,沉积时间为50~70秒。
优选的,所述混合溶液为氟化氢和氧化铁的混合物或者氟化氢和过氧化氢的混合物。
优选的,所述微晶硅层的厚度为5~10nm。
本发明还公开了一种多晶硅薄膜晶体管,包括:衬底基板、多晶硅层、栅绝缘层、栅极、源极和漏极,所述多晶硅层由上述技术方案所述方法制备。
优选的,所述衬底基板与多晶硅层之间还包括缓冲层。
优选的,所述缓冲层采用厚度为50-100nm的SiN或者厚度为150-300nm的SiO。
本发明还公开了一种阵列基板,包括上述技术方案所述的多晶硅薄膜晶体管。
本发明还公开了一种显示装置,包括上述技术方案所述的阵列基板。
与现有技术相比,本发明的多晶硅层的制备方法,包括以下步骤:
在衬底基板的微晶硅层上沉积一层多孔的金属薄膜;
将形成有金属薄膜的衬底基板放入包括有氟化氢和氧化剂的混合溶液中刻蚀;
完成刻蚀后,依次用酸溶液及去离子水洗涤,得到处理后的微晶硅层;
在所述处理后的微晶硅层上沉积非晶硅层,经激光退火处理,形成多晶硅层。
本发明利用沉积的金属薄膜作为催化剂,催化微晶硅层的刻蚀,使微晶硅层表面形成生长方向一致,大小均一的硅晶种。在所述硅晶种基础上经过沉积非晶硅并激光退火形成晶粒尺寸350-360nm,3σ<150nm的多晶硅,晶粒生长方向一致,晶化效果好,有效控制了晶界出现的区域。本发明的多晶硅薄膜晶体管由于具有了所述多晶硅层,因此具有较好的性能。
附图说明
图1表示本发明提供的多晶硅层的制备方法流程图;
图2表示制备的微晶硅晶种扫描电镜图;
图3表示本发明一实施例的多晶硅薄膜晶体管的结构示意图;
图4A~图4H表示本发明制备多晶硅层的方法步骤流程图。
附图标记说明:
1为衬底基板;2为缓冲层;3为微晶硅层;31为硅晶种;4为金属层的金属颗粒;5为非晶硅层;6为准分子激光退火过程;7为多晶硅层;8为栅绝缘层;9为栅极;10为层间绝缘层;11为源漏金属层。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种多晶硅层的制备方法,包括以下步骤:
在衬底基板的微晶硅层上沉积一层多孔的金属薄膜;
将形成有金属薄膜的衬底基板放入包括有氟化氢和氧化剂的混合溶液中刻蚀;
完成刻蚀后,依次用酸溶液及去离子水洗涤,得到处理后的微晶硅层;
在所述处理后的微晶硅层上沉积非晶硅层,经激光退火处理,形成多晶硅层。
在本发明中,在微晶硅层上沉积多孔的金属薄膜,该金属薄膜用于催化微晶硅层的刻蚀,金属覆盖区域的微晶硅快速被腐蚀,而金属未覆盖区域的微晶硅腐蚀较慢或者不被腐蚀,从而形成方向较为一致,尺寸合适的硅晶种。在所述硅晶种基础上再沉积非晶硅,并配合激光退火处理,可以控制多晶硅的生长方向,增大多晶硅的晶粒尺寸。
按本发明所述制备方法的流程如图1所示。
照本发明,首先在衬底基板的微晶硅层上沉积一层多孔的金属薄膜。所述衬底基板上可以直接设置微晶硅层,还可以在衬底基板上设置缓冲层,在缓冲层上再设置微晶硅层。所述金属薄膜包括金属颗粒的聚集区,也包括孔状结构,该孔状结构处无金属覆盖。
所述多孔的金属薄膜优选的采用银、金或者铂金,更优选为银。所述多孔的金属薄膜采用银时,在微晶硅层上沉积一层多孔的金属薄膜的具体方法优选为:
将形成微晶硅层后的衬底基板放入3-5mol/L氟化氢和0.01-0.03mol/L硝酸银的混合溶液中,沉积银层,沉积时间为50~70秒。
所述沉积时间更优选为60秒。
沉积形成金属薄膜后,将形成有金属薄膜的衬底基板放入包括有氟化氢和氧化剂的混合溶液中刻蚀。所述衬底基板已经依次沉积了微晶硅层和金属薄膜。所述氧化剂可以为过氧化氢、硝酸银、氧化铁、高锰酸钾、氯金酸钾等。所述氟化氢和氧化剂的混合溶液优选为0.2-0.5mol/L的氟化氢和8-12mol/L氧化铁的混合物,或者0.2-0.5mol/L的氟化氢和0.04-0.08mol/L过氧化氢的混合物。多孔的金属薄膜用于催化氧化剂对于微晶硅的刻蚀。所述刻蚀的温度优选为50~80℃,更优选为60~7℃;所述刻蚀的时间优选为150~300秒,更优选为200~250秒。在所述刻蚀过程中,微晶硅在氟化氢和氧化剂的混合溶液中经过了局部氧化和分解,实现向下腐蚀,与金属接触的微晶硅从氧化剂中获得了空穴,形成硅的氧化物,硅的氧化物氟化氢的作用下溶解,该过程在金属与微晶硅接触的界面迅速发生,从而使金属向下腐蚀,没有金属覆盖的微晶硅在氟化氢和氧化剂的作用下反应非常缓慢,最终形成了方向及尺寸一致的硅晶种。如图2所示,图2为制备的微晶硅晶种扫描电镜图。
按照本发明,完成刻蚀后,依次用酸溶液及去离子水洗涤,得到处理后的微晶硅层。
使用酸溶液洗涤的作用是去除金属薄膜,所述酸溶液优选为4~6mol/L的硝酸。酸溶液洗涤后依次用去离子水洗涤,以去除残留的酸溶液及其他杂质。
按照本发明,得到处理后的微晶硅层后,在所述处理后的微晶硅层上沉积非晶硅层,经过激光退火处理,形成多晶硅层。本发明对于沉积非晶硅层的方法没有特殊限制,按照现有方法,使用等离子体增强化学气相沉积法(PECVD)进行沉积即可。所述非晶硅层的厚度优选为40~50纳米。对于激光退火条件的控制,也可以影响最终形成的多晶硅晶粒的尺寸。激光退火为准分子激光退火晶化的必要步骤,所述激光退火时,能量密度优选为390~410mJ/cm2
本发明制备的多晶硅层的晶粒大小为330-380nm,晶粒均一性3σ<150nm。
本发明的实施例公开了一种多晶硅薄膜晶体管,包括:
衬底基板;
设置于所述衬底基板上的多晶硅层,所述多晶硅层由上述技术方案所述方法制备;
栅绝缘层;
栅极;
源极和漏极。
进一步的,所述多晶硅薄膜晶体管还可以包括设置于所述衬底基板与多晶硅层之间的缓冲层以及层间绝缘层,具体结构参见图3。
本发明的多晶硅薄膜晶体管的制备方法,包括以下步骤:
按照本发明,多晶硅薄膜晶体管的制备方法,包括以下步骤:
步骤1:提供一衬底基板。
进一步的,还可以在所述衬底基板上沉积形成缓冲层。
如图4A所示,1为衬底基板,2为缓冲层。
所述缓冲层优选的采用厚度为50-100nm的SiN或者厚度为150-300nm的SiO。调节合适的缓冲层的叠层厚度,可以有效的阻止玻璃基板的碱性离子渗入薄膜晶体管,同时使与多晶硅层的接触界面性能良好,提高薄膜晶体管性能。
步骤2:在所述缓冲层上沉积形成微晶硅层。
如图4B所示,1为衬底基板,2为缓冲层,3为微晶硅层。
所述微晶硅层的厚度为5~10nm。微晶硅层的厚度过小,形成的晶粒覆盖不全;厚度过大,会影响后期晶种的形成。
步骤3:在微晶硅层上沉积一层多孔的金属薄膜。
如图4C所示,1为衬底基板,2为缓冲层,3为微晶硅层,4为金属薄膜的金属颗粒,由于金属薄膜为多孔的结构,因此金属颗粒之间为孔结构。
所述金属薄膜为多孔薄金属层,优选的采用银、金或者铂金,更优选为银。在微晶硅层上沉积一层金属薄膜的具体方法优选为:
将形成微晶硅层后的衬底基板放入3-5mol/L氟化氢和0.01-0.03mol/L硝酸银的混合溶液中,沉积银层,沉积时间为50~70秒。
所述沉积时间更优选为60秒。
步骤4:将形成有金属薄膜的衬底基板放入包括有氟化氢和氧化剂的混合溶液中刻蚀。
如图4D所示,31为硅晶种。金属薄膜与微晶硅接触的界面迅速腐蚀,金属薄膜的多孔结构与微晶硅接触的部分,即没有金属覆盖的微晶硅处形成硅晶种。
所述衬底基板已经依次沉积了微晶硅层和金属薄膜。所述氧化剂可以为过氧化氢、硝酸银、氧化铁、高锰酸钾、氯金酸钾等。所述氟化氢和氧化剂的混合溶液优选为0.2-0.5mol/L的氟化氢和8-12mol/L氧化铁的混合物,或者0.2-0.5mol/L的氟化氢和0.04-0.08mol/L过氧化氢的混合物。多孔的金属薄膜用于催化氧化剂对于微晶硅的刻蚀。所述刻蚀的温度优选为50~80℃,更优选为60~7℃;所述刻蚀的时间优选为150~300秒,更优选为200~250秒。
步骤5:完成刻蚀后,依次用酸溶液及去离子水洗涤,得到处理后的微晶硅层。
如图4E所示,经过洗涤后,仅仅保留下硅晶种31。
使用酸溶液洗涤的作用是去除金属薄膜,所述酸溶液优选为4~6mol/L的硝酸。酸溶液洗涤后依次用去离子水洗涤,以去除残留的酸溶液及其他杂质。
步骤6:在所述处理后的微晶硅层上沉积非晶硅层,经激光退火处理,形成多晶硅层;
如图4F所示,5为非晶硅层。
如图4G所示,6表示准分子激光退火过程。
如图4H所示,7为多晶硅层。
本发明对于沉积非晶硅层的方法没有特殊限制,按照现有方法,使用PECVD设备进行沉积即可。所述非晶硅层的厚度优选为40~50纳米。对于激光退火条件的控制,也可以影响最终形成的多晶硅晶粒的尺寸。激光退火为准分子激光退火晶化的必要步骤,所述激光退火时,能量密度优选为390~410mJ/cm2
步骤7:对多晶硅层进行构图,形成薄膜晶体管的有源层;
步骤8:形成栅绝缘层8;
步骤9:沉积栅金属层,对栅金属层进行构图形成薄膜晶体管的栅极9;
进一步的,形成栅极9后,还可以形成层间绝缘层10,对栅绝缘层8和层间绝缘层10进行构图,形成过孔。
步骤10:沉积源漏金属层11,对源漏金属层进行构图形成薄膜晶体管的源电极和漏电极,源电极和漏电极分别通过贯穿层间绝缘层10和栅绝缘层8的过孔与有源层连接。
对于步骤7~10涉及的制备有源层、栅极、栅绝缘层、源极和漏极的方法可以按照现有方法进行,没有特殊限制。
本发明实施例公开了一种阵列基板,包括上述技术方案所述的多晶硅薄膜晶体管。
本发明实施例还公开了一种显示装置,包括上述阵列基板。
为了进一步理解本发明,下面结合实施例对本发明提供的多晶硅层的制备方法,多晶硅薄膜晶体管及显示装置行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
在玻璃基板上沉积形成一层厚度为50-100nm的SiN缓冲层。
在缓冲层上沉积一层厚度为5~10nm的微晶硅层。
将沉积微晶硅层后的玻璃基板放在氟化氢/AgNO3(氟化氢浓度是3.0-5.0mol/L,硝酸银的浓度0.01-0.03mol/L)溶液中沉积多孔的Ag层,时间约为60s;
在反应温度50-80℃条件下,将玻璃基板浸入氟化氢/Fe(NO3)3(氟化氢的浓度是0.2-0.5mol/L,硝酸铁的浓度是8.0-12.0mol/L)中刻蚀150-300s;
取出玻璃基板,用HNO3(硝酸的浓度是4.0-6.0mol/L)去除Ag层,并用大量去离子水清洗后烘干;用PECVD设备沉积40~50nm的非晶硅层,调节激光退火晶化的能量密度为390mJ/cm2,overlap为98%,可以得到晶粒尺寸350-360nm,3干<140nm的多晶硅层。
对多晶硅层图案化,形成薄膜晶体管的有源层;
形成栅绝缘层;
沉积栅金属层,对栅金属层进行构图形成薄膜晶体管的栅极;
沉积源漏金属层,对源漏金属层进行构图形成薄膜晶体管的源电极和漏电极。
实施例2
在玻璃基板上沉积形成一层厚度为150-300nm的SiO缓冲层。
在缓冲层上沉积一层厚度为5~10nm的微晶硅层。
将沉积微晶硅层后的玻璃基板放在氟化氢/AgNO3(氟化氢浓度是3.0-5.0mol/L,硝酸银的浓度0.01-0.03mol/L)溶液中沉积多孔的Ag层,时间约为60s;
在反应温度50-80℃条件下,将玻璃基板浸入氟化氢/H2O2(氟化氢的浓度是0.2-0.5mol/L,、过氧化氢的浓度是0.04-0.08mol/L)中刻蚀150-300s;
取出玻璃基板,用HNO3(硝酸的浓度是4.0-6.0mol/L)去除Ag层,并用大量去离子水清洗后烘干;用PECVD设备沉积40~50nm的非晶硅层,调节激光退火晶化的能量密度为405mJ/cm2,overlap 95%,可以得到晶粒尺寸365-370nm,3干<125nm的多晶硅层。
对多晶硅层图案化,形成薄膜晶体管的有源层;
形成栅绝缘层;
沉积栅金属层,对栅金属层进行构图形成薄膜晶体管的栅极;
沉积形成层间绝缘层。
沉积源漏金属层,对源漏金属层进行构图形成薄膜晶体管的源电极和漏电极。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种多晶硅层的制备方法,包括以下步骤:
在衬底基板的微晶硅层上沉积一层多孔的金属薄膜;所述金属薄膜采用银、金或者铂;
将形成有金属薄膜的衬底基板放入包括有氟化氢和氧化剂的混合溶液中刻蚀;所述混合溶液为氟化氢和氧化铁的混合物或者氟化氢和过氧化氢的混合物;
完成刻蚀后,依次用酸溶液及去离子水洗涤去除金属薄膜,得到处理后的微晶硅层;所述酸溶液为4~6mol/L的硝酸;
在所述处理后的微晶硅层上沉积非晶硅层,经激光退火处理,形成多晶硅层;所述非晶硅层的厚度为40~50纳米。
2.根据权利要求1所述的制备方法,其特征在于,所述金属薄膜采用银,在所述微晶硅层上沉积一层多孔的金属薄膜的方法为:
将形成微晶硅层后的衬底基板放入含有3-5mol/L氟化氢和0.01-0.03mol/L硝酸银的混合溶液中,沉积银层,沉积时间为50~70秒。
3.根据权利要求1所述的制备方法,其特征在于,所述微晶硅层的厚度为5~10nm。
4.一种多晶硅薄膜晶体管,包括:衬底基板、多晶硅层、栅绝缘层、栅极、源极和漏极,其特征在于,所述多晶硅层由权利要求1-3任意一项所述方法制备。
5.根据权利要求4所述的多晶硅薄膜晶体管,其特征在于,所述衬底基板与多晶硅层之间还包括缓冲层。
6.根据权利要求5所述的多晶硅薄膜晶体管,其特征在于,所述缓冲层采用厚度为50-100nm的氮化硅或者厚度为150-300nm的氧化硅。
7.一种阵列基板,其特征在于,包括权利要求4-6中任一项所述的多晶硅薄膜晶体管。
8.一种显示装置,其特征在于,包括权利要求7所述的阵列基板。
CN201610954680.XA 2016-10-27 2016-10-27 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置 Active CN106548926B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610954680.XA CN106548926B (zh) 2016-10-27 2016-10-27 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置
US15/715,942 US10283355B2 (en) 2016-10-27 2017-09-26 Method for manufacturing poly-silicon layer, thin film transistor, array substrate and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610954680.XA CN106548926B (zh) 2016-10-27 2016-10-27 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置

Publications (2)

Publication Number Publication Date
CN106548926A CN106548926A (zh) 2017-03-29
CN106548926B true CN106548926B (zh) 2018-04-10

Family

ID=58392895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610954680.XA Active CN106548926B (zh) 2016-10-27 2016-10-27 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置

Country Status (2)

Country Link
US (1) US10283355B2 (zh)
CN (1) CN106548926B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195636B (zh) * 2017-05-12 2020-08-18 惠科股份有限公司 显示面板、显示面板的制程和显示装置
CN107919270A (zh) * 2017-11-03 2018-04-17 惠科股份有限公司 低温多晶硅薄膜及晶体管的制造方法
JP2019219432A (ja) * 2018-06-15 2019-12-26 株式会社ジャパンディスプレイ 表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984317A2 (en) * 1993-12-02 2000-03-08 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device and semiconductor device
CN1311524A (zh) * 2000-02-09 2001-09-05 日立电线株式会社 结晶硅半导体器件及其制造方法
CN101807609A (zh) * 2010-04-02 2010-08-18 中国科学院苏州纳米技术与纳米仿生研究所 适用于高倍聚光电池和薄膜电池的电极结构
CN103972050A (zh) * 2014-05-14 2014-08-06 京东方科技集团股份有限公司 多晶硅薄膜、多晶硅薄膜晶体管及阵列基板的制备方法
CN105470312A (zh) * 2016-02-19 2016-04-06 深圳市华星光电技术有限公司 低温多晶硅薄膜晶体管及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539120A (en) * 1946-06-28 1951-01-23 Weatherhead Co Triaxial control handle for helicopters
US5403751A (en) * 1990-11-29 1995-04-04 Canon Kabushiki Kaisha Process for producing a thin silicon solar cell
US6737307B2 (en) * 2002-06-28 2004-05-18 Industrial Technology Research Institute Method for forming amorphous silicon film on single crystal silicon and structure formed
WO2004099290A1 (ja) * 2003-05-12 2004-11-18 Shin-Etsu Chemical Co., Ltd. シリコーンワックス
TWI260747B (en) * 2005-08-24 2006-08-21 Quanta Display Inc A method for forming a thin film transistor, and a method for transforming an amorphous layer into a poly crystal layer of a single crystal layer
WO2011156419A2 (en) * 2010-06-07 2011-12-15 The Regents Of The University Of California Lithium ion batteries based on nanoporous silicon
US9137255B2 (en) * 2011-06-30 2015-09-15 Marvell World Trade Ltd. Verifying server identity
RU2539120C1 (ru) * 2013-07-01 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ изготовления кремниевого чувствительного элемента для люминесцентного наносенсора кислорода
CN103489788B (zh) 2013-09-29 2015-10-21 京东方科技集团股份有限公司 低温多晶硅薄膜的制备方法、薄膜晶体管和显示装置
CN104779139A (zh) 2015-03-31 2015-07-15 深超光电(深圳)有限公司 半导体薄膜的制造方法及薄膜晶体管的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984317A2 (en) * 1993-12-02 2000-03-08 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device and semiconductor device
CN1311524A (zh) * 2000-02-09 2001-09-05 日立电线株式会社 结晶硅半导体器件及其制造方法
CN101807609A (zh) * 2010-04-02 2010-08-18 中国科学院苏州纳米技术与纳米仿生研究所 适用于高倍聚光电池和薄膜电池的电极结构
CN103972050A (zh) * 2014-05-14 2014-08-06 京东方科技集团股份有限公司 多晶硅薄膜、多晶硅薄膜晶体管及阵列基板的制备方法
CN105470312A (zh) * 2016-02-19 2016-04-06 深圳市华星光电技术有限公司 低温多晶硅薄膜晶体管及其制造方法

Also Published As

Publication number Publication date
US20180122634A1 (en) 2018-05-03
CN106548926A (zh) 2017-03-29
US10283355B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
CN101981670B (zh) 介电蚀刻停止层的选择性形成
CN106548926B (zh) 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置
CN103295912A (zh) 一种基于自对准技术的石墨烯晶体管制造方法
TW515101B (en) Method for fabrication of field-effect transistor
CN105336620B (zh) 半导体结构及其形成方法
JP2006066860A (ja) 薄膜トランジスタ製造方法
JP3331999B2 (ja) 半導体薄膜の製造方法
WO2000001005A1 (fr) Procede de formation d'une couche de silicium monocristallin, procede de fabrication d'un dispositif semi-conducteur et dispositif semi-conducteur
EP3971998A1 (en) Solar cell and preparation method therefor, method for processing n-type doped silicon film, and semiconductor device
CN102270570A (zh) 使硅层结晶的方法及使用该方法形成薄膜晶体管的方法
JP2007281156A (ja) 裏面電極型半導体へテロ接合太陽電池ならびにその製造方法と製造装置
CN104299891B (zh) 低温多晶硅薄膜的制备方法、tft、阵列基板及显示装置
TWI460121B (zh) 圖形化矽奈米線陣列及矽微結構之製作方法
KR101117643B1 (ko) 비정질 실리콘막의 결정화 방법, 그리고 박막 트랜지스터 및 이의 제조 방법
JP3300153B2 (ja) 半導体装置の製造方法
WO2018171368A1 (zh) 多晶硅薄膜及其制作方法、薄膜晶体管及其制作方法
CN110767772B (zh) 局域接触钝化太阳电池的制备方法
CN106409653B (zh) 硅纳米线阵列的制备方法
TWI251349B (en) Method of forming thin film transistor
JPH08153699A (ja) 薄膜半導体装置の作製方法
Tabuchi et al. Control of carrier concentration in thin cuprous oxide Cu2O films by atomic hydrogen
CN103730182A (zh) 包括铌掺杂的n型SiC外延层的PIN型同位素核电池的制造方法
JPH08213316A (ja) 半導体薄膜の作製方法
CN100385686C (zh) 一种多晶锗硅肖特基二极管及其制备方法
JP2006319365A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant