CN106548874A - 一种添加锡锑包覆二氧化锰的静电纺复合电极材料 - Google Patents

一种添加锡锑包覆二氧化锰的静电纺复合电极材料 Download PDF

Info

Publication number
CN106548874A
CN106548874A CN201610978759.6A CN201610978759A CN106548874A CN 106548874 A CN106548874 A CN 106548874A CN 201610978759 A CN201610978759 A CN 201610978759A CN 106548874 A CN106548874 A CN 106548874A
Authority
CN
China
Prior art keywords
electrode material
antimony
spinning
manganese dioxide
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610978759.6A
Other languages
English (en)
Inventor
万广文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongling City Start Electronic Manufacturing Co Ltd
Original Assignee
Tongling City Start Electronic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongling City Start Electronic Manufacturing Co Ltd filed Critical Tongling City Start Electronic Manufacturing Co Ltd
Priority to CN201610978759.6A priority Critical patent/CN106548874A/zh
Publication of CN106548874A publication Critical patent/CN106548874A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种添加锡锑包覆二氧化锰的静电纺复合电极材料,由下列重量份的原料制成:多壁碳纳米管10‑12、十二烷基硫酸钠1.5‑1.6、去离子水适量、无水乙醇适量、聚苯胺10‑12、氯仿适量、聚氧化乙烯14‑15、混旋樟脑磺酸12‑13、碳酸锰1.2‑1.3、浓度为95wt%的乙醇56‑60、五水四氯化锡0.8‑1、三氯化锑1‑1.2。本文通过五水四氯化锡、三氯化锑对碳酸锰进行包覆,通过高温煅烧得到锡锑包覆二氧化锰,具有多孔结构,从而有利于电解质的快速渗入;制成的纤维膜电极材料具有良好的电化学性能;本发明制成的电极材料比表面积大,比电容大,制成的超级电容器拥有更高的容量,良好的循环稳定性。

Description

一种添加锡锑包覆二氧化锰的静电纺复合电极材料
技术领域
本发明涉及电容器技术领域,尤其涉及一种添加锡锑包覆二氧化锰的静电纺复合电极材料。
背景技术
超级电容器又称电化学电容器,具有功率密度大、循环寿命长、维护简便以及成本相对低廉等特点。超级电容器具有比传统介电电容器更大的能量密度和比电池更高的功率密度,在应急电源、混合动力、数码产品、电子通讯等领域有广阔的应用前景。碳纳米管自从1991年被发现以来, 由于具有优异的力学性能、热学性能、 导电性能, 而成为科学家研究的热点。碳纳米管是理想的复合材料添加相, 具有高达1000以上的长径比, 同时由于sp2轨道杂化形成大量离域p电子, 导电性能优异。聚苯胺作为超级电容器导电性聚合物的电极材料,由于易于合成、良好的环境稳定性、高导电性等优点,已被广泛研究应用。然而,聚苯胺因为体积变化大和较差的循环充电/放电能力等缺点,限制了其在超级电容器电极材料方面的应用。这些问题可以通过将聚苯胺与碳基纳米材料合并加以解决,从而实现电化学双层电容器和赝电容电容器的协同作用。因此,大比表面积和良好导电性的纳米碳材料被用作支持材料以获得高性能和长循环寿命的复合电极。
《碳纳米管/聚苯胺/石墨烯复合纳米碳纸及其电化学电容行为》一文中通过真空抽滤的方法制备碳纳米管纸, 并对其进行循环伏安电化学氧化处理,以该电化学氧化处理的碳纳米管纸为基体, 采用电化学聚合沉积聚苯胺, 随后吸附石墨烯, 制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯复合纳米碳纸,该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能。但是操作工艺复杂,难以控制复合纸的结构,以至于难以提高了其比表面积,限制了比电容的提高;而且由于实际生产过程中生产的碳纳米管都会残留一部分的催化剂杂质, 以及一些无定形碳, 这些杂质的存在限制了碳纳米管的使用,文章中采用酸纯化碳纳米管,混酸处理的同时去除了绝大多数的无定形碳及金属颗粒, 但处理过程繁琐, 污染严重, 同时也引入了一些官能团, 这些官能团的存在对碳纳米管的结构造成一定的破坏, 从而对性能会产生一定的影响,限制了其性能;综上所述,需要对工艺手段进行一定的改进,从而能够制得操作可控,导电性强、比表面积大、比电容大的超级电容器电极材料,满足科技发展的需求。
发明内容
本发明目的就是为了弥补已有技术的缺陷,提供一种添加锡锑包覆二氧化锰的静电纺复合电极材料。
本发明是通过以下技术方案实现的:
一种添加锡锑包覆二氧化锰的静电纺复合电极材料,由下列重量份的原料制成:多壁碳纳米管10-12、十二烷基硫酸钠1.5-1.6、去离子水适量、无水乙醇适量、聚苯胺10-12、氯仿适量、聚氧化乙烯14-15、混旋樟脑磺酸12-13、碳酸锰1.2-1.3、浓度为95wt%的乙醇56-60、五水四氯化锡0.8-1、三氯化锑1-1.2。
所述一种添加锡锑掺杂二氧化锰的静电纺复合电极材料,由下列具体方法制备而成:
(1)将多壁碳纳米管放在石墨坩埚炉,置于石墨化炉中,对其进行抽真空,以10-15℃/min升温至2800℃,保温20-20小时,自然冷却,得到石墨化碳纳米管;将上述石墨化碳纳米管放入球磨机中以200-300转/份的速度球磨90-120分钟,加入溶于25-30倍量的去离子水的十二烷基硫酸钠,超声20-30分钟后喷雾干燥,得到改性碳纳米管;
(2)将浓度为95wt%的乙醇与去离子水混合,控制浓度为95wt%的乙醇与去离子水比例为7:1,搅拌分散均匀,加入五水四氯化锡、三氯化锑,加热至30℃,搅拌30-40分钟使其溶胶化,然后加入碳酸锰,超声60-90分钟后继续搅拌120-150分钟,将溶液静置10-12小时,离心分离,在60℃下真空干燥,最后将干凝胶放入管式炉中以400-500℃下煅烧2-3小时,得到锡锑掺杂二氧化锰;
(3)将聚苯胺溶于100倍量的氯仿中,再加入混旋樟脑磺酸,室温下以300-400转/分的速度搅拌12-14小时,然后加入步骤(1)步骤(2)得到的产物,超声分散20-30分钟后加入其余剩余成分,继续以300-400转/分的速度搅拌10-12小时,得到纺丝液;
(4)将纺丝液吸入到注射器中利用静电纺丝技术将纺丝液收集在集流体金属镍上,控制纺丝液流量为0.2-0.3ml/h,电压为15-20kV,纺丝距离为8-14cm,纺丝过程5-6小时,形成具有一定厚度的网络结构的复合纤维电极材料。
本发明的优点是:本发明首先对碳纳米管进行高温石墨化处理的方法来达到纯化的效果,在石墨化的同时,金属催化剂发生蒸发,碳纳米管不会遭到破坏,同时结晶度和导电性提高;然后利用静电纺丝技术将石墨化后的碳纳米管、聚苯胺、聚氧化乙烯等制成了网络结构的复合纤维膜,通过控制纺丝距离、纺丝流量等使得制备的纤维较细,增强了其比表面积,从而使得电解质离子扩散阻力变小,电荷转移通道越通畅,由此表现出更好的电容性能,提高了比电容,而且利用此电极材料制成的超级电容器表现出良好的循环稳定性,同时工艺简单,便于工业控制。
本文通过五水四氯化锡、三氯化锑对碳酸锰进行包覆,通过高温煅烧得到锡锑包覆二氧化锰,具有多孔结构,从而有利于电解质的快速渗入;制成的纤维膜电极材料具有良好的电化学性能;本发明制成的电极材料比表面积大,比电容大,制成的超级电容器拥有更高的容量,良好的循环稳定性。
具体实施方式
一种添加锡锑包覆二氧化锰的静电纺复合电极材料,由下列重量份(公斤)的原料制成:多壁碳纳米管10、十二烷基硫酸钠1.5、去离子水适量、无水乙醇适量、聚苯胺10、氯仿适量、聚氧化乙烯14、混旋樟脑磺酸12、碳酸锰1.2、浓度为95wt%的乙醇56、五水四氯化锡0.8、三氯化锑1。
所述一种添加锡锑掺杂二氧化锰的静电纺复合电极材料,由下列具体方法制备而成:
(1)将多壁碳纳米管放在石墨坩埚炉,置于石墨化炉中,对其进行抽真空,以10℃/min升温至2800℃,保温20小时,自然冷却,得到石墨化碳纳米管;将上述石墨化碳纳米管放入球磨机中以200转/份的速度球磨90分钟,加入溶于25倍量的去离子水的十二烷基硫酸钠,超声20分钟后喷雾干燥,得到改性碳纳米管;
(2)将浓度为95wt%的乙醇与去离子水混合,控制浓度为95wt%的乙醇与去离子水比例为7:1,搅拌分散均匀,加入五水四氯化锡、三氯化锑,加热至30℃,搅拌30分钟使其溶胶化,然后加入碳酸锰,超声60分钟后继续搅拌120分钟,将溶液静置10小时,离心分离,在60℃下真空干燥,最后将干凝胶放入管式炉中以400℃下煅烧2小时,得到锡锑掺杂二氧化锰;
(3)将聚苯胺溶于100倍量的氯仿中,再加入混旋樟脑磺酸,室温下以300转/分的速度搅拌12小时,然后加入步骤(1)步骤(2)得到的产物,超声分散20分钟后加入其余剩余成分,继续以300转/分的速度搅拌10小时,得到纺丝液;
(4)将纺丝液吸入到注射器中利用静电纺丝技术将纺丝液收集在集流体金属镍上,控制纺丝液流量为0.2ml/h,电压为15kV,纺丝距离为8cm,纺丝过程5小时,形成具有一定厚度的网络结构的复合纤维电极材料。
将聚四氟乙烯隔膜浸入到聚乙烯醇-硫酸凝胶电解质中,保持 20分钟,取出后在室温下自然蒸发干燥,然后把所述实施例制成的收集复合纤维膜的金属镍作为电极材料与聚乙烯醇-硫酸隔膜按三明治结构叠放在一起,并用聚酯薄膜对其进行封装,得到超级电容器。在扫描速度为 5 mV•s–1、电位区间–0.8-0.2 V 时的循环伏安特性曲线得到超级电容器的比电容为101F/g,在 1 000 次循环充放电测试后比电容仍能保持大于90%。

Claims (2)

1.一种添加锡锑包覆二氧化锰的静电纺复合电极材料,其特征在于,由下列重量份的原料制成:多壁碳纳米管10-12、十二烷基硫酸钠1.5-1.6、去离子水适量、无水乙醇适量、聚苯胺10-12、氯仿适量、聚氧化乙烯14-15、混旋樟脑磺酸12-13、碳酸锰1.2-1.3、浓度为95wt%的乙醇56-60、五水四氯化锡0.8-1、三氯化锑1-1.2。
2.根据权利要求书1所述一种添加锡锑掺杂二氧化锰的静电纺复合电极材料,其特征在于,由下列具体方法制备而成:
(1)将多壁碳纳米管放在石墨坩埚炉,置于石墨化炉中,对其进行抽真空,以10-15℃/min升温至2800℃,保温20-20小时,自然冷却,得到石墨化碳纳米管;将上述石墨化碳纳米管放入球磨机中以200-300转/份的速度球磨90-120分钟,加入溶于25-30倍量的去离子水的十二烷基硫酸钠,超声20-30分钟后喷雾干燥,得到改性碳纳米管;
(2)将浓度为95wt%的乙醇与去离子水混合,控制浓度为95wt%的乙醇与去离子水比例为7:1,搅拌分散均匀,加入五水四氯化锡、三氯化锑,加热至30℃,搅拌30-40分钟使其溶胶化,然后加入碳酸锰,超声60-90分钟后继续搅拌120-150分钟,将溶液静置10-12小时,离心分离,在60℃下真空干燥,最后将干凝胶放入管式炉中以400-500℃下煅烧2-3小时,得到锡锑掺杂二氧化锰;
(3)将聚苯胺溶于100倍量的氯仿中,再加入混旋樟脑磺酸,室温下以300-400转/分的速度搅拌12-14小时,然后加入步骤(1)步骤(2)得到的产物,超声分散20-30分钟后加入其余剩余成分,继续以300-400转/分的速度搅拌10-12小时,得到纺丝液;
(4)将纺丝液吸入到注射器中利用静电纺丝技术将纺丝液收集在集流体金属镍上,控制纺丝液流量为0.2-0.3ml/h,电压为15-20kV,纺丝距离为8-14cm,纺丝过程5-6小时,形成具有一定厚度的网络结构的复合纤维电极材料。
CN201610978759.6A 2016-11-08 2016-11-08 一种添加锡锑包覆二氧化锰的静电纺复合电极材料 Pending CN106548874A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610978759.6A CN106548874A (zh) 2016-11-08 2016-11-08 一种添加锡锑包覆二氧化锰的静电纺复合电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610978759.6A CN106548874A (zh) 2016-11-08 2016-11-08 一种添加锡锑包覆二氧化锰的静电纺复合电极材料

Publications (1)

Publication Number Publication Date
CN106548874A true CN106548874A (zh) 2017-03-29

Family

ID=58394281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610978759.6A Pending CN106548874A (zh) 2016-11-08 2016-11-08 一种添加锡锑包覆二氧化锰的静电纺复合电极材料

Country Status (1)

Country Link
CN (1) CN106548874A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945252A (zh) * 2020-08-19 2020-11-17 中国海洋大学 一种基于静电纺丝制备中空锑基二元合金复合纳米纤维材料的方法及其储钾应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130431A (zh) * 2006-08-23 2008-02-27 中国科学院金属研究所 一种纯化多壁碳纳米管/纳米碳纤维的方法
CN101807682A (zh) * 2010-04-09 2010-08-18 曲阜毅威能源股份有限公司 一种动力型尖晶石锰酸锂正极材料及其制备方法
CN101849302A (zh) * 2007-11-05 2010-09-29 纳米技术仪器公司 用于锂离子电池的纳米石墨烯薄片基复合阳极组合物
CN103811190A (zh) * 2014-01-16 2014-05-21 天津大学 锑掺杂二氧化锡包覆多孔二氧化锰复合电极材料及制备
CN103936987A (zh) * 2014-05-08 2014-07-23 扬州大学 一种碳纳米管复合材料及其制备方法
CN104495811A (zh) * 2014-12-12 2015-04-08 盐城市新能源化学储能与动力电源研究中心 一种石墨烯复合材料及其制备方法
CN105206432A (zh) * 2015-09-29 2015-12-30 南京绿索电子科技有限公司 聚苯胺纳米管阵列/氧化铜/二氧化锰复合材料电极及其制备方法和应用
CN105977020A (zh) * 2016-06-21 2016-09-28 闽江学院 一种纤维电容器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101130431A (zh) * 2006-08-23 2008-02-27 中国科学院金属研究所 一种纯化多壁碳纳米管/纳米碳纤维的方法
CN101849302A (zh) * 2007-11-05 2010-09-29 纳米技术仪器公司 用于锂离子电池的纳米石墨烯薄片基复合阳极组合物
CN101807682A (zh) * 2010-04-09 2010-08-18 曲阜毅威能源股份有限公司 一种动力型尖晶石锰酸锂正极材料及其制备方法
CN103811190A (zh) * 2014-01-16 2014-05-21 天津大学 锑掺杂二氧化锡包覆多孔二氧化锰复合电极材料及制备
CN103936987A (zh) * 2014-05-08 2014-07-23 扬州大学 一种碳纳米管复合材料及其制备方法
CN104495811A (zh) * 2014-12-12 2015-04-08 盐城市新能源化学储能与动力电源研究中心 一种石墨烯复合材料及其制备方法
CN105206432A (zh) * 2015-09-29 2015-12-30 南京绿索电子科技有限公司 聚苯胺纳米管阵列/氧化铜/二氧化锰复合材料电极及其制备方法和应用
CN105977020A (zh) * 2016-06-21 2016-09-28 闽江学院 一种纤维电容器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945252A (zh) * 2020-08-19 2020-11-17 中国海洋大学 一种基于静电纺丝制备中空锑基二元合金复合纳米纤维材料的方法及其储钾应用
CN111945252B (zh) * 2020-08-19 2022-08-30 中国海洋大学 一种基于静电纺丝制备中空锑基二元合金复合纳米纤维材料的方法及其储钾应用

Similar Documents

Publication Publication Date Title
Wu et al. Carbon‐nanomaterial‐based flexible batteries for wearable electronics
Hwang et al. High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors
Ma et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion
Xu et al. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability
Heme et al. Recent progress in polyaniline composites for high capacity energy storage: A review
Sun et al. Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors
Chen et al. Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density
Zhang et al. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor
Miao et al. Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors
Cao et al. Lignin-based multi-channels carbon nanofibers@ SnO2 nanocomposites for high-performance supercapacitors
CN107919233B (zh) 一种高电压柔性固态超级电容器及其制备方法
Huang et al. Fabrication of vanadium oxide, with different valences of vanadium,-embedded carbon fibers and their electrochemical performance for supercapacitor
CN102568855B (zh) 碳材料负载二氧化锰纳米线阵列复合材料及其制备方法
Zheng et al. Graphene-based fibers for the energy devices application: A comprehensive review
Bai et al. Flexible carbon nanotubes-MnO2/reduced graphene oxide-polyvinylidene fluoride films for supercapacitor electrodes
Du et al. Fabrication of hierarchical carbon layer encapsulated polyaniline core-shell structure nanotubes and application in supercapacitors
CN108335917A (zh) 一种炭纳米纤维负载有序排列还原氧化石墨烯电极材料的制备方法
Liu et al. Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors
Javed et al. A review on graphene-based electrospun conductive nanofibers, supercapacitors, anodes, and cathodes for lithium-ion batteries
Song et al. High flexibility and electrocatalytic activity MoS2/TiC/carbon nanofibrous film for flexible dye-sensitized solar cell based photovoltaic textile
Guo et al. High-performance MnO2@ MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors
Yang et al. Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance
Yin et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ ZrO2/C nanofiber film as low-cost counter electrode
CN108054434A (zh) 一种一次电纺柔性超薄锂离子电池的制备方法
Niu et al. Facile fabrication of flexible, bendable and knittable electrode with PANI in the well-defined porous rEGO/GP fiber for solid state supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170329

RJ01 Rejection of invention patent application after publication