CN106525053A - 一种基于多传感器融合的移动机器人室内定位方法 - Google Patents

一种基于多传感器融合的移动机器人室内定位方法 Download PDF

Info

Publication number
CN106525053A
CN106525053A CN201611230784.2A CN201611230784A CN106525053A CN 106525053 A CN106525053 A CN 106525053A CN 201611230784 A CN201611230784 A CN 201611230784A CN 106525053 A CN106525053 A CN 106525053A
Authority
CN
China
Prior art keywords
icp
robot
delta
pose
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611230784.2A
Other languages
English (en)
Inventor
刘召
宋立滨
于涛
陈恳
刘莉
陈洪安
张智祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qing Hua Hua Yi (Tianjin) Education Technology Co., Ltd.
Original Assignee
Qing Yu Advantech Intelligent Robot (tianjin) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qing Yu Advantech Intelligent Robot (tianjin) Co Ltd filed Critical Qing Yu Advantech Intelligent Robot (tianjin) Co Ltd
Priority to CN201611230784.2A priority Critical patent/CN106525053A/zh
Publication of CN106525053A publication Critical patent/CN106525053A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/14Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by recording the course traversed by the object

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供了一种基于多传感器融合的移动机器人室内定位方法,使用基于航迹推算的里程计位置数据补偿激光匹配定位中无法识别相似环境的情况。本发明不仅将基于惯性单元和里程计的传感器定位数据进行融合,也将激光雷达匹配定位作为参考指标,不仅减小了里程计的累积误差,还弥补了短距离激光雷达在单一特征环境中无法进行匹配定位的缺陷,为机器人的地图绘制和导航提供更为准确的定位数据。

Description

一种基于多传感器融合的移动机器人室内定位方法
技术领域
本发明属于轮式移动机器人室内定位领域,尤其是涉及一种基于多传感器融合的移动机器人室内定位方法。
背景技术
移动机器人在室内环境中移动时,首先要知道自己处于什么位置,这是机器人进行环境地图绘制、自主导航的重要前提就是精确的位置和位姿。因此,室内移动机器人定位技术一直是机器人领域的研究热点和难点。
随着传感技术的进步,用于室内移动机器人定位的传感器也在不断更新,总体来说,当前的机器人定位方法主要分为两类:相对定位法和绝对定位法。相对定位法指机器人根据自身传感器,如里程计、惯性模块等得到短时间内的相对位移及转向,结合上一采样时刻的累加位姿得出机器人在当前时刻的位姿,主要有航迹推算法和惯性导航法。
航迹推算法主要用于短距离定位,长距离时编码器的累积误差十分明显;加速度计和陀螺仪存在***误差和零漂、温漂等问题,也会造成累积误差。
绝对定位法指机器人依靠外部传感器直接确定其在世界坐标系中的位姿,常使用路标法、GPS、地图匹配等。路标法维护困难,并且需要对环境进行改变;GPS多用于室外,不适合在室内环境使用;地图匹配常用激光雷达获取环境信息,将前后采用数据进行匹配以获得机器人全局位姿,但大量程的激光雷达造价昂贵,小量程的激光雷达无法处理像楼道一般环境特征相似,变化不明显的场景。
在以往的研究中,有人提出每隔一段时间采用激光扫描匹配校准里程计定位。但这往往需要使用价格昂贵的大量程激光雷达,并且在一些特征单一的室内环境中,激光匹配无法根据匹配结果推断位移,因此利用其定位数据校准里程计会造成数据错误,因此,本发明提出一种基于多传感器融合的移动机器人室内定位方法,使用基于航迹推算的里程计位置数据补偿激光匹配定位中无法识别相似环境的情况,在提高室内定位精度的基础上,其环境适应性更强。
发明内容
有鉴于此,本发明旨在提出一种基于多传感器融合的移动机器人室内定位方法,为机器人的地图绘制和导航提供更为准确的定位数据。
为达到上述目的,本发明的技术方案是这样实现的:
一种基于多传感器融合的移动机器人室内定位方法,利用激光数据匹配的ICP算法进行定位估算,使用航迹推算法得到的位姿变化进行定位结果补偿。
进一步的,所述的利用激光数据匹配的ICP算法进行定位估算包括:
设采样周期为Δt,在第i个采样周期之前,机器人的准确位姿为
p=(x,y,θ)T
在第i个采样周期,通过激光扫描匹配得到机器人移动的位姿变化为:
Δpicp_i=[Δxipc_i Δyipc_i Δθipc_i]T
设此时机器人的移动速度为vicp_i=[vicp_xi,vicp_yi,wicp_i]T,因此存在以下关系:
vicp_xi=Δxicp_i/Δt或vicp_xi=Δyicp_i/Δt,并且ΔSicp_i=Δxicp_i或ΔSicp_i=Δyicp_i
其中ΔSicp_i为通过匹配算法得到的机器人在本采样周期内的移动距离。
进一步的,利用激光数据匹配的ICP算法进行定位估算具体包括:
(a1)将本时刻激光扫描记为当前扫描D,上一时刻扫描记为参考扫描M;
(b1)通过点到线的匹配方法得到将D匹配到M的最优变换(R,T),其中R为旋转变换矩阵,T为平移矢量:
(c1)根据(R,T)计算当前机器人的位姿变化Δpk=(Δxk,Δyk,Δθk)T,假定k时刻机器人位姿为pk=(xk,ykk)T,则k+1时刻机器人位姿为:
(d1)将当前扫描D记为新的参考扫描M,继续采样激光数据,由步骤(a1)开始重新迭代。
进一步的,所述的使用航迹推算法得到的位姿变化进行定位结果补偿包括:
使用航迹推算法进行定位估算,得到第i个采样周期内机器人移动的位姿变化为:
Δptrack_i=[Δxtrack_i,Δytrack_i,Δθtrack_i]T
设此时机器人的移动速度为vtrack_i=[vtrack_xi,vtrack_yi,wtrack_i]T,则:
vtrack_xi=ΔStrack_i/Δt,vtrack_yi=0.0,wi=Δθtrack_i/Δt;
其中ΔStrack_i为通过航迹推算法得到的机器人在本采样周期内的移动距离。
进一步的,所述的使用航迹推算法得到的位姿变化进行定位结果补偿具体包括:
(a2)假设在一个采样周期内,收到电机编码器反馈,单位换算得到左轮、右轮的移动距离分别为ΔSl和ΔSr,转过的角度为Δθ,则可以推算得到机器人在这个采用周期内的移动距离和旋转角角度:
其中,2R为机器人两轮间距,ΔS为机器人移动的距离,Δθ为机器人转过的角度;
(b2)机器人在世界坐标系下的运动可如下式所示:
其中,θ为此时刻之前机器人已旋转过的累积角度;
(c2)由此,假定k时刻机器人位姿为pk=(xk,ykk),单位采样时间内机器人位姿变化为Δpk=(Δxk,Δyk,Δθk),则根据航迹推算法,机器人在k+1时刻的位姿为:
进一步的,还包括利用激光数据匹配的ICP算法进行定位估算得到的位姿变化以及使用航迹推算法得到的位姿变化做差,得到位姿差Δp。
进一步的,若满足
Δp≤ξ,其中ξ>0,
则认为此时的激光扫描匹配得到的位姿变化正确
进一步的,若不满足
Δp≤ξ,其中ξ>0,
则启用航迹推算法得到的位姿变化进行定位结果补偿。
相对于现有技术,本发明所述的一种基于多传感器融合的移动机器人室内定位方法具有以下优势:
(1)本发明将基于激光雷达的环境匹配定位算法与基于里程计的航迹推算法结合,完成移动机器人的室内定位;
(2)本发明采用基于航迹推算的里程计数据补偿激光雷达定位数据,解决了使用短量程激光雷达无法区分特征单一且长时间无变化的环境。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的一种基于多传感器融合的移动机器人室内定位方法示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
本发明使用基于航迹推算的里程计定位数据补偿激光雷达的扫描匹配定位,该方法的实现基于如下理论:
(1)基于编码器的航迹推算模型
假设在一个采样周期内,收到电机编码器反馈,单位换算得到左轮、右轮的移动距离分别为ΔSl和ΔSr,转过的角度为Δθ,则可以推算得到机器人在这个采用周期内的移动距离和旋转角角度:
其中,2R为机器人两轮间距,ΔS为机器人移动的距离,Δθ为机器人转过的角度。
由于采样间隔十分短,可以认为机器人位移近似于直线,则机器人在世界坐标系下的运动可如下式所示:
其中,θ为此时刻之前机器人已旋转过的累积角度。
由此,假定k时刻机器人位姿为pk=(xk,ykk),单位采样时间内机器人位姿变化为Δpk=(Δxk,Δyk,Δθk),则根据航迹推算法,机器人在k+1时刻的位姿为:
(2)基于激光数据匹配的ICP算法
ICP算法的思想是对连续采集的相邻两个激光数据帧进行匹配,获取两者之间的相对位姿变换关系,从而增量式地更新机器人当前位姿,算法步骤可概括为:
(a)将本时刻激光扫描记为当前扫描D,上一时刻扫描记为参考扫描M;
(b)通过点到线的匹配方法得到将D匹配到M的最优变换(R,T),其中R为旋转变换矩阵,T为平移矢量:
(c)根据(R,T)计算当前机器人的位姿变化Δpk=(Δxk,Δyk,Δθk)T,假定k时刻机器人位姿为pk=(xk,ykk)T,则k+1时刻机器人位姿为:
(d)将当前扫描D记为新的参考扫描M,继续采样激光数据,由步骤(a)开始重新迭代。
如图1所示,本发明所述的多传感器融合定位的算法步骤:
未知环境中,手动控制机器人行走建立环境地图过程中,只做直线前进和原地旋转动作,这一约定的目的是减小地图绘制过程中因误差而引起的地图倾斜。
假设采样周期为Δt,在第i个采样周期之前,机器人的准确位姿为p=(x,y,θ)T
第一步,采用关键理论(2)中提到的基于激光数据匹配的ICP算法进行定位估算,在第i个采样周期,通过激光扫描匹配得到机器人移动的位姿变化为:Δpicp_i=[Δxipc_iΔyipc_i Δθipc_i]T
设此时机器人的移动速度为vicp_i=[vicp_xi,vicp_yi,wicp_i]T,对于双轮驱动移动移动机器人,vy=0恒成立。根据前提约定,只存在向前直行和原地转弯,因此以下等式恒成立:
vicp_xi=Δxicp_i/Δt或vicp_xi=Δyicp_i/Δt,并且ΔSicp_i=Δxicp_i或ΔSicp_i=Δyicp_i
其中ΔSicp_i为通过匹配算法得到的机器人在本采样周期内的移动距离。
第二步,使用航迹推算法进行定位估算,根据式(1)~(3)得到第i个采样周期内机器人移动的位姿变化为:
Δptrack_i=[Δxtrack_i,Δytrack_i,Δθtrack_i]T
设此时机器人的移动速度为vtrack_i=[vtrack_xi,vtrack_yi,wtrack_i]T,则:
vtrack_xi=ΔStrack_i/Δt,vtrack_yi=0.0,wi=Δθtrack_i/Δt。
其中ΔStrack_i为通过航迹推算法得到的机器人在本采样周期内的移动距离。
第三步,验证激光扫描匹配得到的位姿变化是否正确:
第一、二步均是对第i个采样周期内机器人移动的位姿变化进行估算,若两者的估算均正确,应有:
|Δptrack_i-Δpicp_i|≤ξ (5)
其中ξ是一个大于零的数,其含义为两种位姿估算法得到的位姿的最大允许误差。
若结果满足(5)式,则认为此时的激光扫描匹配得到的位姿变化正确,则该采样时间后,机器人位姿pi可以表示为:
pi=pi-1+Δpicp_i (6)
若计算结果不满足(5)式,进一步判断,如果此时vicp_i≈0.0但vtrack_i≠0.0,则判断此时的激光扫描匹配得到的位姿变化错误,猜想机器人进入结构特征单一路段,启用航迹推算法得到的位姿变化进行定位结果补偿,即:
pi=pi-1+Δptrack_i (7)
如此往复,直至机器人创建封闭的环境地图为止。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于多传感器融合的移动机器人室内定位方法,其特征在于:利用激光数据匹配的ICP算法进行定位估算,使用航迹推算法得到的位姿变化进行定位结果补偿。
2.根据权利要求1所述的一种基于多传感器融合的移动机器人室内定位方法,其特征在于:所述的利用激光数据匹配的ICP算法进行定位估算包括:
设采样周期为Δt,在第i个采样周期之前,机器人的准确位姿为
p=(x,y,θ)T
在第i个采样周期,通过激光扫描匹配得到机器人移动的位姿变化为:
Δpicp_i=[Δxipc_i Δyipc_i Δθipc_i]T
设此时机器人的移动速度为vicp_i=[vicp_xi,vicp_yi,wicp_i]T,因此存在以下关系:
vicp_xi=Δxicp_i/Δt或vicp_xi=Δyicp_i/Δt,并且ΔSicp_i=Δxicp_i或ΔSicp_i=Δyicp_i
其中ΔSicp_i为通过匹配算法得到的机器人在本采样周期内的移动距离。
3.根据权利要求2所述的一种基于多传感器融合的移动机器人室内定位方法,其特征在于:利用激光数据匹配的ICP算法进行定位估算具体包括:
(a1)将本时刻激光扫描记为当前扫描D,上一时刻扫描记为参考扫描M;
(b1)通过点到线的匹配方法得到将D匹配到M的最优变换(R,T),其中R为旋转变换矩阵,T为平移矢量:
(c1)根据(R,T)计算当前机器人的位姿变化Δpk=(Δxk,Δyk,Δθk)T,假定k时刻机器人位姿为pk=(xk,ykk)T,则k+1时刻机器人位姿为:
( x k + 1 , y k + 1 , θ k + 1 ) T = x k y k θ k + cosθ k sinθ k 0 - sinθ k cosθ k 0 0 0 1 Δx k Δy k Δθ k
(d1)将当前扫描D记为新的参考扫描M,继续采样激光数据,由步骤(a1)开始重新迭代。
4.根据权利要求1所述的一种基于多传感器融合的移动机器人室内定位方法,其特征在于:所述的使用航迹推算法得到的位姿变化进行定位结果补偿包括:
使用航迹推算法进行定位估算,得到第i个采样周期内机器人移动的位姿变化为:
Δptrack_i=[Δxtrack_i,Δytrack_i,Δθtrack_i]T
设此时机器人的移动速度为vtrack_i=[vtrack_xi,vtrack_yi,wtrack_i]T,则:
vtrack_xi=ΔStrack_i/Δt,vtrack_yi=0.0,wi=Δθtrack_i/Δt;
其中ΔStrack_i为通过航迹推算法得到的机器人在本采样周期内的移动距离。
5.根据权利要求4所述的一种基于多传感器融合的移动机器人室内定位方法,其特征在于:所述的使用航迹推算法得到的位姿变化进行定位结果补偿具体包括:
(a2)假设在一个采样周期内,收到电机编码器反馈,单位换算得到左轮、右轮的移动距离分别为ΔSl和ΔSr,转过的角度为Δθ,则可以推算得到机器人在这个采用周期内的移动距离和旋转角角度:
Δ S = ΔS r + ΔS l 2 Δ θ = ΔS r - ΔS l 2 R
其中,2R为机器人两轮间距,ΔS为机器人移动的距离,Δθ为机器人转过的角度;
(b2)机器人在世界坐标系下的运动可如下式所示:
Δ x = Δ S c o s ( θ + Δ θ / 2 ) Δ y = Δ S s i n ( θ + Δ θ / 2 )
其中,θ为此时刻之前机器人已旋转过的累积角度;
(c2)由此,假定k时刻机器人位姿为pk=(xk,ykk),单位采样时间内机器人位姿变化为Δpk=(Δxk,Δyk,Δθk),则根据航迹推算法,机器人在k+1时刻的位姿为:
p k + 1 = x k + Δx k y k + Δy k θ k + Δ θ .
6.根据权利要求1所述的一种基于多传感器融合的移动机器人室内定位方法,其特征在于:还包括利用激光数据匹配的ICP算法进行定位估算得到的位姿变化以及使用航迹推算法得到的位姿变化做差,得到位姿差Δp。
7.根据权利要求6所述的一种基于多传感器融合的移动机器人室内定位方法,其特征在于:若满足
Δp≤ξ,其中ξ>0,
则认为此时的激光扫描匹配得到的位姿变化正确。
8.根据权利要求6所述的一种基于多传感器融合的移动机器人室内定位方法,其特征在于:
若不满足
Δp≤ξ,其中ξ>0,
则启用航迹推算法得到的位姿变化进行定位结果补偿。
CN201611230784.2A 2016-12-28 2016-12-28 一种基于多传感器融合的移动机器人室内定位方法 Pending CN106525053A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611230784.2A CN106525053A (zh) 2016-12-28 2016-12-28 一种基于多传感器融合的移动机器人室内定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611230784.2A CN106525053A (zh) 2016-12-28 2016-12-28 一种基于多传感器融合的移动机器人室内定位方法

Publications (1)

Publication Number Publication Date
CN106525053A true CN106525053A (zh) 2017-03-22

Family

ID=58337819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611230784.2A Pending CN106525053A (zh) 2016-12-28 2016-12-28 一种基于多传感器融合的移动机器人室内定位方法

Country Status (1)

Country Link
CN (1) CN106525053A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918830A (zh) * 2017-03-23 2017-07-04 安科机器人有限公司 一种基于多导航模块的定位方法及移动机器人
CN107300696A (zh) * 2017-06-16 2017-10-27 北京军立方机器人科技有限公司 一种基于rfid的移动机器人位置校正方法和装置
CN107990893A (zh) * 2017-11-24 2018-05-04 南京航空航天大学 二维激光雷达slam中探测环境发生突变的检测方法
CN108036786A (zh) * 2017-12-01 2018-05-15 安徽优思天成智能科技有限公司 基于辅助线的位姿检测方法、装置和计算机可读存储介质
CN108332758A (zh) * 2018-01-26 2018-07-27 上海思岚科技有限公司 一种移动机器人的走廊识别方法及装置
CN108548536A (zh) * 2018-01-05 2018-09-18 广东雷洋智能科技股份有限公司 无人驾驶智能机器人的位置推算方法
CN108664030A (zh) * 2018-05-23 2018-10-16 上海圭目机器人有限公司 一种智能消毒机器人***
CN109129468A (zh) * 2018-07-27 2019-01-04 广东工业大学 一种基于myrio平台的移动机器人
CN109144056A (zh) * 2018-08-02 2019-01-04 上海思岚科技有限公司 移动机器人的全局自定位方法及设备
CN110045733A (zh) * 2019-04-04 2019-07-23 肖卫国 一种实时定位方法及其***、计算机可读介质
CN110553652A (zh) * 2019-10-12 2019-12-10 上海高仙自动化科技发展有限公司 机器人多传感器融合定位方法及其应用
CN110954100A (zh) * 2019-12-30 2020-04-03 广东省智能制造研究所 一种基于激光与惯导融合的足式机器人本体状态估计方法
CN111638530A (zh) * 2020-05-27 2020-09-08 广州蓝胖子机器人有限公司 一种叉车定位的方法、叉车及计算机可读存储介质
CN112923931A (zh) * 2019-12-06 2021-06-08 北理慧动(常熟)科技有限公司 一种基于固定路线下的特征地图匹配与gps定位信息融合方法
CN115366102A (zh) * 2022-08-23 2022-11-22 珠海城市职业技术学院 一种移动机器人在室内未知动态环境中的导航方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777220A (zh) * 2014-01-17 2014-05-07 西安交通大学 基于光纤陀螺、速度传感器和gps的实时精确位姿估计方法
CN105180933A (zh) * 2015-09-14 2015-12-23 中国科学院合肥物质科学研究院 基于直行路口检测的移动机器人航迹推算修正***及方法
CN105547288A (zh) * 2015-12-08 2016-05-04 华中科技大学 一种煤矿井下移动设备自主定位的方法及***
CN106123890A (zh) * 2016-06-14 2016-11-16 中国科学院合肥物质科学研究院 一种多传感器数据融合的机器人定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777220A (zh) * 2014-01-17 2014-05-07 西安交通大学 基于光纤陀螺、速度传感器和gps的实时精确位姿估计方法
CN105180933A (zh) * 2015-09-14 2015-12-23 中国科学院合肥物质科学研究院 基于直行路口检测的移动机器人航迹推算修正***及方法
CN105547288A (zh) * 2015-12-08 2016-05-04 华中科技大学 一种煤矿井下移动设备自主定位的方法及***
CN106123890A (zh) * 2016-06-14 2016-11-16 中国科学院合肥物质科学研究院 一种多传感器数据融合的机器人定位方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918830A (zh) * 2017-03-23 2017-07-04 安科机器人有限公司 一种基于多导航模块的定位方法及移动机器人
CN107300696A (zh) * 2017-06-16 2017-10-27 北京军立方机器人科技有限公司 一种基于rfid的移动机器人位置校正方法和装置
CN107990893A (zh) * 2017-11-24 2018-05-04 南京航空航天大学 二维激光雷达slam中探测环境发生突变的检测方法
CN108036786A (zh) * 2017-12-01 2018-05-15 安徽优思天成智能科技有限公司 基于辅助线的位姿检测方法、装置和计算机可读存储介质
CN108548536A (zh) * 2018-01-05 2018-09-18 广东雷洋智能科技股份有限公司 无人驾驶智能机器人的位置推算方法
CN108332758A (zh) * 2018-01-26 2018-07-27 上海思岚科技有限公司 一种移动机器人的走廊识别方法及装置
CN108332758B (zh) * 2018-01-26 2021-07-09 上海思岚科技有限公司 一种移动机器人的走廊识别方法及装置
CN108664030A (zh) * 2018-05-23 2018-10-16 上海圭目机器人有限公司 一种智能消毒机器人***
CN109129468B (zh) * 2018-07-27 2021-03-12 广东工业大学 一种基于myrio平台的移动机器人
CN109129468A (zh) * 2018-07-27 2019-01-04 广东工业大学 一种基于myrio平台的移动机器人
CN109144056B (zh) * 2018-08-02 2021-07-06 上海思岚科技有限公司 移动机器人的全局自定位方法及设备
CN109144056A (zh) * 2018-08-02 2019-01-04 上海思岚科技有限公司 移动机器人的全局自定位方法及设备
CN110045733A (zh) * 2019-04-04 2019-07-23 肖卫国 一种实时定位方法及其***、计算机可读介质
CN110045733B (zh) * 2019-04-04 2022-11-01 肖卫国 一种实时定位方法及其***、计算机可读介质
CN110553652A (zh) * 2019-10-12 2019-12-10 上海高仙自动化科技发展有限公司 机器人多传感器融合定位方法及其应用
CN110553652B (zh) * 2019-10-12 2022-06-24 上海高仙自动化科技发展有限公司 机器人多传感器融合定位方法及其应用
CN112923931A (zh) * 2019-12-06 2021-06-08 北理慧动(常熟)科技有限公司 一种基于固定路线下的特征地图匹配与gps定位信息融合方法
CN110954100A (zh) * 2019-12-30 2020-04-03 广东省智能制造研究所 一种基于激光与惯导融合的足式机器人本体状态估计方法
CN111638530A (zh) * 2020-05-27 2020-09-08 广州蓝胖子机器人有限公司 一种叉车定位的方法、叉车及计算机可读存储介质
CN111638530B (zh) * 2020-05-27 2023-09-19 广州蓝胖子移动科技有限公司 一种叉车定位的方法、叉车及计算机可读存储介质
CN115366102A (zh) * 2022-08-23 2022-11-22 珠海城市职业技术学院 一种移动机器人在室内未知动态环境中的导航方法及***

Similar Documents

Publication Publication Date Title
CN106525053A (zh) 一种基于多传感器融合的移动机器人室内定位方法
US20210025713A1 (en) Lane line positioning method and apparatus, and storage medium thereof
CN113781582B (zh) 基于激光雷达和惯导联合标定的同步定位与地图创建方法
Cao et al. Accurate position tracking with a single UWB anchor
KR101214143B1 (ko) 이동체의 위치 및 방향 인식 장치 및 그 방법
Atia et al. Integrated indoor navigation system for ground vehicles with automatic 3-D alignment and position initialization
CN106681320A (zh) 一种基于激光数据的移动机器人导航控制方法
CN110243358A (zh) 多源融合的无人车室内外定位方法及***
CN109946732A (zh) 一种基于多传感器数据融合的无人车定位方法
CN103207634A (zh) 一种智能车辆中差分gps与惯性导航数据融合的***和方法
CN106441275A (zh) 一种机器人规划路径的更新方法及装置
CN108362288B (zh) 一种基于无迹卡尔曼滤波的偏振光slam方法
CN104501838B (zh) 捷联惯导***初始对准方法
CN106338991A (zh) 一种基于惯性导航和二维码的机器人及定位导航方法
Wang et al. Vehicle localization at an intersection using a traffic light map
CN103697889A (zh) 一种基于多模型分布式滤波的无人机自主导航与定位方法
CN103033189A (zh) 一种深空探测巡视器惯性/视觉组合导航方法
CN106767827A (zh) 一种基于激光数据的移动机器人点云地图创建方法
CN109813305A (zh) 基于激光slam的无人叉车
CN111426320A (zh) 一种基于图像匹配/惯导/里程计的车辆自主导航方法
WO2022147924A1 (zh) 车辆定位方法和装置、存储介质及电子设备
CN105333869A (zh) 一种基于自适应ekf的无人侦察机同步定位与构图方法
CN111025366A (zh) 基于ins及gnss的网格slam的导航***及方法
CN113447949A (zh) 一种基于激光雷达和先验地图的实时定位***及方法
CN111221020A (zh) 一种室内外定位方法、装置及***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180920

Address after: 300300 3, 202 Building 5, Chuang Hui Valley Park, Hong Shun Road, Huaming street, Dongli, Tianjin.

Applicant after: Qing Hua Hua Yi (Tianjin) Education Technology Co., Ltd.

Address before: 300300, 2 floor, building 4, Chuang Hui Valley, Huaming high tech Industrial Zone, Dongli, Tianjin.

Applicant before: Qing Yu Advantech intelligent robot (Tianjin) Co., Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20170322

RJ01 Rejection of invention patent application after publication