CN106496552A - 一种三元纳米复合材料石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法 - Google Patents

一种三元纳米复合材料石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法 Download PDF

Info

Publication number
CN106496552A
CN106496552A CN201610990034.9A CN201610990034A CN106496552A CN 106496552 A CN106496552 A CN 106496552A CN 201610990034 A CN201610990034 A CN 201610990034A CN 106496552 A CN106496552 A CN 106496552A
Authority
CN
China
Prior art keywords
acid
graphene oxide
poly
composite material
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610990034.9A
Other languages
English (en)
Inventor
过冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610990034.9A priority Critical patent/CN106496552A/zh
Publication of CN106496552A publication Critical patent/CN106496552A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种三元纳米复合材料氧化石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法,本发明所述方法制备得到的复合材料对AP有较大的电流响应,且修饰电极的稳定性好,适合作为AP的传感材料。

Description

一种三元纳米复合材料石墨烯-聚苯胺-聚氨基苯磺酸的制备 方法
技术领域
本发明涉及复合材料技术领域,尤其涉及一种三元纳米复合材料石墨烯-聚苯胺-聚氨基苯磺酸的制备方法。
背景技术
电化学生物传感器是结合生物特异性识别过程和电化学来实现检测的传感器件。具体为将酶或模拟材料作为生物敏感基元,用电化学修饰电极作为信号转换器,通过捕捉目标物与敏感基元之间的反应所产生的可测信号,此信号与目标信号浓度成正比,实现对电活性目标物定量测定。电化学生物传感器具有构造简单、成本低廉、灵敏度高、选择性高和稳定性好等优点。
酶生物传感器的直接电化学特性表现为电子在敏感基元的活性中心与电极表面间的直接传递,然而不借助任何传递媒介或试剂的直接电子传递是很困难的。因为生物酶往往都是大分子,其氧化还原活性中心深深地包囊在分子的内部。电化学传感器性能的好坏与修饰电极的材料密切相关。导电性良好的物质基于其优异的特性,能在电极与酶间起到促进直接电子传递的作用。
石墨烯具有π-π共轭结构,大的比表面积和好的生物相容性,应该在酶生物传感器领域有着广泛的用途。
发明内容
本发明的目的在于提出一种三元纳米复合材料石墨烯-聚苯胺-聚氨基苯磺酸的制备方法,能够作为模拟酶具备出色的电催化活性。
为达此目的,本发明采用以下技术方案:
一种三元纳米复合材料氧化石墨烯-聚苯胺-聚氨基苯磺酸的制备方法,包括:
(1)在冰浴条件下,机械搅拌条件下,在98%浓硫酸中加入鳞片石墨粉,再加入占石墨粉50-80wt%的硝酸钠,和占石墨烯2-4倍重量的高锰酸钾,冰浴下反应30-120min;
(2)加热至30-40℃恒温4-5h,加入去离子水和双氧水,搅拌1-3h,加入5%浓度的HCl离心洗涤直至无硫酸根离子,得到氧化石墨烯粉末;
(3)将所述氧化石墨烯粉末超声分散配置成为0.3-1g/L的均匀悬浮液,依次加入苯胺和间氨基苯磺酸、质子酸HCl和引发剂过硫酸铵;苯胺与间氨基苯磺酸的质量比为4:1-6:1;
(4)常温搅拌下进行反应,反应结束并冷却至室温;
(5)离心分离得到沉淀物,用乙醇洗涤所述沉淀物,得到氧化石墨烯-聚苯胺-聚氨基苯磺酸三元纳米复合材料。
本发明对于现有技术的贡献,主要集中在提供一种全新的工艺步骤,至于各个工艺条件,不如各物质的用量与比例,本领域技术人员可以在现有技术的基础上,结合具体要求,自行确定,本发明不再就其赘述。
本发明所述方法制备得到的产物,经FTIR分析,其在1030和620cm-1处有-SO3的红外吸收峰,证明间氨基苯磺酸与苯胺成功共聚,掺杂在聚合物中。
本发明制备得到的三元纳米复合材料,氧化石墨烯表面被一层共聚物薄膜包覆,通过TEM和SEM发现聚合物在氧化石墨烯表面生长的颗粒均一,无团聚现象。
本发明所述方法制备得到的复合材料对AP有较大的电流响应,且修饰电极的稳定性好,适合作为AP的传感材料。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。
实施例1
一种三元纳米复合材料氧化石墨烯-聚苯胺-聚氨基苯磺酸的制备方法,包括:
(1)在冰浴条件下,机械搅拌条件下,在98%浓硫酸中加入鳞片石墨粉,再加入占石墨粉50wt%的硝酸钠,和占石墨烯2倍重量的高锰酸钾,冰浴下反应30min;
(2)加热至30℃恒温4h,加入去离子水和双氧水,搅拌1h,加入5%浓度的HCl离心洗涤直至无硫酸根离子,得到氧化石墨烯粉末;
(3)将所述氧化石墨烯粉末超声分散配置成为0.3g/L的均匀悬浮液,依次加入苯胺和间氨基苯磺酸、质子酸HCl和引发剂过硫酸铵;苯胺与间氨基苯磺酸的质量比为4:1;
(4)常温搅拌下进行反应,反应结束并冷却至室温;
(5)离心分离得到沉淀物,用乙醇洗涤所述沉淀物,得到氧化石墨烯-聚苯胺-聚氨基苯磺酸三元纳米复合材料。
实施例2
一种三元纳米复合材料氧化石墨烯-聚苯胺-聚氨基苯磺酸的制备方法,包括:
(1)在冰浴条件下,机械搅拌条件下,在98%浓硫酸中加入鳞片石墨粉,再加入占石墨粉80wt%的硝酸钠,和占石墨烯4倍重量的高锰酸钾,冰浴下反应120min;
(2)加热至40℃恒温5h,加入去离子水和双氧水,搅拌3h,加入5%浓度的HCl离心洗涤直至无硫酸根离子,得到氧化石墨烯粉末;
(3)将所述氧化石墨烯粉末超声分散配置成为1g/L的均匀悬浮液,依次加入苯胺和间氨基苯磺酸、质子酸HCl和引发剂过硫酸铵;苯胺与间氨基苯磺酸的质量比为6:1;
(4)常温搅拌下进行反应,反应结束并冷却至室温;
(5)离心分离得到沉淀物,用乙醇洗涤所述沉淀物,得到氧化石墨烯-聚苯胺-聚氨基苯磺酸三元纳米复合材料。
实施例3
一种三元纳米复合材料氧化石墨烯-聚苯胺-聚氨基苯磺酸的制备方法,包括:
(1)在冰浴条件下,机械搅拌条件下,在98%浓硫酸中加入鳞片石墨粉,再加入占石墨粉70wt%的硝酸钠,和占石墨烯3倍重量的高锰酸钾,冰浴下反应60min;
(2)加热至35℃恒温4.5h,加入去离子水和双氧水,搅拌2h,加入5%浓度的HCl离心洗涤直至无硫酸根离子,得到氧化石墨烯粉末;
(3)将所述氧化石墨烯粉末超声分散配置成为0.7g/L的均匀悬浮液,依次加入苯胺和间氨基苯磺酸、质子酸HCl和引发剂过硫酸铵;苯胺与间氨基苯磺酸的质量比为5:1;
(4)常温搅拌下进行反应,反应结束并冷却至室温;
(5)离心分离得到沉淀物,用乙醇洗涤所述沉淀物,得到氧化石墨烯-聚苯胺-聚氨基苯磺酸三元纳米复合材料。
实施例1-3所述方法制备得到的三元复合对AP有较大的电流响应,且修饰电极的稳定性好,适合作为AP的传感材料。

Claims (1)

1.一种三元纳米复合材料氧化石墨烯-聚苯胺-聚氨基苯磺酸的制备方法,包括:
(1)在冰浴条件下,机械搅拌条件下,在98%浓硫酸中加入鳞片石墨粉,再加入占石墨粉50-80wt%的硝酸钠,和占石墨烯2-4倍重量的高锰酸钾,冰浴下反应30-120min;
(2)加热至30-40℃恒温4-5h,加入去离子水和双氧水,搅拌1-3h,加入5%浓度的HCl离心洗涤直至无硫酸根离子,得到氧化石墨烯粉末;
(3)将所述氧化石墨烯粉末超声分散配置成为0.3-1g/L的均匀悬浮液,依次加入苯胺和间氨基苯磺酸、质子酸HCl和引发剂过硫酸铵;苯胺与间氨基苯磺酸的质量比为4:1-6:1;
(4)常温搅拌下进行反应,反应结束并冷却至室温;
(5)离心分离得到沉淀物,用乙醇洗涤所述沉淀物,得到氧化石墨烯-聚苯胺-聚氨基苯磺酸三元纳米复合材料。
CN201610990034.9A 2016-11-10 2016-11-10 一种三元纳米复合材料石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法 Pending CN106496552A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610990034.9A CN106496552A (zh) 2016-11-10 2016-11-10 一种三元纳米复合材料石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610990034.9A CN106496552A (zh) 2016-11-10 2016-11-10 一种三元纳米复合材料石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法

Publications (1)

Publication Number Publication Date
CN106496552A true CN106496552A (zh) 2017-03-15

Family

ID=58324000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610990034.9A Pending CN106496552A (zh) 2016-11-10 2016-11-10 一种三元纳米复合材料石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法

Country Status (1)

Country Link
CN (1) CN106496552A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041739A (zh) * 2019-04-02 2019-07-23 砥创(苏州)新材料科技有限公司 一种高效防腐用超大尺寸石墨烯水性浆料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723209A (zh) * 2012-05-25 2012-10-10 上海第二工业大学 一种石墨烯纳米片/导电聚合物纳米线复合材料的制备方法
CN103923304A (zh) * 2014-04-03 2014-07-16 南京理工大学 微波辅助法合成的Hemin-石墨烯/聚(3,4-乙撑二氧噻吩)三元复合物及其制备
CN103940875A (zh) * 2014-04-03 2014-07-23 南京理工大学 微波辅助法合成的Hemin-石墨烯/聚(3,4-乙撑二氧噻吩)三元复合物的应用
CN104313872A (zh) * 2014-10-11 2015-01-28 江南大学 一种石墨烯/聚苯胺共价结合柔性导电织物的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723209A (zh) * 2012-05-25 2012-10-10 上海第二工业大学 一种石墨烯纳米片/导电聚合物纳米线复合材料的制备方法
CN103923304A (zh) * 2014-04-03 2014-07-16 南京理工大学 微波辅助法合成的Hemin-石墨烯/聚(3,4-乙撑二氧噻吩)三元复合物及其制备
CN103940875A (zh) * 2014-04-03 2014-07-23 南京理工大学 微波辅助法合成的Hemin-石墨烯/聚(3,4-乙撑二氧噻吩)三元复合物的应用
CN104313872A (zh) * 2014-10-11 2015-01-28 江南大学 一种石墨烯/聚苯胺共价结合柔性导电织物的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
唐祝兴: "《新型磁性纳米材料的制备、修饰及应用》", 31 August 2016, 机械工业出版社 *
孟乐: "《基于(类)石墨烯与聚苯胺及其衍生物的DNA传感器界面》", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑 B020-15》 *
林璟: "《耐热性聚氨酯复合树脂及其IMD油墨应用技术》", 31 October 2014, 西北工业大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041739A (zh) * 2019-04-02 2019-07-23 砥创(苏州)新材料科技有限公司 一种高效防腐用超大尺寸石墨烯水性浆料及其制备方法
CN110041739B (zh) * 2019-04-02 2021-11-26 砥创(苏州)新材料科技有限公司 一种高效防腐用超大尺寸石墨烯水性浆料及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode
Xue et al. Simultaneous electrochemical determination of sulphite and nitrite by a gold nanoparticle/graphene-chitosan modified electrode
Tian et al. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode
Huang et al. Electrochemical biosensor based on silver nanoparticles–polydopamine–graphene nanocomposite for sensitive determination of adenine and guanine
Bo et al. A DNA biosensor based on graphene paste electrode modified with Prussian blue and chitosan
Zhang et al. Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor
Yu et al. Combining padlock exponential rolling circle amplification with CoFe2O4 magnetic nanoparticles for microRNA detection by nanoelectrocatalysis without a substrate
Xu et al. Direct growth of MnOOH nanorod arrays on a carbon cloth for high-performance non-enzymatic hydrogen peroxide sensing
CN108169311B (zh) 一种检测miRNA-122的电化学生物传感器
CN107338011B (zh) 一种水分散型聚合物微粒子乳液粘结剂及其制备方法
Liu et al. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis
CN107037102B (zh) 一种纳米复合材料及其制备方法、应用
Tao et al. Poly (m-phenylenediamine)–Prussian blue hybrid film formed by one-step electrochemical deposition for glucose biosensor
CN103063715A (zh) 一种基于石墨烯金复合材料电化学DNA生物传感器检测survivin基因的方法
CN109270140A (zh) 高分散石墨烯/Zn基金属有机骨架复合材料的电化学传感器的制备方法及应用
CN104037419A (zh) 锂离子二次电池的电极用粘合剂、电极用浆料、锂离子二次电池用电极以及锂离子二次电池
Lin et al. Electrocatalytic oxidation of NADH based on polyluminol and functionalized multi-walled carbon nanotubes
CN109755579A (zh) 锂离子电池用正极复合导电粘结剂的制备方法
Zhu et al. Bioinspired superwettable electrodes towards electrochemical biosensing
CN106496552A (zh) 一种三元纳米复合材料石墨烯‑聚苯胺‑聚氨基苯磺酸的制备方法
CN104671232A (zh) 一种石墨烯的制备方法及其制备的石墨烯的应用
Liu et al. Simultaneous determination of vitamins B 2, B 6 and C using silver-doped poly (L-arginine)-modified glassy carbon electrode
Wang et al. Application of titanium dioxide nanowires and electroreduced graphene oxide modified electrodes for the electrochemical detection of specific tlh gene sequence from vibrio parahaemolyticus
Na et al. Electrochemical deoxyribonucleic acid biosensor based on multiwalled carbon nanotubes/Ag-TiO2 composite film for label-free phosphinothricin acetyltransferase gene detection by electrochemical impedance spectroscopy
CN105651842B (zh) 一种花瓣状聚苯胺硫化钼复合物、制备及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315