CN106444738B - 基于动态运动基元学习模型的移动机器人路径规划方法 - Google Patents

基于动态运动基元学习模型的移动机器人路径规划方法 Download PDF

Info

Publication number
CN106444738B
CN106444738B CN201610348356.3A CN201610348356A CN106444738B CN 106444738 B CN106444738 B CN 106444738B CN 201610348356 A CN201610348356 A CN 201610348356A CN 106444738 B CN106444738 B CN 106444738B
Authority
CN
China
Prior art keywords
robot
dynamic motion
motion
data
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610348356.3A
Other languages
English (en)
Other versions
CN106444738A (zh
Inventor
陈洋
姜明浩
吴怀宇
程磊
李威凌
谭艳平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201610348356.3A priority Critical patent/CN106444738B/zh
Publication of CN106444738A publication Critical patent/CN106444738A/zh
Application granted granted Critical
Publication of CN106444738B publication Critical patent/CN106444738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种基于动态运动基元学***,当机器人运动的目标位置改变时,机器人可以自主的到达新的目标位置,即机器人可以完成不针对某一指定任务,而对于其他的任务也具有泛化推广的能力;并且动态运动基元模型的在线学习特征和其自主避障功能相结合提高了路径规划的效率。

Description

基于动态运动基元学习模型的移动机器人路径规划方法
技术领域
本发明涉及移动机器人路径规划领域,具体是一种基于动态运动基元学习模型的移动机器人路径规划方法。
背景技术
路径规划是移动机器人的关键技术之一,它在一定程度上标志着移动机器人智能水平的高低,能快速找出一条便捷、无碰撞的路径不仅保证了移动机器人自身的安全,更体现了机器人的高效性和可靠性。
目前,常用到的机器人路径规划方法有人工势场法、模糊逻辑模型、遗传等模型。人工势场法是路径规划模型中较成熟且较高效的规划方法,以其简单的数学计算被广泛使用。但是传统的人工势场法存在局部极小点和目标不可达等问题。目前,有多种解决局部极小点的办法,如启发式搜索,随机逃走法等,但这些改进的人工势场法只是对机器人施加附加的控制力,没有从根本上解决问题。遗传模型是一种基于遗传和自然选择的多搜索模型,具有鲁棒、灵活、在种群中搜索不易落入局部最小点等优点。但遗传模型在进行机器人路径规划时存在种群规模大、搜索空间大、容易陷入局部极小点、收敛速度慢等问题。
以上传统的机器人路径规划模型主要存在以下两个方面的问题:
(1)任务是特定的,仅仅针对某一任务有很好性能,而不具有泛化推广能力;
(2)学习往往是离线的,这就导致了对新的场景要重新训练学习,实时性很差。
发明内容
本发明要解决的技术问题是:针对上述的移动机器人路径规划方法中所存在的实时性差,以及移动机器人完成任务单一的问题,提出一种基于动态运动基元学习模型的路径规划方法。能够实时搜索路径,与其自主避障功能结合起来能有效地提高路径规划的效率,此外,机器人在完成新的任务时,可以不用重新训练样本而保持原来样本轨迹的特性到达新的目标位置。
为解决上述技术问题,本发明提供如下技术方案:
一种基于动态运动基元学习模型的移动机器人路径规划方法,其特征在于主要包括如下步骤:
步骤1:对机器人运动的二维环境进行建模,模拟机器人运动的二维环境界面,机器人用小实心圆来代替,障碍物为各种平面图形;
步骤2:利用手柄对机器人的操控,使机器人能从起点避免与障碍物碰撞而到达目标点;
步骤3:在步骤2进行的过程中,采集机器人运动轨迹数据作为动态运动基元学习模型的样本点,所述机器人运动轨迹数据包括位移、速度和加速度;
步骤4:根据步骤3得到的机器人运动轨迹时的位移、速度和加速度数据,将这些数据作为训练样本,通过动态运动基元算法对样本进行训练得到机器人运动轨迹所对应的最佳权重值;
步骤5:针对特定任务设置初始参数,所述初始参数包括机器人运动的起点和终点,根据步骤4得到的最佳权重值,规划出通过动态运动基元模型学习后的路径,该路径具有原样本轨迹的特性,即起点和终点一致,并且其运行轨迹与样本轨迹大致相同;
步骤6:在步骤5的基础上,加入圆形障碍物,并且在原有的动力学方程中加入耦合项,从而构建带有避障功能的动力学***,实现动态运动基元学习模型的自主避障功能;
步骤7:在步骤5的基础上,改变机器人运动的目标位置,在不重新训练样本的前提下,仅仅改变目标位置的参数,机器人仍能自主到达新的目标点位置,即机器人可以完成不针对某一指定任务,而对于其他的任务也具有泛化推广的能力。
上述技术方案中,步骤1中对机器人运动的二维环境进行建模,建模的要求为:移动机器人的活动范围在一个有限的二维空间;以移动机器人的尺寸为基准,将障碍物的尺寸向外扩展,将机器人看作一个质点;障碍物由各种平面图形组成,数目有限,并且在机器人移动过程中这些障碍物不会发生变化和移动。
上述技术方案中,步骤2具体过程如下:
步骤2-1:读取机器人手柄的数据,当手柄向上下或左右推动时,该界面实时的显示机器人在建模环境中运动的位移、速度和加速度;
步骤2-2:遥控手柄,人为的规划出一条机器人能从起始点到达终点的最优路径,考虑到机器人一般只能前后和左右运动,因此规划出来的路径也是前后或者左右运动的路径,规划出来的轨迹也叫做样本轨迹;
步骤2-3:在规划路径时,要避开障碍物,并且用数据保存的方法将样本轨迹的位移、速度和加速度的值记录下来,并作为样本数据。
上述技术方案中,步骤4包括如下具体步骤:
步骤4-1:建立动态运动基元的数学模型:动态运动基元一般用来形成离散的运动,对于单一的自由度位移y,引入带有恒定系数线性微分方程并称之为动力学***,此***作为对运动学习的基础:
式中:
x和v分别是***的位移和速度;x0和g分别是初始位置和目标位置;τ是时间伸缩因子;K是弹簧的弹性系数;D是***处于临界状态下的阻尼系数;f是非线性函数,用于生成任意复杂的运动;
步骤4-2:设置初始参数,机器人运动的起始点x0和目标点g,时间常数τ,弹簧的弹性系数K,***处于临界状态下的阻尼系数D;非线性函数f用于形成任意复杂的运动,定义f为:
式中:
ψi(s)是径向基核函数,i表示第i个径向基核函数ψi(s),其取值范围是1到N,其中N表示径向基核函数的个数;径向基核函数定义为:
ψi(s)=exp(-hi(s-ci)2) (4)
式中:
ci是径向基核函数的中心,hi>0且决定核函数的宽;其中 hN=hN-1,i=1,...N,α为任意正常数;
公式(3)中的函数f并不取决于时间参数,而是取决于相位变量s,s的表达形式为:
式中:
s是关于时间t的函数,α为任意正常数,τ是时间伸缩因子;由方程(5)可知s是由1到0单调递减的,因此方程(5)称为正则***;
步骤4-3:将步骤3中得到的样本数据代入公式(1)和公式(2)中,因为正则***是可积分的,即s可以根据参数τ计算出来,所以训练样本中的非线性扰动f′(s)可以表示成:
根据最小误差准则函数J来求解最佳权重值wi,其中最小误差准则函数的表达式为:
J=∑s(f′(s)-f(s))2 (7)
当J取最小时的wi就是最佳的权重值。
上述技术方案中,步骤5包括如下具体步骤:
步骤5-1:当机器人执行指定的任务时,设置机器人的起点位置与终点位置;
步骤5-2:样本数据是二维的,也即包括x轴方向上的数据和y轴方向上的数据,将x轴方向上的数据按照步骤4进行训练,得到x轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,计算出x方向上通过动态运动基元模型学习后的位移、速度和加速度;
步骤5-3:将y轴方向上的数据按照步骤4进行训练,得到y轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,计算出y方向上通过动态运动基元模型学习后的位移、速度和加速度;
步骤5-4:读入步骤5-2和步骤5-3中得到的数据,分别得到x轴和y轴两个方向的运动数据,在二维平面上输出运动的轨迹仿真图,即完成基于动态运动基元学习模型对移动机器人的路径规划。
上述技术方案中,步骤6中所加入的障碍物是以(0.4,0.4)为圆心坐标,半径为0.1m的圆。
本发明的方法开始以简单的线性动态***(一组微分方程)开始研究,通过转换***将简单的线性动态***转换成非线性***,并且通过吸引子来形成任意复杂的运动,这样就能较简单的对非线性***进行研究。其中,用微分方程来表示的优点在于误差可以自动的被校正,而且微分方程都是以固定的格式形成的,按照这个固定的格式仅仅只需要简单的改变一个目标参数,就能适应新的环境,即可以对新目标进行泛化;基于动态运动基元学习的方法是在线学习的,对于新的情形不用重新学习,能实时的跟踪目标位置。因而,在避障方面上,通过构建带避障功能的动力学***实现自主避障,并且动态运动基元模型的在线学习特征和其自主避障功能相结合提高了路径规划的效率。
与现有技术相比,本发明的有益效果是:
(1)本发明提出一种基于动态运动基元学习模型的移动机器人路径规划方法,该学习模型具有泛化推广能力,机器人在完成新的任务时,可以不用重新训练样本而保持原来样本轨迹的特性到达新的目标位置。
(2)本发明提出的路径规划模型在搜索路径时是实时的,与其自主避障功能结合起来能有效地提高路径规划的效率。
附图说明
图1是本发明基于动态运动基元学习模型的移动机器人路径规划过程示意图;
图2是本发明中模拟机器人运动的二维环境;其中直线型轨迹代表样本轨迹;各种形状的图形(如矩形、圆形、椭圆形)表示二维环境中的障碍物;
图3是本发明中动态运动基元学习模型的自主避障仿真图;
图4是本发明中动态运动基元学习模型所具有泛化推广能力的仿真图;
图5是训练的样本轨迹与通过动态运动基元模型学习后的轨迹对比图。
具体实施方式
为了进一步说明本发明的技术方案,下面结合附图1-5对本发明进行详细的说明。
步骤1:模拟机器人运动的二维环境界面,其界面上机器人用小实心圆来代替,障碍物为各种平面图形;设置机器人运动的二维环境界面为正方形(长和宽都为1m),机器人用一个直径为5mm的小实心圆来代替。
步骤2:利用OPENCV(Open Source Computer Vision Library)实现手柄对机器人的操控,使机器人能从起点避免与障碍物碰撞到达目标点;
步骤2-1:基于MFC(Microsoft Foundation Classes)界面编写一个上位机软件,该软件可以读取机器人手柄的数据,当手柄向上下或左右推动时,该界面可以实时的显示机器人在建模环境中运动的位移、速度和加速度;
步骤2-2:遥控手柄,人为的规划出一条机器人能从起始点到达终点的最优路径,考虑到机器人一般只能前后和左右运动,因此规划出来的路径也是前后或者左右运动的路径,规划出来的轨迹也叫做样本轨迹;
步骤2-3:在规划路径时,要避开障碍物,并且用数据保存的方法将样本轨迹的位移、速度和加速度的值记录下来,并作为样本数据;
步骤2中使用的是基于MFC编写的上位机软件,通过对手柄的操控就能实现对机器人的控制。其中设置手柄推杆的位移为机器人运动时的速度大小,其中控制机器人运动速度的范围为-5mm/s~5mm/s。
步骤3:在步骤2进行的过程中,采集机器人运动轨迹数据作为动态运动基元学习模型的样本点,其中机器人运动轨迹数据包括其位移、速度和加速度值的大小;
步骤4:根据步骤3得到的机器人运动轨迹时的位移、速度和加速度,将这些数据作为DMP学习模型的训练样本,通过对样本的训练得到机器人运动轨迹所对应的最佳权重值;
步骤4-1:建立动态运动基元的数学模型。动态运动基元一般用来形成离散的运动,对于单一的自由度位移y,引入带有恒定系数线性微分方程并称之为动力学***,此***作为对运动学习的基础:
式中:
x和v分别是***的位移和速度;x0和g分别是初始位置和目标位置;τ是时间伸缩因子;K是弹簧的弹性系数;D是***处于临界状态下的阻尼系数;f是非线性函数,用于生成任意复杂的运动;
步骤4-2:设置初始参数,机器人运动的起始点x0和目标点g,时间常数τ,弹簧的弹性系数K,***处于临界状态下的阻尼系数D;非线性函数f用于形成任意复杂的运动,定义为:
式中:
ψi(s)是径向基核函数,i表示第i个径向基核函数ψi(s),其取值范围是1到N,其中N表示径向基核函数的个数;径向基核函数定义为:
ψi(s)=exp(-hi(s-ci)2) (4)
式中:
ci是径向基核函数的中心,hi>0且决定核函数的宽;其中 hN=hN-1,i=1,...N,α为任意正常数;
公式(3)中的函数f并不取决于时间参数,而是取决于相位变量s,s的表达形式为:
式中:
s是关于时间t的函数,α为任意正常数,τ是时间伸缩因子;由方程(5)可知s是由1到0单调递减的,因此方程(5)称为正则***;
步骤4-3:将步骤3中得到的样本数据代入上述公式中,因为正则***是可积分的,即s可以根据参数τ计算出来,所以训练样本中的非线性扰动f′(s)可以表示成:
根据最小误差准则函数J来求解最佳权重值wi,其中最小误差准则函数的表达式为:
J=∑s(f′(s)-f(s))2 (7)
当J取最小时的wi就是最佳的权重值;
步骤5:针对特定任务设置初始参数(机器人运动的起点和终点),根据步骤4得到的最佳权重值,规划出通过动态运动基元模型学习后的路径,该路径具有原样本轨迹的特性;
步骤5-1:当机器人执行指定的任务时,设置机器人的起点位置与终点位置;
步骤5-2:样本数据是二维的(x轴方向上的数据和y轴方向上的数据),将x轴方向上的数据按照步骤4进行训练,得到x轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,就可以计算出x方向上通过动态运动基元模型学习后的位移、速度和加速度;
步骤5-3:将y轴方向上的数据按照步骤4进行训练,得到y轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,就可以计算出y方向上通过动态运动基元模型学习后的位移、速度和加速度;
步骤5-4:将步骤5-2和步骤5-3中得到的数据通过MATLAB读入,得到x轴和y轴两个方向的运动数据,在二维平面上输出运动的轨迹仿真图,即完成基于动态运动基元学习模型对移动机器人的路径规划。
步骤6:在步骤5的基础上,加入圆形障碍物,并且在原有的动力学方程中加入耦合项,从而构建带有避障功能的动力学***,实现了动态运动基元学习模型的自主避障功能;
步骤6-1:在步骤5-4的基础上,加入圆形障碍物,其中障碍物是以(0.4,0.4)为圆心坐标,半径为0.1m的圆;
步骤6-2:在步骤4-1给出的动力学***方程的基础上加入耦合项P(x,v)来构建带有避障功能的动力学***,其中耦合项P(x,v)的表达式为:
式中:
是以为轴,为旋转角的旋转矩阵,矢量是障碍物的位置,γ与β是常量,θ是轨迹上的点与障碍物的距离矢量与轨迹上那一点的相对速度之间的夹角;
步骤6-3:给定耦合项P(x,v)公式中的常数项初值,其中γ=8,旋转矩阵R表示成:
步骤6-4:通过构建带有避障功能的动力学***,加入步骤6-1中所述的障碍物,机器人仍能避开障碍物到达目标点,其中带有避障功能的动力学***的数学表达式为:
由图3可以看出,动态运动基元模型具有自主避障的功能;
步骤7:在步骤5的基础上,改变机器人运动的目标位置,在不重新训练样本的前提下,仅仅改变目标位置的参数,机器人仍能自主的到达新的目标点位置,即机器人可以完成不针对某一指定任务,而对于其他的任务也具有泛化推广的能力。
步骤7-1:在步骤5-4的基础上,改变机器人目标点的位置为(0.5,0.5),代入步骤4,得到在不重新训练样本的前提下,动态运动基元模型学习后的轨迹;
步骤7-2:在步骤5-4的基础上,改变机器人目标点的位置为(0.8,0.8),代入步骤4,得到在不重新训练样本的前提下,动态运动基元模型学习后的轨迹;
步骤7-3:由图4可知,在步骤7-1和步骤7-2中,机器人可以到达新的目标位置,并且保持原样本轨迹的特性,因此证明了动态运动基元学习模型所具有的泛化推广能力;
综上,本发明基于动态运动基元学习模型实现对机器人的路径规划,该学习模型的在线学习特征和其自主避障功能相结合提高了路径规划的效率,并且该模型具有泛化推广能力。本发明的提出,提高了移动机器人的智能性,为移动机器人在路径规划、避障与导航等相关领域提供了参考。

Claims (5)

1.一种基于动态运动基元学习模型的移动机器人路径规划方法,其特征在于主要包括如下步骤:
步骤1:对机器人运动的二维环境进行建模,模拟机器人运动的二维环境界面,机器人用小实心圆来代替,障碍物为各种平面图形;
步骤2:利用手柄对机器人的操控,使机器人能从起点避免与障碍物碰撞而到达目标点;
步骤3:在步骤2进行的过程中,采集机器人运动轨迹数据作为动态运动基元学习模型的样本点,所述机器人运动轨迹数据包括位移、速度和加速度;
步骤4:根据步骤3得到的机器人运动轨迹时的位移、速度和加速度数据,将这些数据作为训练样本,通过动态运动基元算法对样本进行训练得到机器人运动轨迹所对应的最佳权重值;
步骤5:针对特定任务设置初始参数,所述初始参数包括机器人运动的起点和终点,根据步骤4得到的最佳权重值,规划出通过动态运动基元模型学习后的路径,该路径具有原样本轨迹的特性,即起点和终点一致,并且其运行轨迹与样本轨迹大致相同;
步骤6:在步骤5的基础上,加入圆形障碍物,并且在原有的动力学方程中加入耦合项,从而构建带有避障功能的动力学***,实现动态运动基元学习模型的自主避障功能;
步骤7:在步骤5的基础上,改变机器人运动的目标位置,在不重新训练样本的前提下,仅仅改变目标位置的参数,机器人仍能自主到达新的目标点位置,即机器人可以完成不针对某一指定任务,而对于其他的任务也具有泛化推广的能力;
步骤4动态运动基元算法包括如下具体步骤:
步骤4-1:建立动态运动基元的数学模型:动态运动基元一般用来形成离散的运动,对于单一的自由度位移y,引入带有恒定系数线性微分方程并称之为动力学***,此***作为对运动学习的基础:
式中:
x和v分别是***的位移和速度;x0和g分别是初始位置和目标位置;τ是时间伸缩因子;K是弹簧的弹性系数;D是***处于临界状态下的阻尼系数;f是非线性函数,用于生成任意复杂的运动;
步骤4-2:设置初始参数,机器人运动的起始点x0和目标点g,时间常数τ,弹簧的弹性系数K,***处于临界状态下的阻尼系数D;非线性函数f用于形成任意复杂的运动,定义f为:
式中:
ψi(s)是径向基核函数,i表示第i个径向基核函数ψi(s),其取值范围是1到N,其中N表示径向基核函数的个数;径向基核函数定义为:
ψi(s)=exp(-hi(s-ci)2) (4)
式中:
ci是径向基核函数的中心,hi>0且决定核函数的宽;其中 hN=hN-1,i=1,...N,α为任意正常数;
公式(3)中的函数f并不取决于时间参数,而是取决于相位变量s,s的表达形式为:
式中:
s是关于时间t的函数,α为任意正常数,τ是时间伸缩因子;由方程(5)可知s是由1到0单调递减的,因此方程(5)称为正则***;
步骤4-3:将步骤3中得到的样本数据代入公式(1)和公式(2)中,因为正则***是可积分的,即s可以根据参数τ计算出来,所以训练样本中的非线性扰动f′(s)可以表示成:
根据最小误差准则函数J来求解最佳权重值wi,其中最小误差准则函数的表达式为:
J=∑s(f′(s)-f(s))2 (7)
当J取最小时的wi就是最佳的权重值。
2.根据权利要求1所述的基于动态运动基元学***面图形组成,数目有限,并且在机器人移动过程中这些障碍物不会发生变化和移动。
3.根据权利要求1所述的基于动态运动基元学习模型的移动机器人路径规划方法,其特征在于:步骤2具体过程如下:
步骤2-1:读取机器人手柄的数据,当手柄向上下或左右推动时,该界面实时的显示机器人在建模环境中运动的位移、速度和加速度;
步骤2-2:遥控手柄,人为的规划出一条机器人能从起始点到达终点的最优路径,考虑到机器人一般只能前后和左右运动,因此规划出来的路径也是前后或者左右运动的路径,规划出来的轨迹也叫做样本轨迹;
步骤2-3:在规划路径时,要避开障碍物,并且用数据保存的方法将样本轨迹的位移、速度和加速度的值记录下来,并作为样本数据。
4.根据权利要求1所述的基于动态运动基元学习模型的移动机器人路径规划方法,其特征在于:步骤5包括如下具体步骤:
步骤5-1:当机器人执行指定的任务时,设置机器人的起点位置与终点位置;
步骤5-2:样本数据是二维的,也即包括x轴方向上的数据和y轴方向上的数据,将x轴方向上的数据按照步骤4进行训练,得到x轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,计算出x方向上通过动态运动基元模型学习后的位移、速度和加速度;
步骤5-3:将y轴方向上的数据按照步骤4进行训练,得到y轴方向上的最佳权重值,代入步骤5-1中的起点和终点值,计算出y方向上通过动态运动基元模型学习后的位移、速度和加速度;
步骤5-4:读入步骤5-2和步骤5-3中得到的数据,分别得到x轴和y轴两个方向的运动数据,在二维平面上输出运动的轨迹仿真图,即完成基于动态运动基元学习模型对移动机器人的路径规划。
5.根据权利要求1所述的基于动态运动基元学习模型的移动机器人路径规划方法,其特征在于:步骤6中所加入的障碍物是以(0.4,0.4)为圆心坐标,半径为0.1m的圆。
CN201610348356.3A 2016-05-24 2016-05-24 基于动态运动基元学习模型的移动机器人路径规划方法 Active CN106444738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610348356.3A CN106444738B (zh) 2016-05-24 2016-05-24 基于动态运动基元学习模型的移动机器人路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610348356.3A CN106444738B (zh) 2016-05-24 2016-05-24 基于动态运动基元学习模型的移动机器人路径规划方法

Publications (2)

Publication Number Publication Date
CN106444738A CN106444738A (zh) 2017-02-22
CN106444738B true CN106444738B (zh) 2019-04-09

Family

ID=58183456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610348356.3A Active CN106444738B (zh) 2016-05-24 2016-05-24 基于动态运动基元学习模型的移动机器人路径规划方法

Country Status (1)

Country Link
CN (1) CN106444738B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710592B2 (en) * 2017-04-07 2020-07-14 Tusimple, Inc. System and method for path planning of autonomous vehicles based on gradient
CA3027283A1 (en) * 2017-04-27 2018-11-01 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for route planning
CN107368076B (zh) * 2017-07-31 2018-03-27 中南大学 一种智能环境下机器人运动路径深度学习控制规划方法
CN107436604B (zh) * 2017-07-31 2018-03-16 中南大学 一种智能环境下运载机器人路径智能分解控制规划方法
CN107450535B (zh) * 2017-07-31 2018-06-29 中南大学 一种智能运载机器人最优路径混合图论控制规划方法
DE102017217412A1 (de) * 2017-09-29 2019-04-04 Robert Bosch Gmbh Verfahren, Vorrichtung und Computerprogramm zum Betreiben eines Robotersteuerungssystems
CN108255182B (zh) * 2018-01-30 2021-05-11 上海交通大学 一种基于深度强化学习的服务机器人行人感知避障方法
DE102018202321A1 (de) 2018-02-15 2019-08-22 Robert Bosch Gmbh Koordinierungsanlage, Handhabungseinrichtung und Verfahren
US10670412B2 (en) 2018-02-20 2020-06-02 Veoneer Us, Inc. System and method for generating a target path for a vehicle
CN108469732A (zh) * 2018-03-13 2018-08-31 同济大学 基于dmp的机器人工作空间适应性行走控制***及方法
CN108582072B (zh) * 2018-04-28 2020-09-15 北京邮电大学 一种基于改进图规划算法的空间机械臂任务规划方法
CN108919794B (zh) * 2018-06-01 2021-08-17 广州视源电子科技股份有限公司 一种双轮差速型移动机器人的全局路径规划方法及其装置
CN109108942B (zh) * 2018-09-11 2021-03-02 武汉科技大学 基于视觉实时示教与自适应dmps的机械臂运动控制方法和***
CN109940619A (zh) * 2019-04-09 2019-06-28 深圳前海达闼云端智能科技有限公司 一种轨迹规划方法、电子设备及存储介质
CN110315544B (zh) * 2019-06-24 2022-10-14 南京邮电大学 一种基于视频图像演示的机器人操作学习方法
JP7221839B2 (ja) * 2019-10-08 2023-02-14 国立大学法人静岡大学 自律移動ロボットおよび自律移動ロボットの制御プログラム
CN110789530B (zh) * 2019-11-19 2021-04-09 中国科学院深圳先进技术研究院 一种四轮独立转向-独立驱动车辆轨迹跟踪方法和***
CN111319044B (zh) * 2020-03-04 2022-08-09 达闼科技(北京)有限公司 物品抓取方法、装置、可读存储介质及抓取机器人
CN111633646B (zh) * 2020-05-22 2021-08-27 北京理工大学 基于DMPs和修正避障算法的机器人运动规划方法
CN112207835B (zh) * 2020-09-18 2021-11-16 浙江大学 一种基于示教学习实现双臂协同作业任务的方法
CN112180726A (zh) * 2020-09-29 2021-01-05 北京航空航天大学 一种基于元学习的航天器相对运动轨迹规划方法
CN112549028A (zh) * 2020-12-02 2021-03-26 中国科学院自动化研究所 基于动态运动基元和人工势场的双臂机器人轨迹规划方法
CN112959330B (zh) * 2021-02-02 2022-05-17 浙江大学 基于主从动态运动基元的机器人双臂运动人机对应装置及方法
CN112975986B (zh) * 2021-03-25 2022-06-24 珞石(北京)科技有限公司 基于径向基函数的机械臂点对点轨迹规划方法及装置
CN113043251B (zh) * 2021-04-23 2023-07-07 江苏理工学院 一种机器人示教再现轨迹学习方法
CN114378791B (zh) * 2022-01-13 2023-09-01 中国科学技术大学 一种机器人任务执行方法、装置、设备及可读存储介质
CN114571458B (zh) * 2022-03-21 2022-11-15 苏州大学 基于动态运动基元的微纳机器人组装轨迹学习方法
CN116901055B (zh) * 2023-05-19 2024-04-19 兰州大学 仿人手交互控制方法和装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058260A (ja) * 2008-09-01 2010-03-18 Korea Advanced Inst Of Sci Technol 進化アルゴリズムと模倣学習に基づくロボットの動作制御方法
US8843236B2 (en) * 2012-03-15 2014-09-23 GM Global Technology Operations LLC Method and system for training a robot using human-assisted task demonstration
CN105045260A (zh) * 2015-05-25 2015-11-11 湖南大学 一种未知动态环境下的移动机器人路径规划方法
CN105137967A (zh) * 2015-07-16 2015-12-09 北京工业大学 一种深度自动编码器与q学习算法相结合的移动机器人路径规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058260A (ja) * 2008-09-01 2010-03-18 Korea Advanced Inst Of Sci Technol 進化アルゴリズムと模倣学習に基づくロボットの動作制御方法
US8843236B2 (en) * 2012-03-15 2014-09-23 GM Global Technology Operations LLC Method and system for training a robot using human-assisted task demonstration
CN105045260A (zh) * 2015-05-25 2015-11-11 湖南大学 一种未知动态环境下的移动机器人路径规划方法
CN105137967A (zh) * 2015-07-16 2015-12-09 北京工业大学 一种深度自动编码器与q学习算法相结合的移动机器人路径规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于动态运动基元的微小型四旋翼无人机路径规划;陈鹏震等;《高技术通讯》;20160228;第26卷(第2期);第186-194页

Also Published As

Publication number Publication date
CN106444738A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106444738B (zh) 基于动态运动基元学习模型的移动机器人路径规划方法
CN111618847B (zh) 基于深度强化学习与动态运动基元的机械臂自主抓取方法
CN110083165B (zh) 一种机器人在复杂狭窄环境下路径规划方法
CN108115681B (zh) 机器人的模仿学习方法、装置、机器人及存储介质
CN111872934B (zh) 一种基于隐半马尔可夫模型的机械臂控制方法及***
Chen et al. Stabilization approaches for reinforcement learning-based end-to-end autonomous driving
CN106338919A (zh) 基于增强学习型智能算法的无人艇航迹跟踪控制方法
CN109108942A (zh) 基于视觉实时示教与自适应dmps的机械臂运动控制方法和***
CN110450156B (zh) 多自由度机械臂***自适应模糊控制器的优化设计方法
CN109241552A (zh) 一种基于多约束目标的水下机器人运动规划方法
CN109144102A (zh) 一种基于改进蝙蝠算法的无人机航路规划方法
CN108827312A (zh) 一种基于神经网络和人工势场的协同博弈路径规划方法
CN109240091A (zh) 一种基于强化学习的水下机器人控制方法及其进行跟踪的控制方法
CN111506063B (zh) 一种基于分层强化学习框架的移动机器人无图导航方法
Huang et al. Deductive reinforcement learning for visual autonomous urban driving navigation
CN107168309A (zh) 一种基于行为的多水下机器人路径规划方法
CN114089776B (zh) 一种基于深度强化学习的无人机避障方法
Serra et al. An optimal trajectory planner for a robotic batting task: the table tennis example
Wang et al. Learning of long-horizon sparse-reward robotic manipulator tasks with base controllers
Sun et al. Integrating reinforcement learning and learning from demonstrations to learn nonprehensile manipulation
CN107065563A (zh) 一种基于三维模糊ptp算法的单体机器鱼行为控制策略
CN114609925B (zh) 水下探索策略模型的训练方法及仿生机器鱼水下探索方法
CN115373415A (zh) 一种基于深度强化学习的无人机智能导航方法
US20220051106A1 (en) Method for training virtual animal to move based on control parameters
Metoyer et al. Animating athletic motion planning by example

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant