CN106317387A - 一种防静电抗菌聚乳酸材料的制备方法 - Google Patents

一种防静电抗菌聚乳酸材料的制备方法 Download PDF

Info

Publication number
CN106317387A
CN106317387A CN201610748815.7A CN201610748815A CN106317387A CN 106317387 A CN106317387 A CN 106317387A CN 201610748815 A CN201610748815 A CN 201610748815A CN 106317387 A CN106317387 A CN 106317387A
Authority
CN
China
Prior art keywords
quantum dot
lactic acid
graphene quantum
graphene
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610748815.7A
Other languages
English (en)
Inventor
陆庚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaoming District Of Foshan City Is Runying Technology Co Ltd
Original Assignee
Gaoming District Of Foshan City Is Runying Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaoming District Of Foshan City Is Runying Technology Co Ltd filed Critical Gaoming District Of Foshan City Is Runying Technology Co Ltd
Priority to CN201610748815.7A priority Critical patent/CN106317387A/zh
Publication of CN106317387A publication Critical patent/CN106317387A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/017Additives being an antistatic agent

Abstract

本发明公开了一种防静电抗菌聚乳酸材料的制备方法,其包括以下步骤:(1)将抗菌复合物分散在乳酸中,配制浓度为0.1~2g/L 的溶液,超声搅拌60~90min,得抗菌乳酸溶液;(2)将导电填料分散在乳酸中,配制浓度为1~2g/L 的溶液,超声搅拌60~90min,得导电乳酸溶液;(3)将抗菌乳酸溶液和导电乳酸溶液按2:1体积比混合后置于50~80℃真空烘箱中,真空烘24~36h,至混合液无残余水为止;通过直接缩合法得到聚乳酸材料。本发明通过科学配伍抗菌复合物、导电填料,原料之间相互协同作用,使得聚乳酸材料不仅抗菌特性,还具有防静电功能,进一步扩宽了聚乳酸材料的应用范围。

Description

一种防静电抗菌聚乳酸材料的制备方法
技术领域
本发明涉及了复合材料技术领域,特别是涉及了一种防静电抗菌聚乳酸材料的制备方法。
背景技术
聚乳酸(PLA) 是一种以乳酸为主要原料聚合而成的高分子化合物,属于丙交酯聚酯的一种,使用可再生的植物资源(如玉米)所提出的淀粉原料制成,淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸,生产过程无污染。聚乳酸产品使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,即使聚乳酸焚烧,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体污染环境,因此,聚乳酸具有良好的生物降解性能和环境友好型特征,是一种新型的绿色环保材料。
聚乳酸抗菌制品中抗菌剂的添加方式不采用抗菌母粒的形式添加,抗菌母粒的制作过程是先将抗菌剂和基体树脂混合经双螺杆挤出机加工成线状,经烘干机高温烘干,造粒得抗菌母粒,采用该方法加工聚乳酸抗菌母粒,烘干机高温烘干会导致聚乳酸再次发生的热降解,导致产品性能下降。而且由于纳米银抗菌剂呈颗粒状,粒度为纳米级别,往往只能聚集在聚乳酸材料的特定部位,无法均匀分布在表面,从而影响的抗菌效果;另一方面,纳米银与聚乳酸材料无法紧密结合(特别是当纳米银颗粒含量增加时,容易发生团聚现象),在使用过程中容易脱落,从而影响使用寿命及抗菌效果。现有的聚乳酸材料功能较单一,较难满足多功能的特点。
发明内容
本发明所要解决的技术问题是提供了一种防静电抗菌聚乳酸材料的制备方法。
本发明所要解决的技术问题通过以下技术方案予以实现:
一种防静电抗菌聚乳酸材料的制备方法,其包括以下步骤:
(1)将抗菌复合物分散在乳酸中,配制浓度为0.1~2g/L 的溶液,超声搅拌(500~800W超声功率,500~800rpm搅拌速度)60~90min,得抗菌乳酸溶液;
该抗菌复合物经过偶联剂预处理,具体为将抗菌复合物加入到无水乙醇中,500~800rpm搅拌 1~2h;逐滴滴加占抗菌复合物质量分数2%的偶联剂,继续搅拌1~2h,过滤后烘干;
(2)将导电填料分散在乳酸中,配制浓度为1~2g/L 的溶液,超声搅拌(500~800W超声功率,500~800rpm搅拌速度)60~90min,得导电乳酸溶液;
(3)将抗菌乳酸溶液和导电乳酸溶液按2:1体积比混合后置于50~80℃真空烘箱中,真空烘24~36h,至混合液无残余水为止;通过直接缩合法得到聚乳酸材料。
所述导电填料由多孔碳、碳纳米管、炭黑、石墨烯和纳米铝粉按质量比4:2:1:2:2混合组成;
所述导电填料制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,得到多孔碳;将碳纳米管、纳米铝粉分散在120ml的水溶液中,浸入多孔碳1~2h,让纳米材料充分进入孔道中,然后抽滤;抽滤所得的滤饼浸入到50ml炭黑和石墨烯水溶液中,30~60min,然后再次抽滤;再次抽滤所得的滤饼用蒸馏水洗涤,在真空条件下120℃烘干,即得导电填料。
在本发明中,一种抗菌复合材料的制备方法包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.5~0.8g C60粉末,量取50~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以300~500rpm的速度搅拌,得混合液;称取0.5~3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应5~8h;快速加入100~200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30~60min,激光辐照功率为1~2W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为0.5~1mg/ml的分散液,溶剂为水;超声搅拌(500~1000W超声功率,600~800rpm搅拌速度)80~100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌30~60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.005~0.01g氧化石墨加入到5~10mL的分散剂(DMSO)中,超声搅拌(300~500W超声功率,200~300rpm搅拌速度)并加入0.1~0.3g负载氧化锌的石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(300~500W超声功率,200~300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.001~0.005mol/L硝酸银溶液,控制反应温度为45~60℃,滴加浓度为0.01~0.08mol/L二水合柠檬酸三钠,继续超声搅拌60~120min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3~4:2~3:1~2。
(5)将0.1~0.5g负载银的石墨烯量子点超声搅拌(500~1000W超声功率,300~500rpm搅拌速度)分散于乙醇中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与负载银的石墨烯量子点的质量比为 1~2:1,调节pH值为9~10,反应温度为20~25℃,反应1~3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.1~0.3mol/L钛源(钛源为氟钛酸钾、氟钛酸铵、钛酸异丙酯或四氯化钛)加入到1 M硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100~110℃,反应2~4h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.005~0.01g氧化石墨加入到5~10mL的分散剂(DMSO)中,超声搅拌(300~500W超声功率,200~300rpm搅拌速度)并加入0.1~0.3g载银/二氧化钛石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.2~0.8mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(500~1000W超声功率,600~800rpm搅拌速度)80~100ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为2:1~3)超声搅拌10~30min,然后移至聚四氟乙烯的反应釜中,在80~120℃下保温15~30min;冷却,离心,清洗,烘干得抗菌复合材料。
本发明具有如下有益效果:
本发明分别先制备负载氧化锌的石墨烯量子点和负载银/二氧化钛的石墨烯量子点,然后表面处理,最后附着在多孔石墨烯上,可以更好地负载并固定银纳米粒子和氧化锌,防止其团聚,显著提高银纳米粒子和氧化锌的稳定性,使银纳米粒子和氧化锌具有更长效的抗菌活性;同时复合了银粒子、二氧化钛以及氧化锌的抗菌性能,相比于单一的银纳米抗菌剂有着更好的抗菌效果,抗菌持久;
本发明所使用的导电填料使油墨的导电结构更致密,形成良好的层间联通结构,导电通道更加顺畅,从而进一步提高导电率以及稳定性,又克服了纯碳黑导电油墨导电性能不稳定的缺陷;
本发明通过科学配伍抗菌复合物、导电填料,原料之间相互协同作用,使得聚乳酸材料不仅抗菌特性,还具有防静电功能,进一步扩宽了聚乳酸材料的应用范围。
具体实施方式
下面结合实施例对本发明进行详细的说明,实施例仅是本发明的优选实施方式,不是对本发明的限定。
实施例1
一种抗菌复合材料的制备方法,其包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.5g C60粉末,量取50ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应8h;快速加入200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30min,激光辐照功率为2W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为0.5mg/ml的分散液,溶剂为水;超声搅拌(1000W超声功率,800rpm搅拌速度)80ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.005g氧化石墨加入到8mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.2g负载氧化锌的石墨烯量子点,继续超声搅拌20min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200W,240℃下反应60min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.005mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.08mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为4:2:1。
(5)将0.1g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比5:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 1:1,调节pH值为9~10,反应温度为20~25℃,反应2小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.3mol/L钛源(钛源为氟钛酸钾)加入到1 mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100℃,反应2h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.005g氧化石墨加入到10mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.3g载银/二氧化钛石墨烯量子点,继续超声搅拌30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200W, 240℃下反应60min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.8mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为1:1)超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
实施例2
一种抗菌复合材料的制备方法,其包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.7g C60粉末,量取80ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取2g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应6h;快速加入200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照45min,激光辐照功率为1.5W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为0.8mg/ml的分散液,溶剂为水;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.008g氧化石墨加入到10mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.1g负载氧化锌的石墨烯量子点,继续超声搅拌20min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为300W,220℃下反应60min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.003mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.05mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3:3:2。
(5)将0.3g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 2:1,调节pH值为9~10,反应温度为20~25℃,反应1小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.2mol/L钛源(钛源为氟钛酸铵)加入到1 mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100℃,反应3h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.008g氧化石墨加入到8mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.2g载银/二氧化钛石墨烯量子点,继续超声搅拌30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为300W,220℃下反应60min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.5mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)80ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为2:3)超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
实施例3
一种抗菌复合材料的制备方法,其包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.8g C60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取1g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应5h;快速加入100ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照60min,激光辐照功率为1W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为1mg/ml的分散液,溶剂为水;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.01g氧化石墨加入到5mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.3g负载氧化锌的石墨烯量子点,继续超声搅拌20min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为400W,200℃下反应60min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.001mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.01mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3:2:1。
(5)将0.5g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比3:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 1:1,调节pH值为9~10,反应温度为20~25℃,反应3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.1mol/L钛源(钛源为氟钛酸钾、氟钛酸铵、钛酸异丙酯或四氯化钛)加入到1 mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至110℃,反应4h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.01g氧化石墨加入到5mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.1g载银/二氧化钛石墨烯量子点,继续超声搅拌30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为400W,200℃下反应60min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.2mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)80ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为2:1)超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
对比例1
一种抗菌复合材料的制备方法,包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.5g C60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应8h;快速加入200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液。
(2)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)50ml石墨烯量子点悬浮液,滴加浓度为0.001mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.01mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3:2:1。
(3)将0.5g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比3:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 1:1,调节pH值为9~10,反应温度为20~25℃,反应3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(4)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.2mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml石墨烯分散溶液,加入步骤(3)制得的SiO2包覆载银石墨烯量子点,超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
对比例2
一种抗菌复合材料的制备方法,包括以下步骤:称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.5mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml石墨烯分散溶液,滴加浓度为0.003mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.04mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯抗菌材料。
本发明所制备出的抗菌复合材料的抗菌活性评价的具体过程和步骤如下:
测试的细菌分别为金黄色葡萄球菌和大肠杆菌;参照最小抑菌浓度(minimalinhibitory concentration, MIC)的测试方法(Xiang Cai, Shaozao Tan,Aili Yu,Jinglin Zhang, Jiahao Liu, Wenjie Mai, Zhenyou Jiang. Sodium1-naphthalenesulfonate- functioned reduced graphene oxide stabilize the silvernanoparticles with lower cytotoxicity and long-term antibacterialactivity.Chemistry-An Asian Journal. 2012, 7(7):1664-1670.),先用电子天平称取一定量的各实施例和对比例所制备的抗菌复合材料,将抗菌复合材料用MH肉汤对倍系列稀释到不同浓度,分别加入到含有一定菌量的MH培养液中,使最终菌液的浓度约为106个/mL,然后在37℃下振荡培养24h,观察其结果,如表1所示。不加抗菌样品的试管作为对照管,无菌生长的实验管液体透明,以不长菌管的抗菌剂计量为该抗菌剂的最低抑菌浓度(MIC)。
表1:实施例1~3和对比例1、2抗菌复合材料的抗菌性能
长效性试验:在40℃恒温水槽中放一锥形瓶,瓶内加入1g 各实施例和对比例所制备的抗菌复合材料样品和200mL盐水(0.9mass%),并分别在水中浸泡6、24、72h后取样,测定其最低抑菌浓度,如表2所示。
表2:实施例1~3和对比例1、2抗菌复合材料的长效抗菌活性
实施例4
一种防静电抗菌聚乳酸材料的制备方法,其包括以下步骤:
(1)将实施例2抗菌复合物分散在乳酸中,配制浓度为0.5g/L 的溶液,超声搅拌(600W超声功率,600rpm搅拌速度)90min,得抗菌乳酸溶液;该抗菌复合物经过偶联剂预处理,具体为将抗菌复合物加入到无水乙醇中,800rpm搅拌 2h;逐滴滴加占抗菌复合物质量分数2%的偶联剂,继续搅拌1h,过滤后烘干;
(2)将导电填料分散在乳酸中,配制浓度为2g/L 的溶液,超声搅拌(600W超声功率,600rpm搅拌速度)90min,得导电乳酸溶液;所述导电填料由多孔碳、碳纳米管、炭黑、石墨烯和纳米铝粉按质量比4:2:1:2:2混合组成;所述导电填料制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,得到多孔碳;将碳纳米管、纳米铝粉分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,然后抽滤;抽滤所得的滤饼浸入到50ml炭黑和石墨烯水溶液中, 60min,然后再次抽滤;再次抽滤所得的滤饼用蒸馏水洗涤,在真空条件下120℃烘干,即得导电填料。
(3)将抗菌乳酸溶液和导电乳酸溶液按2:1体积比混合后置于60℃真空烘箱中,真空烘30h,至混合液无残余水为止;通过直接缩合法得到聚乳酸材料。
实施例5
一种防静电抗菌聚乳酸材料的制备方法,其包括以下步骤:
(1)将实施例2抗菌复合物分散在乳酸中,配制浓度为1.2g/L 的溶液,超声搅拌(600W超声功率,600rpm搅拌速度)90min,得抗菌乳酸溶液;该抗菌复合物经过偶联剂预处理,具体为将抗菌复合物加入到无水乙醇中,800rpm搅拌 2h;逐滴滴加占抗菌复合物质量分数2%的偶联剂,继续搅拌1h,过滤后烘干;
(2)将导电填料分散在乳酸中,配制浓度为1.6g/L 的溶液,超声搅拌(600W超声功率,600rpm搅拌速度)90min,得导电乳酸溶液;所述导电填料由多孔碳、碳纳米管、炭黑、石墨烯和纳米铝粉按质量比4:2:1:2:2混合组成;所述导电填料制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,得到多孔碳;将碳纳米管、纳米铝粉分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,然后抽滤;抽滤所得的滤饼浸入到50ml炭黑和石墨烯水溶液中, 60min,然后再次抽滤;再次抽滤所得的滤饼用蒸馏水洗涤,在真空条件下120℃烘干,即得导电填料。
(3)将抗菌乳酸溶液和导电乳酸溶液按2:1体积比混合后置于60℃真空烘箱中,真空烘30h,至混合液无残余水为止;通过直接缩合法得到聚乳酸材料。
实施例6
一种防静电抗菌聚乳酸材料的制备方法,其包括以下步骤:
(1)将实施例2抗菌复合物分散在乳酸中,配制浓度为2g/L 的溶液,超声搅拌(600W超声功率,600rpm搅拌速度)90min,得抗菌乳酸溶液;该抗菌复合物经过偶联剂预处理,具体为将抗菌复合物加入到无水乙醇中,800rpm搅拌 2h;逐滴滴加占抗菌复合物质量分数2%的偶联剂,继续搅拌1h,过滤后烘干;
(2)将导电填料分散在乳酸中,配制浓度为1g/L 的溶液,超声搅拌(600W超声功率,600rpm搅拌速度)90min,得导电乳酸溶液;所述导电填料由多孔碳、碳纳米管、炭黑、石墨烯和纳米铝粉按质量比4:2:1:2:2混合组成;所述导电填料制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,得到多孔碳;将碳纳米管、纳米铝粉分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,然后抽滤;抽滤所得的滤饼浸入到50ml炭黑和石墨烯水溶液中, 60min,然后再次抽滤;再次抽滤所得的滤饼用蒸馏水洗涤,在真空条件下120℃烘干,即得导电填料。
(3)将抗菌乳酸溶液和导电乳酸溶液按2:1体积比混合后置于60℃真空烘箱中,真空烘30h,至混合液无残余水为止;通过直接缩合法得到聚乳酸材料。
对比例3
基于实施例6的制备方法,不同之处在于:未添加抗菌复合物。
对比例4
基于实施例6的制备方法,不同之处在于:未添加导电填料。
对实施例4~6和对比例3、4聚乳酸材料的抗菌防静电性能进行测试,结果如下:
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

Claims (8)

1.一种防静电抗菌聚乳酸材料的制备方法,其包括以下步骤:
(1)将抗菌复合物分散在乳酸中,配制浓度为0.1~2g/L 的溶液,超声搅拌60~90min,得抗菌乳酸溶液;
(2)将导电填料分散在乳酸中,配制浓度为1~2g/L 的溶液,超声搅拌60~90min,得导电乳酸溶液;所述导电填料由多孔碳、碳纳米管、炭黑、石墨烯和纳米铝粉按质量比4:2:1:2:2混合组成;
(3)将抗菌乳酸溶液和导电乳酸溶液按2:1体积比混合后置于50~80℃真空烘箱中,真空烘24~36h,至混合液无残余水为止;通过直接缩合法得到聚乳酸材料。
2.根据权利要求1所述的防静电抗菌聚乳酸材料的制备方法,其特征在于,所述抗菌复合物经过偶联剂预处理,具体为将抗菌复合物加入到无水乙醇中,500~800rpm搅拌 1~2h;逐滴滴加占抗菌复合物质量分数2%的偶联剂,继续搅拌1~2h,过滤后烘干。
3.根据权利要求1所述的防静电抗菌聚乳酸材料的制备方法,其特征在于,所述导电填料制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,得到多孔碳;将碳纳米管、纳米铝粉分散在120ml的水溶液中,浸入多孔碳1~2h,让纳米材料充分进入孔道中,然后抽滤;抽滤所得的滤饼浸入到50ml炭黑和石墨烯水溶液中,30~60min,然后再次抽滤;再次抽滤所得的滤饼用蒸馏水洗涤,在真空条件下120℃烘干,即得导电填料。
4.根据权利要求1所述的防静电抗菌聚乳酸材料的制备方法,其特征在于,所述抗菌复合物通过以下方法制得:
(1)制备石墨烯量子点悬浮液:100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30~60min,激光辐照功率为1~2W;
(2)称取氧化锌量子点配制成浓度为0.5~1mg/ml的分散液,溶剂为水;超声搅拌80~100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌30~60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点;
(3)负载氧化锌的石墨烯量子点的表面处理;
(4)制备负载银的石墨烯量子点:超声搅拌另一半石墨烯量子点悬浮液,滴加硝酸银溶液,控制反应温度为45~60℃,滴加二水合柠檬酸三钠,继续超声搅拌60~120min;陈化,清洗,烘干得负载银的石墨烯量子点;
(5)将0.1~0.5g负载银的石墨烯量子点超声搅拌分散于乙醇中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯,调节pH值为9~10,反应温度为20~25℃,反应1~3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;干燥得到SiO2包覆的负载银的石墨烯量子点;
(6)将0.1~0.3mol/L钛源加入到1mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100~110℃,反应2~4h后,用浓氨水溶液调pH值至7,陈化,清洗,干燥,得到载银/二氧化钛石墨烯量子点;
(7)载银/二氧化钛石墨烯量子点的表面处理;
(8)称取多孔石墨烯配制成浓度为0.2~0.8mg/ml的石墨烯分散溶液;超声搅拌80~100ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点,超声搅拌10~30min,然后移至聚四氟乙烯的反应釜中,在80~120℃下保温15~30min;冷却,离心,清洗,烘干得抗菌复合材料。
5.根据权利要求4所述的防静电抗菌聚乳酸材料的制备方法,其特征在于,所述石墨烯量子点悬浮液的制备方法如下:称取0.5~0.8g C60粉末,量取50~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以300~500rpm的速度搅拌,得混合液;称取0.5~3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应5~8h;快速加入100~200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30~60min,激光辐照功率为1~2W。
6.根据权利要求4所述的防静电抗菌聚乳酸材料的制备方法,其特征在于,墨烯为2~5层,孔大小约3~6nm,层大小100~500nm的多孔石墨烯。
7.根据权利要求4所述的防静电抗菌聚乳酸材料的制备方法,其特征在于,所述载银/二氧化钛石墨烯量子点的表面处理具体为:将0.005~0.01g氧化石墨加入到5~10mL的分散剂中,超声搅拌并加入0.1~0.3g载银/二氧化钛石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
8.根据权利要求4所述的防静电抗菌聚乳酸材料的制备方法,其特征在于,所述负载氧化锌的石墨烯量子点的表面处理具体为:将0.005~0.01g氧化石墨加入到5~10mL的分散剂中,超声搅拌并加入0.1~0.3g负载氧化锌的石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
CN201610748815.7A 2016-08-29 2016-08-29 一种防静电抗菌聚乳酸材料的制备方法 Pending CN106317387A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610748815.7A CN106317387A (zh) 2016-08-29 2016-08-29 一种防静电抗菌聚乳酸材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610748815.7A CN106317387A (zh) 2016-08-29 2016-08-29 一种防静电抗菌聚乳酸材料的制备方法

Publications (1)

Publication Number Publication Date
CN106317387A true CN106317387A (zh) 2017-01-11

Family

ID=57788223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610748815.7A Pending CN106317387A (zh) 2016-08-29 2016-08-29 一种防静电抗菌聚乳酸材料的制备方法

Country Status (1)

Country Link
CN (1) CN106317387A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662596A (zh) * 2020-06-04 2020-09-15 广东康烯科技有限公司 Ptc石墨烯基导电油墨的制备方法及ptc石墨烯基导电油墨

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130002591A (ko) * 2011-06-29 2013-01-08 일신화학공업 주식회사 생분해성 멀칭 필름
CN103086367A (zh) * 2013-01-16 2013-05-08 天津工业大学 一种聚乳酸功能化石墨烯的制备方法
CN104710733A (zh) * 2015-04-07 2015-06-17 嘉兴学院 一种耐热抗菌聚乳酸材料及其制备方法
CN105218799A (zh) * 2015-09-29 2016-01-06 中山大学 一种纯化聚乳酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130002591A (ko) * 2011-06-29 2013-01-08 일신화학공업 주식회사 생분해성 멀칭 필름
CN103086367A (zh) * 2013-01-16 2013-05-08 天津工业大学 一种聚乳酸功能化石墨烯的制备方法
CN104710733A (zh) * 2015-04-07 2015-06-17 嘉兴学院 一种耐热抗菌聚乳酸材料及其制备方法
CN105218799A (zh) * 2015-09-29 2016-01-06 中山大学 一种纯化聚乳酸的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662596A (zh) * 2020-06-04 2020-09-15 广东康烯科技有限公司 Ptc石墨烯基导电油墨的制备方法及ptc石墨烯基导电油墨
CN111662596B (zh) * 2020-06-04 2022-08-05 广东康烯科技有限公司 Ptc石墨烯基导电油墨的制备方法及ptc石墨烯基导电油墨

Similar Documents

Publication Publication Date Title
CN106317386A (zh) 一种抗菌聚乳酸材料的制备方法
CN106220831A (zh) 一种聚乳酸材料的制备方法
CN106366590A (zh) 一种聚乳酸光致变色母粒的制备方法
CN106085156A (zh) 一种耐洗涤防静电抗菌涂料及其制备方法
CN106085139A (zh) 一种防腐涂料的制备方法
CN106349874A (zh) 一种防腐涂料的制备方法
CN106221316A (zh) 一种水性抗菌除臭无机涂料的制备方法
CN106283858A (zh) 一种光致变色瓦楞纸板的制备方法
CN106118227A (zh) 一种导电水性油墨及其制备方法
CN106221150A (zh) 一种可净化空气的pet/ptt合金的制备方法
CN106283878A (zh) 一种抗菌防静电瓦楞纸板的制备方法
CN106189146A (zh) 一种聚乳酸抗菌母粒的制备方法
CN106084704A (zh) 一种聚乳酸抗菌除甲醛母粒的制备方法
CN106364124A (zh) 一种抗菌除醛复合纤维膜的制备方法
CN106367837A (zh) 一种光致变色复合纤维膜的制备方法
CN106366591A (zh) 一种抗菌防辐射聚乳酸材料的制备方法
CN106084981A (zh) 一种抗菌除臭凹印水性油墨及其制备方法
CN106279645A (zh) 一种光致变色聚乳酸材料的制备方法
CN106120151B (zh) 一种除甲醛复合纤维膜的制备方法
CN106317387A (zh) 一种防静电抗菌聚乳酸材料的制备方法
CN106349663A (zh) 一种聚乳酸抗菌防辐射母粒的制备方法
CN106221556A (zh) 一种除臭紫外光固化涂料及其制备方法
CN106243936A (zh) 一种耐洗涤涂料及其制备方法
CN106189717A (zh) 一种光致变色防腐涂料的制备方法
CN106283857A (zh) 一种多功能瓦楞纸板的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111

RJ01 Rejection of invention patent application after publication