CN106297966A - 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备 - Google Patents

一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备 Download PDF

Info

Publication number
CN106297966A
CN106297966A CN201610703852.6A CN201610703852A CN106297966A CN 106297966 A CN106297966 A CN 106297966A CN 201610703852 A CN201610703852 A CN 201610703852A CN 106297966 A CN106297966 A CN 106297966A
Authority
CN
China
Prior art keywords
nanometer line
oxidation
resistant material
metal nanometer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610703852.6A
Other languages
English (en)
Inventor
段镶锋
段曦东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Na Lu Nano Science And Technology Co Ltd
Original Assignee
Guangdong Na Lu Nano Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Na Lu Nano Science And Technology Co Ltd filed Critical Guangdong Na Lu Nano Science And Technology Co Ltd
Priority to CN201610703852.6A priority Critical patent/CN106297966A/zh
Publication of CN106297966A publication Critical patent/CN106297966A/zh
Priority to PCT/CN2017/098069 priority patent/WO2018036428A1/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明涉及透明电极技术领域,具体公开了一种金属纳米线‑抗氧化材料复合的透明导电膜,包括高导电性的透明金属纳米线和在所述金属纳米线网格外侧覆盖的一层用于隔离空气的抗氧化材料的连续膜;所述抗氧化材料为石墨烯或导电性的纳米金属氧化物。本发明的金属纳米线‑抗氧化材料复合的透明导电膜产品,属于新一代的透明导电薄膜,材料来源丰富,制备相对容易,成本低,性价比高,柔性好,无毒,耐环境,化学稳定性好,不易还原,并且具有最佳的方块电阻和透光率,以及柔性等优良性能。

Description

一种金属纳米线-抗氧化材料复合的透明导电膜及其制备
技术领域
本发明涉及透明电极技术领域,具体涉及一种金属纳米线-抗氧化材料复合的透明导电膜及其制备。
背景技术
透明导电材料是一类具有导电性功能的透明材料,已经在众多工业领域广泛应用,如电子工业用透明抗静电密封材料、透明电极材料、电致变色显示材料、智能窗材料、透明电热材料、非线性光学材料以及透明抗电磁辐射材料等。工业上得到最广泛的应用的透明氧化物薄膜是氧化铟锡(indium tin oxide)薄膜,简称ITO薄膜。ITO薄膜是兼备透光性和导电性的一种重要的光电材料,具有导电性好(电阻率ρ约为10-4Ω·cm),对可见光透明(透过率可达85%以上),对红外光反射性强(反射率大于80%),对微波衰减率大于85%,而且加工性能良好,便于刻蚀,膜层硬度高,既耐磨又耐化学腐蚀等优良特性。但是使用ITO存在许多问题,主要表现在下面几个方面:第一,铟是稀有贵重金属,技术的发展带来世界范围的需求使得其供不应求。第二,其制备方法非常昂贵,例如制备的靶材高达近万元每公斤,溅射法、蒸化沉积、脉冲激光沉积等制备方法非常复杂,设备要求很高,需要高真空、高精确的化学配比控制以及严格的氧化物结构形态控制,工艺控制困难。第三,ITO等氧化物薄膜是一种脆性的结晶材料,施加应力就会破损,导致其导电性和光学清晰度大幅度下降(电导率会下降几个数量级)而致使用上受很大限制,在新型的触摸显示屏、柔性显示屏和其他柔性导电透明膜的应用上有很大的限制,这一点是所有的氧化物基于透明导电薄膜都有的缺点。第四,重金属铟具有毒性,在制备和应用过程中会对人体有害;另外Sn和In的原子量较大,成膜过程中容易渗入到衬底内部,毒化衬底材料,尤其在液晶显示器件中污染严重致使使用受到限制。第五,ITO在氢气等环境中会被还原,而氢气是太阳能电池制备所必须的,ITO还原后会降低太阳能电池的效率。因此其进一步应用发展前景正受到新型透明导电材料的挑战。这些新一代透明导电材料包括:1)新型氧化物透明导电材料FTO(SnO:F)、AZO、GZO(ZnO:Gd)等,2)聚噻吩等有机导电透明材料3)石墨烯,碳纳米管,纳米银线等纳米导电透明薄膜。
发明内容
有鉴于此,有必要针对上述的问题,提供一种金属纳米线-抗氧化材料复合的透明导电膜及其制备。
为实现上述目的,本发明采取以下的技术方案:
本发明的金属纳米线-抗氧化材料复合的透明导电膜,包括高导电性的透明金属纳米线和在所述金属纳米线网格外侧覆盖的一层用于隔离空气的抗氧化材料的连续膜;所述抗氧化材料为石墨烯或导电性的纳米金属氧化物。
进一步的,所述金属纳米线包括:银纳米线、铜纳米线、金纳米线、钯纳米线、合金纳米线、或铜心/金壳,银心/金壳纳米线。
进一步的,所述金属纳米线平均直径小于80纳米,长径比大于400;所述石墨烯5层以下的百分比在70%或以上。
进一步的,所述金属纳米线平均直径小于50纳米;所述石墨烯5层以下的百分比在80%或以上。
进一步的,所述金属纳米线平均直径小于30纳米;所述石墨烯5层以下的百分比在90%或以上。
进一步的,所述纳米金属氧化物包括纳米氧化锌和纳米氧化铁。
一种金属纳米线-石墨烯复合的透明导电薄膜的制备方法,包括:
步骤1:分散液的制备
(1)采用本领域常规的金属纳米线制备工艺制备金属纳米线分散液,包括:金属孪晶在有机配体的保护下选择晶面各向异型生长形成较大长径比的纳米线;
(2)石墨烯分散液的制备:采用氧化-还原法或高速分散法制备石墨烯溶液;所述石墨烯溶液采用20-200目的鳞片石墨粉制备,石墨烯溶液中5层以下的石墨烯片占70-90%;
或采用本领域常规的溶胶法制备纳米金属氧化物;
步骤2:对基底进行化学修饰
对基底表面采用强酸、强酸与强氧化剂的混合液、强碱羟基化或用氧等离子体处理羧基化或者羟基化处理后,使用含有巯基和氨基的偶联剂进行修饰;
步骤3:涂膜
先将金属纳米线分散液涂布在基底上,再涂布步骤1制备好的抗氧化材料于上成膜,形成均匀稳定的透明导电薄膜;本发明为了得到结合牢固稳定的透明导电薄膜,采用化学修饰接枝的方法,实现了金属纳米线、石墨烯薄片与玻璃、PET等基底的化学键合。
步骤4:后处理
涂布后,采用热蒸法除去溶剂、加热实现基底与金属纳米线、抗氧化材料的化学健合。
进一步的,步骤2所述基底为玻璃基底或PET基底;对于玻璃基底表面,经过强酸或强酸与强氧化剂的混合液处理羟基化后,用巯基硅烷偶联剂和氨基硅烷偶联剂进行修饰;对于PET基底,通过强碱化学处理羟基化后,使用有巯基和氨基的偶联剂修饰;化学修饰采用可以同时与基底、金属纳米线、石墨烯或者纳米金属氧化物结合接枝起来的偶联剂进行修饰。因银等纳米线容易和巯基结合,石墨烯平面上常常有羧基、环氧基和羟基,可以和氨基等基团健合。偶联剂同时含有与基底和银纳米线石墨烯等功能涂层的结合基团,根据不同的偶联剂在一定的的工艺条件下即可实现化学接枝。
进一步的,步骤3所述涂膜采用湿式精密涂布工艺,包括斜板式涂布、淋幕式涂布、狭缝式涂布、滚筒印刷、凹版涂布法等中的一种。
进一步的,步骤3中所述的涂膜前,调节溶液和基底的表面张力,使得溶液在基底上的接触角尽量减小。本发明中,调节表面张力的方法视基底和溶液的性质而定,如用酒精或者水溶液时,可以使基底表面羟基化或者轻度氧化(羧基化),即可实现亲水亲酒精;如玻璃基底表面,经过强酸或强酸与强氧化剂的混合液羟基化处理;PET基底,通过强碱化学羟基化处理;或者PET,玻璃用氧等离子体羧基化处理。
本发明的有益效果为:
本发明的金属纳米线-抗氧化材料复合的透明导电膜产品,属于新一代的透明导电薄膜,可以克服传统透明导电薄膜的各种缺点,它的材料来源丰富,制备相对容易,成本低,性价比高,柔性好,无毒,耐环境,化学稳定性好,不易还原。金属纳米线-抗氧化材料复合的透明导电薄膜具有最佳的方块电阻和透光率,以及柔性等优良性能。
附图说明
图1为实施例1中银纳米线的扫描电镜照片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案作进一步清楚、完整地描述。需要说明的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
石墨烯透明导电膜,方块电阻在300欧姆以下,而且工艺可调,解决了石墨烯和基底的结合问题,具有机械稳定性高,均匀性高,柔性好等突出优点,弯折10000次(弯折直径2mm)电导率下降2%以下。
银纳米线透明导电膜透光率92%以上,方块电阻80欧姆以下,而且这些性能工艺可调,雾度1.5%,具有机械稳定性高,均匀性高等突出优点,弯折10000次(弯折直径2mm)电导率下降2%以下。
然而银纳米线膜具有下述严重的缺点:
第一,在空气中容易氧化:Ag+O2→Ag2O
银氧化后,电阻显著变大,导致银纳米线薄膜方块电阻不稳定,方块电阻变大。经试验,我们制备的银纳米线薄膜初始方块电阻为50欧姆,在30℃纯氧下,100小时后方块电阻变成120欧姆,在40℃空气中,600小时后变为80欧姆。方块电阻的不稳定严重影响了银纳米线透明的导线薄膜的工业应用。
第二,银纳米线薄膜的导电机理是银纳米线形成网格导电,网格大小一般是10平方微米,这对于一些要求不高的应用时可以满足需求,但是由于银纳米线薄膜在网格之中是绝缘性的,导致导电均匀性不够细致,对于OLED显示等要求高的透明导电薄膜就不适用了。铜纳米线薄膜同样具有这些问题。金、钯纳米线,或者铜/金,银/金(心/壳)纳米线薄膜抗氧化性高许多,但是价格昂贵,同时也有网格导电不够细致。应用铜/金,银/金(心/壳)纳米线薄膜在保持了和金、钯纳米线薄膜的抗氧化性外具有比金、钯纳米线成本低的优点。
溶胶法制备的纳米氧化锌,纳米氧化铁等氧化物薄膜透光性高,抗氧化性稳定性好,但是导电性很差,高温溅射法制备的薄膜虽然导电性有改善,但是设备复杂,能耗高。
通常制备石墨烯透明导电薄膜的方法为CVD法,制备得连续透明导电薄膜,该方法目前存在制备成本高,工艺复杂,控制困难,加工时容易破裂等突出困难。
本发明采取溶液涂覆的方法制备的复合透明导电膜,该方法工艺简单,制备容易,可以在基底上直接制备,具有继续加工容易,耐氧化,稳定性高,整个面都导电(非方格导电)的突出优点。
此外,石墨烯还是一种性能突出的抗腐蚀涂层,石墨烯膜除了氢原子外,其他所有的原子、分子都不能透过,可以有效的把内层物质和周围环境隔离开来。表1是ITO透明导电薄膜和新一代的透明导电薄膜的性能对比:
表1不同导电薄膜的性能参数
透明导电膜类型 ITO 银纳米线 石墨烯 碳纳米管
方块电阻/Ω 150 30-50 300 400
透光率/% 88 90 90 88
颜色 浅黄或浅棕 无色 无色 无色
耐弯曲性 很好
耐环境性
规模化
本发明将金属纳米线透明导电薄膜和石墨烯透明导电薄膜或高透光性纳米金属氧化物薄膜复合起来,首先制备合适的基底,如PET,玻璃等,在基底上制备金属纳米线透明导电薄膜,然后在金属纳米线透明导电薄膜上再涂覆一层石墨烯薄片或者高透光性金属氧化物薄膜,形成一层石墨烯或者金属氧化物透明导电薄膜。这样制备的银纳米线-石墨烯/金属氧化物复合透明导电薄膜具有两者的优点,而克服了各自的缺点。具有方块电阻低(比银纳米线透明导电薄膜还低),而在里面的银纳米线在石墨烯薄片或者纳米金属氧化物薄膜的保护下,又可以抗氧化,从而保持了整个透明导电薄膜的电性能的稳定性,并且导电的石墨烯薄片或纳米金属氧化物填充了银纳米线网格之间的空隙,将空隙处的点通过石墨烯或纳米金属氧化物和银纳米线联通起来,实现了整个面的导电,导电的细致性好。同时由于是溶液涂覆工艺,具有工艺简单易实现,可以直接制备在适用的基底上,后加工容易,因此规模化工业实现的可行性很高。
此外本发明还针对金属纳米线薄膜和溶液涂覆法石墨烯透明导电薄膜在加工过程中银纳米线或者石墨烯薄片容易脱落,引起电性能下降,后加工困难,成品率低等问题,对透明导电薄膜的基底(PET,玻璃等)进行了化学修饰,实现了银纳米线和石墨烯或者纳米氧化物与透明基底之间结合的弱的范德华力结合转变为强的共价键或者离子键结合,使得透明导电薄膜的柔性提高,抗弯折性增高,在加工过程中稳定性高,成品率和性能都能大大提高。
实施例1
0.1微摩尔的AgNO3和0.1微摩尔的氯化铜混合,加入适量乙二醇和适量适当分子量的PVP,加热到140℃,保持40分钟,即可得到直径40纳米,长度18-25微米的银纳米线。将40目的鳞片石墨粉加入水溶液中,用高速分散机搅拌,得到石墨烯水溶液,其中石墨烯溶液中石墨烯片5层以下的占据60-70%。
50微米的PET膜用20%氢氧化钠羟基化,然后同时修饰巯基硅烷偶联剂和氨基硅烷偶联剂,用旋涂法(大面积的膜也用斜坡式涂布法制备)涂上银纳米线分散液,120℃烘干,然后再旋涂上石墨烯分散液,180℃处理1分钟,就得到了银纳米线石墨烯透明导电薄膜。银纳米石墨烯线复合透明导电膜方块电阻50欧姆,透光率89%,在200℃纯氧环境下200天电导率下降0.2%以下,细致到1纳米级都有导电点;弯折10000次(直径2mm)电导率下降2%以下,雾度少于1.2%。
实施例2
按照实施例1中的方法制备银纳米线分散液。采用浓硫酸和高锰酸钾氧化50目的鳞片石墨粉,经超声分散后得到氧化石墨烯溶液,经水合肼还原成石墨烯溶液。
50微米的柔性玻璃经过浓硫酸和双氧水混合液处理后羟基化,再用巯基硅烷和氨基硅烷同时修饰,然后再经旋涂法(大面积膜也用淋幕式涂布法、凹版涂布法制备)涂布银纳米线分散液,120℃处理一分钟,然后旋涂石墨烯分散液,180℃处理一分钟。银纳米石墨烯线复合透明导电薄膜方块电阻50欧姆,透光率89%,在200℃纯氧环境下200天电导率下降0.2%以下,细致到1纳米级都有导电点;弯折10000次(直径2mm)电导率下降2%以下,雾度少于1.2%。
实施例3
按照实施例1中的方法制备银纳米线分散液,外购氧化锌纳米颗粒溶胶,两种分散液混合。
50微米的柔性玻璃经过浓硫酸和双氧水混合液处理后羟基化,在用巯基硅烷和氨基硅烷同时修饰,然后再经旋涂法(大面积膜也可用淋幕式涂布法、凹版涂布法制备)涂布银纳米线与纳米氧化锌的混合分散液,120℃处理一分钟,180℃处理一分钟,复合透明导电薄膜方块电阻50欧姆,透光率92%,在200℃纯氧环境下200天电导率下降0.2%以下,细致到1纳米级都有导电点;弯折10000次(直径2mm)电导率下降2%以下,雾度少于1.2%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,包括:高导电性的透明金属纳米线和在所述金属纳米线网格外侧覆盖的一层用于隔离空气的抗氧化材料的连续膜;所述抗氧化材料为石墨烯或导电性的纳米金属氧化物。
2.根据权利要求1所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线包括:银纳米线、铜纳米线、金纳米线、钯纳米线、合金纳米线、或铜心/金壳,银心/金壳纳米线。
3.根据权利要求1所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线平均直径小于80纳米,长径比大于400;所述石墨烯5层以下的百分比在70%或以上。
4.根据权利要求3所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线平均直径小于50纳米;所述石墨烯5层以下的百分比在80%或以上。
5.根据权利要求4所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述金属纳米线平均直径小于30纳米;所述石墨烯5层以下的百分比在90%或以上。
6.根据权利要求1所述的金属纳米线-抗氧化材料复合的透明导电膜,其特征在于,所述纳米金属氧化物包括纳米氧化锌和纳米氧化铁。
7.一种权利要求1-6任意一项所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,包括:
步骤1:分散液的制备
(1)采用本领域常规的金属纳米线制备工艺制备金属纳米线分散液,包括:金属孪晶在有机配体的保护下选择晶面各向异型生长形成较大长径比的纳米线;
(2)石墨烯分散液的制备:采用氧化-还原法或高速分散法制备石墨烯溶液;所述石墨烯溶液采用20-200目的鳞片石墨粉制备,石墨烯溶液中5层以下的石墨烯片占70-90%;
或采用本领域常规的溶胶法制备纳米金属氧化物;
步骤2:对基底进行化学修饰
对基底表面采用强酸、强酸与强氧化剂的混合液、强碱羟基化或用氧等离子体处理羧基化或者羟基化处理后,使用含有巯基和氨基的偶联剂进行修饰;
步骤3:涂膜
先将金属纳米线分散液涂布在基底上,再涂布步骤1制备好的抗氧化材料于上成膜,形成均匀稳定的透明导电薄膜;
步骤4:后处理
涂布后,采用热蒸法除去溶剂、加热实现基底与金属纳米线、抗氧化材料的化学健合。
8.根据权利要求7所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,步骤2所述基底为玻璃基底或PET基底;对于玻璃基底表面,经过强酸或强酸与强氧化剂的混合液处理羟基化后,用巯基硅烷偶联剂和氨基硅烷偶联剂进行修饰;对于PET基底,通过强碱化学处理羟基化后,使用有巯基和氨基的偶联剂修饰。
9.根据权利要求7所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,步骤3所述涂膜采用湿式精密涂布工艺,包括斜板式涂布、淋幕式涂布、狭缝式涂布、滚筒印刷、凹版涂布法中的一种。
10.根据权利要求7所述的金属纳米线-抗氧化材料复合的透明导电膜的制备方法,其特征在于,步骤3中所述的涂膜前,调节溶液和基底的表面张力,减小溶液在基底上的接触角。
CN201610703852.6A 2016-08-22 2016-08-22 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备 Pending CN106297966A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610703852.6A CN106297966A (zh) 2016-08-22 2016-08-22 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备
PCT/CN2017/098069 WO2018036428A1 (zh) 2016-08-22 2017-08-18 一种金属纳米线-抗氧化材料复合的透明导电膜及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610703852.6A CN106297966A (zh) 2016-08-22 2016-08-22 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备

Publications (1)

Publication Number Publication Date
CN106297966A true CN106297966A (zh) 2017-01-04

Family

ID=57662153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610703852.6A Pending CN106297966A (zh) 2016-08-22 2016-08-22 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备

Country Status (2)

Country Link
CN (1) CN106297966A (zh)
WO (1) WO2018036428A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103843A (zh) * 2017-05-15 2017-08-29 京东方科技集团股份有限公司 一种柔性显示器的制备方法、柔性显示器和显示设备
CN107464635A (zh) * 2017-09-17 2017-12-12 赵兵 基于石墨烯/银纳米线/壳聚糖的柔性透明导电薄膜
CN107610814A (zh) * 2017-08-30 2018-01-19 中国科学院宁波材料技术与工程研究所 一种基于超薄金属网格的透明电极及其制备方法
WO2018036428A1 (zh) * 2016-08-22 2018-03-01 广东纳路纳米科技有限公司 一种金属纳米线-抗氧化材料复合的透明导电膜及其制备
CN107799236A (zh) * 2017-10-31 2018-03-13 南京旭羽睿材料科技有限公司 一种石墨烯电极快速制备方法
CN109473200A (zh) * 2018-12-12 2019-03-15 北京石墨烯研究院 透明导电玻璃及其制备方法
CN109518458A (zh) * 2018-11-19 2019-03-26 南通纺织丝绸产业技术研究院 一种以蚕丝为基底的金属纳米线/石墨烯导电材料及其制备方法
CN109785991A (zh) * 2017-11-10 2019-05-21 上海宝银电子材料有限公司 一种客车前挡玻璃用的抗氧化银浆及其制备方法
CN109949974A (zh) * 2019-03-15 2019-06-28 广东格瑞纳思薄膜科技有限公司 一种共价键合的pet基纳米银线石墨烯复合透明柔性导电膜及其制备方法
CN109961871A (zh) * 2018-08-15 2019-07-02 浙江光达电子科技有限公司 一种用于丝印烧结形成透明导体的浆料和应用
CN110085350A (zh) * 2019-04-28 2019-08-02 南京信息职业技术学院 石墨烯包覆银纳米线透明导电薄膜及其制备方法
CN110132315A (zh) * 2019-04-08 2019-08-16 清华大学深圳研究生院 一种柔性传感器及其制备方法和可穿戴智能设备
CN111482617A (zh) * 2020-01-30 2020-08-04 浙江大学 银纳米线表面原位生长金属氧化物核点复合材料制备方法
CN111743529A (zh) * 2019-03-27 2020-10-09 东泰高科装备科技有限公司 表皮电极及其制作方法
CN112635103A (zh) * 2020-12-18 2021-04-09 深圳先进技术研究院 导电图案及其制备方法、柔性电子设备
CN112904625A (zh) * 2021-01-25 2021-06-04 北海惠科光电技术有限公司 导电边框胶的制备方法、导电边框胶及显示面板
CN113470979A (zh) * 2021-07-08 2021-10-01 安徽大学 一种具有电场传感功能的透明柔性锌离子混合电容器及其制备方法
CN114038623A (zh) * 2021-10-25 2022-02-11 南京邮电大学 一种银纳米线-生物材料复合透明导电薄膜及其制备方法与应用
CN114420373A (zh) * 2022-01-22 2022-04-29 安徽粤智徽源生物科技有限公司 一种透明且油墨强粘附性的柔性透明导电电极的制备方法及应用
CN116549840A (zh) * 2023-07-07 2023-08-08 苏州医疗用品厂有限公司 一种用于耳迷走神经电极的加工工艺

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110258126A (zh) * 2019-07-22 2019-09-20 中国科学院工程热物理研究所 一种红外隐身迷彩布料及其制备方法
CN114635106B (zh) * 2020-12-15 2023-12-26 安徽宇航派蒙健康科技股份有限公司 采用金属-纳米碳导电膜制备透明电热器件的方法
CA3222752A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-body drug conjugates
CA3222269A1 (en) 2021-06-11 2022-12-15 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-cancer agents
TW202330504A (zh) 2021-10-28 2023-08-01 美商基利科學股份有限公司 嗒𠯤—3(2h)—酮衍生物
WO2023077030A1 (en) 2021-10-29 2023-05-04 Gilead Sciences, Inc. Cd73 compounds
US20230242508A1 (en) 2021-12-22 2023-08-03 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023122581A2 (en) 2021-12-22 2023-06-29 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (zh) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7抑制劑
US20230373950A1 (en) 2022-03-17 2023-11-23 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023201268A1 (en) 2022-04-13 2023-10-19 Gilead Sciences, Inc. Combination therapy for treating tumor antigen expressing cancers
WO2023201267A1 (en) 2022-04-13 2023-10-19 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
TW202400138A (zh) 2022-04-21 2024-01-01 美商基利科學股份有限公司 Kras g12d調節化合物
CN115073792B (zh) * 2022-04-29 2023-08-04 湖北大学 一种银纳米线与二维锑烯复合导电薄膜及其柔性透明超级电容器
WO2024006929A1 (en) 2022-07-01 2024-01-04 Gilead Sciences, Inc. Cd73 compounds
WO2024097812A1 (en) 2022-11-04 2024-05-10 Gilead Sciences, Inc. Therapy for treating bladder cancer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130102723A (ko) * 2012-03-08 2013-09-23 주식회사 동진쎄미켐 투명 전극 형성용 전도성 잉크 조성물
CN103903817A (zh) * 2014-03-18 2014-07-02 中科院广州化学有限公司南雄材料生产基地 一种透明导电薄膜的制备方法及其应用
CN104992752A (zh) * 2015-07-16 2015-10-21 城步新鼎盛电子科技有限公司 一种纳米银线透明导电薄膜的生产方法
CN105023629A (zh) * 2014-04-28 2015-11-04 中国科学院上海硅酸盐研究所 石墨烯-铜纳米线复合薄膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323482A1 (en) * 2012-06-01 2013-12-05 Nuovo Film Inc. Low Haze Transparent Conductive Electrodes and Method of Making the Same
CN105810304A (zh) * 2014-12-30 2016-07-27 北京生美鸿业科技有限公司 一种石墨烯/金属纳米丝网格复合透明导电电极及其应用
CN106205768B (zh) * 2015-01-13 2017-11-07 浙江大学 一种石墨烯薄膜和金属纳米结构复合的导电材料及制备方法
CN104882223B (zh) * 2015-04-27 2017-11-10 国家纳米科学中心 氧化石墨烯/银纳米线复合透明导电薄膜及其制备方法
CN106297966A (zh) * 2016-08-22 2017-01-04 广东纳路纳米科技有限公司 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130102723A (ko) * 2012-03-08 2013-09-23 주식회사 동진쎄미켐 투명 전극 형성용 전도성 잉크 조성물
CN103903817A (zh) * 2014-03-18 2014-07-02 中科院广州化学有限公司南雄材料生产基地 一种透明导电薄膜的制备方法及其应用
CN105023629A (zh) * 2014-04-28 2015-11-04 中国科学院上海硅酸盐研究所 石墨烯-铜纳米线复合薄膜及其制备方法
CN104992752A (zh) * 2015-07-16 2015-10-21 城步新鼎盛电子科技有限公司 一种纳米银线透明导电薄膜的生产方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018036428A1 (zh) * 2016-08-22 2018-03-01 广东纳路纳米科技有限公司 一种金属纳米线-抗氧化材料复合的透明导电膜及其制备
CN107103843B (zh) * 2017-05-15 2019-09-06 京东方科技集团股份有限公司 一种柔性显示器的制备方法、柔性显示器和显示设备
US11119344B2 (en) 2017-05-15 2021-09-14 Boe Technology Group Co., Ltd. Manufacturing method of flexible display, flexible display, and display device
CN107103843A (zh) * 2017-05-15 2017-08-29 京东方科技集团股份有限公司 一种柔性显示器的制备方法、柔性显示器和显示设备
CN107610814A (zh) * 2017-08-30 2018-01-19 中国科学院宁波材料技术与工程研究所 一种基于超薄金属网格的透明电极及其制备方法
CN107610814B (zh) * 2017-08-30 2020-08-11 中国科学院宁波材料技术与工程研究所 一种基于超薄金属网格的透明电极及其制备方法
CN107464635A (zh) * 2017-09-17 2017-12-12 赵兵 基于石墨烯/银纳米线/壳聚糖的柔性透明导电薄膜
CN107799236A (zh) * 2017-10-31 2018-03-13 南京旭羽睿材料科技有限公司 一种石墨烯电极快速制备方法
CN109785991A (zh) * 2017-11-10 2019-05-21 上海宝银电子材料有限公司 一种客车前挡玻璃用的抗氧化银浆及其制备方法
CN109785991B (zh) * 2017-11-10 2020-07-31 上海宝银电子材料有限公司 一种客车前挡玻璃用的抗氧化银浆及其制备方法
CN109961871B (zh) * 2018-08-15 2020-09-15 浙江光达电子科技有限公司 一种用于丝印烧结形成透明导体的浆料和应用
CN109961871A (zh) * 2018-08-15 2019-07-02 浙江光达电子科技有限公司 一种用于丝印烧结形成透明导体的浆料和应用
CN109518458A (zh) * 2018-11-19 2019-03-26 南通纺织丝绸产业技术研究院 一种以蚕丝为基底的金属纳米线/石墨烯导电材料及其制备方法
CN109473200A (zh) * 2018-12-12 2019-03-15 北京石墨烯研究院 透明导电玻璃及其制备方法
CN109949974A (zh) * 2019-03-15 2019-06-28 广东格瑞纳思薄膜科技有限公司 一种共价键合的pet基纳米银线石墨烯复合透明柔性导电膜及其制备方法
CN109949974B (zh) * 2019-03-15 2020-08-25 广东格瑞纳思薄膜科技有限公司 一种共价键合的pet基纳米银线石墨烯复合透明柔性导电膜及其制备方法
CN111743529A (zh) * 2019-03-27 2020-10-09 东泰高科装备科技有限公司 表皮电极及其制作方法
CN111743529B (zh) * 2019-03-27 2024-01-12 紫石能源有限公司 表皮电极及其制作方法
CN110132315A (zh) * 2019-04-08 2019-08-16 清华大学深圳研究生院 一种柔性传感器及其制备方法和可穿戴智能设备
CN110085350A (zh) * 2019-04-28 2019-08-02 南京信息职业技术学院 石墨烯包覆银纳米线透明导电薄膜及其制备方法
CN111482617A (zh) * 2020-01-30 2020-08-04 浙江大学 银纳米线表面原位生长金属氧化物核点复合材料制备方法
CN112635103A (zh) * 2020-12-18 2021-04-09 深圳先进技术研究院 导电图案及其制备方法、柔性电子设备
CN112635103B (zh) * 2020-12-18 2022-07-29 深圳先进技术研究院 导电图案及其制备方法、柔性电子设备
CN112904625A (zh) * 2021-01-25 2021-06-04 北海惠科光电技术有限公司 导电边框胶的制备方法、导电边框胶及显示面板
CN113470979A (zh) * 2021-07-08 2021-10-01 安徽大学 一种具有电场传感功能的透明柔性锌离子混合电容器及其制备方法
CN113470979B (zh) * 2021-07-08 2023-01-24 安徽大学 一种具有电场传感功能的透明柔性锌离子混合电容器及其制备方法
CN114038623A (zh) * 2021-10-25 2022-02-11 南京邮电大学 一种银纳米线-生物材料复合透明导电薄膜及其制备方法与应用
CN114420373A (zh) * 2022-01-22 2022-04-29 安徽粤智徽源生物科技有限公司 一种透明且油墨强粘附性的柔性透明导电电极的制备方法及应用
CN116549840A (zh) * 2023-07-07 2023-08-08 苏州医疗用品厂有限公司 一种用于耳迷走神经电极的加工工艺
CN116549840B (zh) * 2023-07-07 2023-10-31 江苏鱼跃医疗设备股份有限公司 一种用于耳迷走神经电极的加工工艺

Also Published As

Publication number Publication date
WO2018036428A1 (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
CN106297966A (zh) 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备
US9972742B2 (en) Method for forming a transparent conductive film with metal nanowires having high linearity
CN102527621B (zh) 一种雾度可调柔性透明导电薄膜的制备方法
CN106205774B (zh) 一种导电浆料及透明导电涂层
CN101523511B (zh) 电极形成用组合物以及使用该组合物的电极的形成方法
US9655252B2 (en) Low haze transparent conductive electrodes and method of making the same
CN208637157U (zh) 一种可折叠柔性透明导电薄膜
CN106941019A (zh) 电导体、其制造方法和包括其的电子装置
CN108316011A (zh) 一种基于纳米颗粒和纳米线复合改性的透明导电的智能纺织品的制备方法
Aegerter et al. Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates
TW201435927A (zh) 透明導電性膜塗布組成物、透明導電性膜及透明導電性膜之製造方法
CN107039101A (zh) 电导体、一维‑二维混杂结构体、和包括其的电子器件
CN107316708A (zh) 银纳米线‑可剥离树脂复合透明导电薄膜的制备方法
US7438835B2 (en) Transparent conductive film, coating liquid for forming such film, transparent conductive layered structure, and display device
CN106057357A (zh) 制备银纳米线‑二氧化钛复合透明电极的方法及透明电极
CN109735833A (zh) 一种金属纳米线自限制纳米钎焊方法及其应用
CN107512854B (zh) 具有纳米镶嵌结构的ito/wo3复合电致变色薄膜及其制备方法
Wang et al. Transparent, conductive and superhydrophobic cellulose films for flexible electrode application
CN105714404B (zh) 一种硫化亚铜/pet复合导电纤维的制备方法
CN107382092A (zh) 具有纳米镶嵌结构的TiO2 /WO3 复合电致变色薄膜及其制备方法
CN107025951A (zh) 电导体、其制造方法、和包括其的电子器件
KR20110071539A (ko) 투명도전막 및 그 제조방법
KR101581664B1 (ko) 금속산화물이 코팅된 금속 나노와이어를 포함하는 투명전도막의 제조방법
CN110634593B (zh) 一种具有低方阻及优异耐弯折性能的纳米银线柔性透明导电膜及其制备方法
KR102144387B1 (ko) 은 나노와이어의 제조방법 및 이를 이용하여 제조된 은 나노와이어

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104

RJ01 Rejection of invention patent application after publication