CN106296727A - 一种基于高斯扰动的重采样粒子滤波算法 - Google Patents

一种基于高斯扰动的重采样粒子滤波算法 Download PDF

Info

Publication number
CN106296727A
CN106296727A CN201610596452.XA CN201610596452A CN106296727A CN 106296727 A CN106296727 A CN 106296727A CN 201610596452 A CN201610596452 A CN 201610596452A CN 106296727 A CN106296727 A CN 106296727A
Authority
CN
China
Prior art keywords
particle
resampling
weights
sampling
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610596452.XA
Other languages
English (en)
Inventor
周蓉
藤婧
吴梦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201610596452.XA priority Critical patent/CN106296727A/zh
Publication of CN106296727A publication Critical patent/CN106296727A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明属于智能信息处理技术领域,涉及一种基于高斯扰动的重采样粒子滤波算法。具体为在重采样过程中对重复采样的高权值粒子增加高斯扰动扩散,在非线性和非高斯***中用来估计***状态,用于无特征的小目标跟踪定位中,解决迭代过程中重采样后粒子的多样性丧失问题,在保证粒子有效性的前提下增加粒子多样性,增加了粒子逼近目标的概率,在不增加计算量和存储量的条件下,降低了跟踪误差,提高了小目标跟踪精度;从计算量角度来看,尽管增加了基于高斯扰动的扩散过程,但是由于粒子的收敛速度加快,改进算法的执行时间和***重采样算法接近。

Description

一种基于高斯扰动的重采样粒子滤波算法
技术领域
本发明属于智能信息处理技术领域,涉及一种基于高斯扰动的重采样粒子滤波算法。
背景技术
目标跟踪问题实际上是目标状态的滤波问题,即根据传感器己获得的目标量测数据对所关心的目标状态进行精确的估计。对低信噪比光电图像序列中机动小目标的检测与跟踪问题而言,由于信噪比低,目标成像面积小,使得小目标跟踪和检测存在诸多困难,传统的手段难以实现。在近年提出的诸多先跟踪后检测方法中,递推贝叶斯滤波方法通过状态模型和量测模型,真正引入了跟踪的思想。其中,卡尔曼滤波器已被证明是线性高斯问题的最优贝叶斯实现。然而,实际跟踪问题受多种噪声干扰并且目标运动复杂,属于非线性非高斯问题,以线性和高斯的假设为基础的跟踪方法常导致跟踪失败。基于蒙特卡罗近似估计的粒子滤波方法在工程上实现了非线性***的贝叶斯滤波思想,是目前小目标跟踪问题中研究的重点。
粒子滤波方法中的重采样虽然在一定程度上缓解权值退化现象,但同时也引入了新的问题,即权值越大的粒子子代越多,而权值较小的粒子被逐步削弱或剔除,最极端的情况是新的粒子集实际都是一个权值最大的粒子的子代,引起样本空间的崩塌,也就是“样本枯竭”现象,采样结果中包含了许多重复点,从而损失了粒子的多样性,导致粒子滤波状态估计精度的降低,就小目标跟踪问题而言,在极端情况下会导致跟踪的失败,而要提高状态估计精度和保证小目标的跟踪精度,需要在粒子滤波迭代过程中保证粒子的多样性。
发明内容
为了解决上述问题,本发明提出了一种基于高斯扰动的重采样粒子滤波算法,其特征在于,所述方法的步骤为
步骤1、初始化,在初始时刻k=0时,从***状态的先验概率密度分布函数p(S0)~U(Λ)中采样得到粒子集合其中,U表示均匀分布函数,Λ表示***状态的均匀分布区间,N为采样粒子数目,表示在k=0时刻采样得到的第i个粒子,为第i个粒子的权值,此时所有粒子重要性权值相同,均为初始化后进入粒子滤波迭代过程,令k=1;
步骤2、从重要性概率密度分布函数中采样:对粒子依据***状态模型进行预测;式中表示在k时刻采样得到的第i个粒子、p(Sk|Sk-1)为重要性概率密度分布函数;
步骤3、根据由观测模型确定的似然函数计算每个粒子权值并对权值归一化,归一化后粒子的权值为式中,Zk为观测值,为k时刻第i个粒子的权值;此时***状态后验概率密度分布函数近似为式中Sk为待估计的k时刻的***状态,δ为单位脉冲函数;
步骤4、计算有效粒子的数目
步骤5、当有效粒子数目Neff大于等于设定阈值时,输出***状态估计值否则当有效粒子数目小于设定阈值时,进入步骤6;
步骤6、启动重采样过程进行重采样,对粒子集进行重采样得到新的粒子集重采样的过程为
601、产生[0,1]上均匀分布的随机数{ui}i=1…N
602、产生权值累积函数wc,满足
603、找到满足wc(m-1)≤ui≤wc(m)的整数m生成重采样粒子下标m,第m个粒子经重采样后将被复制在第i个位置,即 为k时刻重采样后第i个粒子,为k时刻重采样前第m个粒子;
604、统计第m个粒子被采样的次数
605、若Cm>1,则计算采样邻域的大小α22与粒子集中的有效粒子目数和***状态的方差ε2有关,进入606;
606、对由多次重采样后的粒子添加高斯扰动为 重采样后,粒子集中粒子的重要性权值相等,均为重采样得到新的粒子集
607、计算输出k时刻***状态估计期望值
步骤7、比较k是否到达结束时刻T,若k<T,则k=k+1跳至步骤2;若k≥T则结束。
有益效果
本发明在非线性和非高斯***中用来估计***状态,应用于无特征的小目标跟踪定位中。方法在重采样过程中对高权值粒子增加高斯扰动扩散的方法,在保证粒子有效性的前提下增加粒子多样性,解决了粒子样本空间崩塌的问题,因此,采用基于高斯分布扰动的重采样算法粒子滤波算法在小目标的跟踪过程中,增加了粒子逼近目标的概率,在不增加计算量和存储量的条件下,降低了跟踪误差,提高了小目标跟踪精度。另一方面,从计算量角度来看,尽管增加了基于高斯扰动的扩散过程,但是由于粒子的收敛速度加快,改进算法的执行时间和***重采样算法接近。
附图说明
图1为本发明方法的流程图;
图2经典重采样和改进重采样算法目标跟踪结果;
图3为经典与本发明两种重采样算法100次蒙特卡罗仿真RMSE;
图4a经典重采样算法粒子分布图;
图4b为本发明中重采样算法粒子分布图;
图5为经典重采样和本发明重采样算法100次蒙特卡罗仿真的RMSE和平均CPU运行时间。
具体实施方式
本发明提出了一种基于高斯扰动的重采样粒子滤波算法,其过程流程图如图1所示,具体步骤为
步骤1、初始化,在初始时刻k=0时,从***状态的先验概率密度分布函数p(S0)~U(Λ)中采样得到粒子集合其中,U表示均匀分布函数,Λ表示***状态的均匀分布区间,N为采样粒子数目,表示在k=0时刻采样得到的第i个粒子,为第i个粒子的权值,此时所有粒子重要性权值相同,均为初始化后进入粒子滤波迭代过程,令k=1;
步骤2、从重要性概率密度分布函数中采样:对粒子依据***状态模型进行预测;式中表示在k时刻采样得到的第i个粒子、p(Sk|Sk-1)为重要性概率密度分布函数;
步骤3、根据由观测模型确定的似然函数计算每个粒子权值并对权值归一化,归一化后粒子的权值为式中,Zk为观测值,为k时刻第i个粒子的权值;此时***状态后验概率密度分布函数近似为式中Sk为待估计的k时刻的***状态,δ为单位脉冲函数;
步骤4、计算有效粒子的数目
步骤5、当有效粒子数目Neff大于等于设定阈值时,输出***状态估计值否则当有效粒子数目小于设定阈值时,进入步骤6;
步骤6、启动重采样过程进行重采样,对粒子集进行重采样得到新的粒子集重采样的过程为
601、产生[0,1]上均匀分布的随机数{uj}i=1…N
602、产生权值累积函数wc,满足
603、找到满足wc(m-1)≤ui≤wc(m)的整数m生成重采样粒子下标m,第m个粒子经重采样后将被复制在第i个位置,即 为k时刻重采样后第i个粒子,为k时刻重采样前第m个粒子;
604、统计第m个粒子被采样的次数
605、若Cm>1,则计算采样邻域的大小α22与粒子集中的有效粒子目数和***状态的方差ε2有关,进入606;
606、对由多次重采样后的粒子添加高斯扰动为 重采样后,粒子集中粒子的重要性权值相等,均为重采样得到新的粒子集
607、计算输出k时刻***状态估计期望值
步骤7、比较k是否到达结束时刻T,若k<T,则k=k+1跳至步骤2;若k≥T则结束。
采用相同的模型和参数对于***重采样算法和改进后重采样算法进行仿真。显示了两种重采样算法的跟踪结果,图3中显示的是两种算法对于小目标跟踪在x,y坐标上的估计值和真实值。从图3中可以看出,由于增强了粒子的多样性,与***重采样方法相比,本发明提出的方法更快的跟踪上了目标。
为进一步验证本发明的有效性,对两种方法进行100次蒙特卡罗仿真,按照计算每一帧跟踪过程中真实值与估计值的100次仿真的均方根误差RMSE。从图中可以看出,添加了基于高斯分布扰动的重采样算法降低了跟踪误差,提高了跟踪精度。
在经典重采样过程中值得一提的是,重采样只是对于粒子si的简单的m次复制,因此在重采样过程中,虽然降低了粒子退化的影响,但是同时也引入了粒子耗尽问题,减弱了粒子的多样性,即经过多次迭代和重采样后,所有粒子占据状态空间的同一点,所有粒子值相同。而这一粒子值所代表的空间中的位置极有可能偏移真正***状态,也就难以实现对小目标的跟踪。在粒子滤波算法中,由于实际跟踪问题中***状态后验概率密度函数p(Sk|Z1:k)难以获得,通常用重要性函数p(Sk|Sk-1)替代了真正的***状态后验概率密度函数,该重要性函数没有将最新的***观测值考虑进来,因此粒子权重的计算始终存在误差。在极端情况下,当单一粒子权重值为1而其他粒子权重为零时,重采样后,权重为1的粒子被复制N-1次,同时整个样本空间崩塌为一个粒子在后续第k时刻的预测过程中,该粒子将通过目标运动模型进行预测,然而,对于机动运动的目标而言,难以建立准确的运动模型描述这一运动过程,更由于存在着过程噪声和模型误差,用这一模型对预测的粒子运动会偏移真正的***状态,也就是目标的状态。当预测的粒子偏移真正的***状态时,依据量测模型计算的权重为零或者逼近零,估计的后验状态概率密度p(Sk|Z1:k)也将逼近零,最终导致所有样本的丢失,跟踪过程失败。而本发明中,为了保证粒子的多样性,在重采样过程中添加了基于高斯分布的采样扰动。重采样过程中不是对于权重高的粒子简单的复制,而是从高权重粒子的邻域基于高斯分布的采样, 是在采样过程中需要被替换的粒子,是高权重的粒子,α2决定了采样邻域的大小。α2与粒子集中的有效粒子数和***状态的方差有关:α2与有效粒子数成反比,当有效粒子数Neff减少时,采样邻域需要扩张以保证粒子的多样性。α2与方差ε2成正比,ε2是***状态的估计精度,当ε2增加时,表示需要更多的不同粒子表示***的状态,因此采样邻域也随之扩张,反之亦然。图4a-b是一次小目标跟踪仿真实验中粒子的分布图,其中红色圆圈表示的是小目标的真实位置。图4a中,在采用直接复制方法进行重采样时,粒子始终没有逼近目标的状态。而4b显示,在添加了扰动增强粒子的多样性后,粒子分布覆盖了真实的目标位置。
本发明在30帧仿真产生的信噪比SNR=6.02dB的光电图像序列中进行机动小目标跟踪实验。实验结果表明,由于改进重采样算法增加了基于高斯扰动的扩散改善了粒子的多样性,解决了粒子样本空间崩塌的问题,因此,采用基于高斯分布扰动的重采样算法粒子滤波算法在小目标的跟踪过程中,在不增加计算量和存储量的条件下,降低了跟踪误差,提高了跟踪精度。在对粒子滤波,改进重采样粒子滤波算法进行100次蒙特卡罗仿真实验,以跟踪的估计值与目标位置真实值之间的平均均方根误差RMSE作为跟踪精度的衡量标准,结果表明,和粒子滤波相比,改进重采样粒子滤波算法跟踪精度提高了40%,如图5所示。另一方面,从计算量角度来看,尽管增加了基于高斯扰动的扩散过程,但是由于粒子的收敛速度加快,改进算法的执行时间和***重采样算法接近,只增加了0.05秒。

Claims (2)

1.一种基于高斯扰动的重采样粒子滤波算法,其特征在于,所述方法的步骤为
步骤1、初始化,在初始时刻k=0时,从***状态的先验概率密度分布函数p(S0)~U(Λ)中采样得到粒子集合其中,U表示均匀分布函数,Λ表示***状态的均匀分布区间,N为采样粒子数目,表示在k=0时刻采样得到的第i个粒子,为第i个粒子的权值,此时所有粒子重要性权值相同,均为初始化后进入粒子滤波迭代过程,令k=1;
步骤2、从重要性概率密度分布函数中采样:对粒子依据***状态模型进行预测;式中表示在k时刻采样得到的第i个粒子、p(Sk|Sk-1)为重要性概率密度分布函数;
步骤3、根据由观测模型确定的似然函数计算每个粒子权值并对权值归一化,归一化后粒子的权值为式中,Zk为观测值,为k时刻第i个粒子的权值;此时***状态后验概率密度分布函数近似为式中Sk为待估计的k时刻的***状态,δ为单位脉冲函数;
步骤4、计算有效粒子的数目
步骤5、当有效粒子数目Neff大于等于设定阈值时,输出***状态估计值否则当有效粒子数目小于设定阈值时,进入步骤6;
步骤6、启动重采样过程进行重采样,对粒子集进行重采样得到新的粒子集
步骤7、比较k是否到达结束时刻T,若k<T,则k=k+1跳至步骤2;若k≥T则结束。
2.根据权利要求1所述的一种基于高斯扰动的重采样粒子滤波算法,其特征在于,所述步骤6中的重采样的过程为
601、产生[0,1]上均匀分布的随机数{ui}i=1…N
602、产生权值累积函数wc,满足
603、找到满足wc(m-1)≤ui≤wc(m)的整数m生成重采样粒子下标m,第m个粒子经重采样后将被复制在第i个位置,即 为k时刻重采样后第i个粒子,为k时刻重采样前第m个粒子;
604、统计第m个粒子被采样的次数
605、若Cm>1,则计算采样邻域的大小α22与粒子集中的有效粒子目数和***状态的方差ε2有关,进入606;
606、对由多次重采样后的粒子添加高斯扰动为 重采样后,粒子集中粒子的重要性权值相等,均为重采样得到新的粒子集
607、计算输出k时刻***状态估计期望值
CN201610596452.XA 2016-07-26 2016-07-26 一种基于高斯扰动的重采样粒子滤波算法 Pending CN106296727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610596452.XA CN106296727A (zh) 2016-07-26 2016-07-26 一种基于高斯扰动的重采样粒子滤波算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610596452.XA CN106296727A (zh) 2016-07-26 2016-07-26 一种基于高斯扰动的重采样粒子滤波算法

Publications (1)

Publication Number Publication Date
CN106296727A true CN106296727A (zh) 2017-01-04

Family

ID=57652555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610596452.XA Pending CN106296727A (zh) 2016-07-26 2016-07-26 一种基于高斯扰动的重采样粒子滤波算法

Country Status (1)

Country Link
CN (1) CN106296727A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113030A (zh) * 2019-04-18 2019-08-09 东南大学 一种二次采样的粒子滤波算法
CN110702093A (zh) * 2019-09-27 2020-01-17 五邑大学 基于粒子滤波的定位方法、装置、存储介质及机器人
CN112039496A (zh) * 2020-09-10 2020-12-04 南京航空航天大学 一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法
CN113032510A (zh) * 2021-04-02 2021-06-25 中国人民解放军国防科技大学 一种基于高斯权重的lbgm法初值扰动生成方法
CN113093100A (zh) * 2021-03-09 2021-07-09 惠州Tcl移动通信有限公司 一种定位方法、智能终端及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050030181A (ko) * 2005-02-17 2005-03-29 이석한 제약조건 다양체에 기반한 센서 융합 및 필터링 방법
CN103905352A (zh) * 2012-12-27 2014-07-02 中国人民解放军理工大学 基于变异粒子群粒子滤波的单通道扰信盲分离方法
CN104792529A (zh) * 2015-04-12 2015-07-22 北京化工大学 基于状态空间模型的滚动轴承寿命预测方法
CN105117537A (zh) * 2015-08-13 2015-12-02 电子科技大学 一种基于权值比较的粒子滤波***重采样方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050030181A (ko) * 2005-02-17 2005-03-29 이석한 제약조건 다양체에 기반한 센서 융합 및 필터링 방법
CN103905352A (zh) * 2012-12-27 2014-07-02 中国人民解放军理工大学 基于变异粒子群粒子滤波的单通道扰信盲分离方法
CN104792529A (zh) * 2015-04-12 2015-07-22 北京化工大学 基于状态空间模型的滚动轴承寿命预测方法
CN105117537A (zh) * 2015-08-13 2015-12-02 电子科技大学 一种基于权值比较的粒子滤波***重采样方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RONG ZHOU等: "An Improved Resampling Algorithm for Particle Filtering in Small Target Tracking", 《JOURNAL OR COASTAL RESEARCH》 *
李辉: "基于粒子滤波的行人跟踪算法研究", 《中国博士学位论文全文数据库信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113030A (zh) * 2019-04-18 2019-08-09 东南大学 一种二次采样的粒子滤波算法
CN110702093A (zh) * 2019-09-27 2020-01-17 五邑大学 基于粒子滤波的定位方法、装置、存储介质及机器人
CN112039496A (zh) * 2020-09-10 2020-12-04 南京航空航天大学 一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法
CN112039496B (zh) * 2020-09-10 2024-04-19 南京航空航天大学 一种基于人工鱼群优化的快速高斯粒子滤波数据融合方法
CN113093100A (zh) * 2021-03-09 2021-07-09 惠州Tcl移动通信有限公司 一种定位方法、智能终端及计算机可读存储介质
CN113032510A (zh) * 2021-04-02 2021-06-25 中国人民解放军国防科技大学 一种基于高斯权重的lbgm法初值扰动生成方法
CN113032510B (zh) * 2021-04-02 2023-06-02 中国人民解放军国防科技大学 一种基于高斯权重的lbgm法初值扰动生成方法

Similar Documents

Publication Publication Date Title
CN106296727A (zh) 一种基于高斯扰动的重采样粒子滤波算法
CN103076602B (zh) 针对多目标背景的雷达自适应恒虚警率融合检测方法
CN104021289B (zh) 一种非高斯非稳态噪声建模方法
CN105405151A (zh) 基于粒子滤波和加权Surf的抗遮挡目标跟踪方法
CN111880158A (zh) 一种基于卷积神经网络序列分类的雷达目标检测方法及***
CN106022340A (zh) 一种改进的高斯混合势概率假设密度滤波方法
CN113534199B (zh) 一种自适应的广义累计和gps欺骗攻击检测方法
CN103353989A (zh) 基于先验和融合灰度与纹理特征的sar图像变化检测方法
CN108919254A (zh) 高重频雷达机动弱小多目标检测跟踪的cs-phd方法
CN105975772B (zh) 基于概率假设密度滤波的多目标检测前跟踪方法
CN104881521A (zh) 一种标号随机集滤波器分布式融合方法
CN103684352A (zh) 基于差分演化的粒子滤波方法
CN102621535B (zh) 一种高效的协方差矩阵结构估计方法
CN108919255A (zh) 基于cs-pf的高重频雷达弱小目标检测跟踪方法
CN107329131B (zh) 一种利用粒子滤波的雷达微弱目标检测跟踪方法
CN106533451A (zh) 一种块稀疏信号恢复的迭代终止条件设置方法
CN101872482B (zh) 一种基于免疫遗传粒子滤波的智能视频跟踪方法
CN106056626A (zh) 一种基于前景背景模型交互的运动目标检测方法
Son et al. Partial convolutional LSTM for spatiotemporal prediction of incomplete data
CN105353353B (zh) 多重搜索粒子概率假设密度滤波的多目标跟踪方法
CN110244289A (zh) 一种自适应粒子滤波地波雷达目标一体化探测方法
CN106019250A (zh) 基于角闪烁转发式假目标鉴别方法
CN112561203B (zh) 一种基于聚类和gru实现水位预警的方法及***
Wang et al. Efficient visual tracking via hamiltonian monte carlo markov chain
Hu et al. Weak target tracking based on improved particle filter algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104