CN106252431A - 一种CdSZnO核壳纳米棒阵列结构的制备方法 - Google Patents

一种CdSZnO核壳纳米棒阵列结构的制备方法 Download PDF

Info

Publication number
CN106252431A
CN106252431A CN201610655622.7A CN201610655622A CN106252431A CN 106252431 A CN106252431 A CN 106252431A CN 201610655622 A CN201610655622 A CN 201610655622A CN 106252431 A CN106252431 A CN 106252431A
Authority
CN
China
Prior art keywords
room temperature
rod array
electrode
distilled water
dimethyl sulfoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610655622.7A
Other languages
English (en)
Inventor
潘忠宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610655622.7A priority Critical patent/CN106252431A/zh
Publication of CN106252431A publication Critical patent/CN106252431A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

一种CdSZnO核壳纳米棒阵列结构的制备方法,称取 0.74g硝酸锌、0.35g六次甲基四胺溶解于蒸馏水中,磁力搅拌20min,取上述澄清溶液倒入反应釜中,并将FTO导电玻璃倾斜放入,于100℃烘箱中水热反应9h,冷却至室温取出FTO导电玻璃用无水乙醇和蒸馏水分别冲洗4次后,室温干燥后于380‑390℃煅烧20‑25min,自然冷却至室温即得ZnO纳米棒阵列,以ZnO纳米棒阵列为工作电极、Pt电极为对电极,在含有0.63g氯化镉、0.3g硫粉的二甲亚砜溶液中,控制电流为15mA,于100‑105℃下电沉积50s的CdS纳米晶,产品再依次用二甲亚砜和无水乙醇冲洗2次后,于380‑390℃煅烧20‑25min,冷却至室温。本发明的有益效果是:拓宽和加强电池的光吸收能力,有利于提高电池的光电性能。

Description

一种CdSZnO核壳纳米棒阵列结构的制备方法
技术领域
本发明涉及材料合成方法,具体的是一种CdSZnO核壳纳米棒阵列结构的制备方法。
背景技术
量子点敏化太阳能电池作为第三代太阳能电池,具有生产成本低廉、工艺简单及稳定性好等优点,是近年来的研究热点之一。ZnO作为一种优异的无机半导体材料,成为太阳能电池研究较多的材料,但其禁带宽度约为3.2eV,仅吸收紫外光,这限制其对可见光的利用。为进一步提高ZnO的光电性能,将CdS、CdSe、PbS和PbSe等纳米晶作为敏化剂沉积在ZnO上组装成光电极,拓宽光吸收范围,从而改善太阳能电池的光电性能。目前纳米晶的制备方法主要有连续离子层吸附反应法、化学浴沉积法、电化学沉积法和激光烧蚀法等, 其中电化学沉积法以其操作工艺简单、反应条件温和、成本低、沉积速率高以及适合于复杂基底制膜等优点,受到研究者们的广泛关注。
发明内容
本发明所要解决的技术问题在于提供一种CdSZnO核壳纳米棒阵列结构的制备方法,提供一种新的合成方法。
本发明采用的合成方法,包括如下步骤:
称取 0.74g硝酸锌、0.35g六次甲基四胺溶解于蒸馏水中,磁力搅拌20min使其混合均匀,取上述澄清溶液倒入反应釜中,并将FTO导电玻璃倾斜放入聚四氟乙烯反应釜中,于100℃烘 箱中水热反应9h,反应结束后待反应釜冷却至室温,取出FTO导电玻璃用无水乙醇和蒸馏水分别冲洗4次后,室温干燥后于380-390℃煅烧20-25min,自然冷却至室温即得ZnO纳米棒阵列,以ZnO纳米棒阵列为工作电极、Pt电极为对电极,在含有0.63g氯化镉、0.3g硫粉的二甲亚砜溶液中,控制电流为15mA,于100-105℃下电沉积50s的CdS纳米晶,所得样品依次用二甲亚砜和无水乙醇冲洗2次后,于380-390℃煅烧20-25min,自然冷却至室温即得CdS/ZnO核壳纳米棒阵列。
本发明的有益效果是:CdS 纳米晶在ZnO纳米棒阵列上的沉积,拓宽和加强电池的光吸收能力;且CdS与ZnO形成一种阶梯式能级结构,可以有效调控光生载流子的传输,有利于提高电池的光电性能。
具体实施方式
以下结合实例进一步说明本发明的内容,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。
实施例1:
称取 0.74g硝酸锌、0.35g六次甲基四胺溶解于蒸馏水中,磁力搅拌20min使其混合均匀,取上述澄清溶液倒入反应釜中,并将FTO导电玻璃倾斜放入聚四氟乙烯反应釜中,于100℃烘 箱中水热反应9h,反应结束后待反应釜冷却至室温,取出FTO导电玻璃用无水乙醇和蒸馏水分别冲洗4次后,室温干燥后于380℃煅烧20min,自然冷却至室温即得ZnO纳米棒阵列,以ZnO纳米棒阵列为工作电极、Pt电极为对电极,在含有0.63g氯化镉、0.3g硫粉的二甲亚砜溶液中,控制电流为15mA,于100℃下电沉积50s的CdS纳米晶,所得样品依次用二甲亚砜和无水乙醇冲洗2次后,于380℃煅烧20min,自然冷却至室温即得CdS/ZnO核壳纳米棒阵列。
实施例2:
称取 0.74g硝酸锌、0.35g六次甲基四胺溶解于蒸馏水中,磁力搅拌20min使其混合均匀,取上述澄清溶液倒入反应釜中,并将FTO导电玻璃倾斜放入聚四氟乙烯反应釜中,于100℃烘 箱中水热反应9h,反应结束后待反应釜冷却至室温,取出FTO导电玻璃用无水乙醇和蒸馏水分别冲洗4次后,室温干燥后于390℃煅烧25min,自然冷却至室温即得ZnO纳米棒阵列,以ZnO纳米棒阵列为工作电极、Pt电极为对电极,在含有0.63g氯化镉、0.3g硫粉的二甲亚砜溶液中,控制电流为15mA,于105℃下电沉积50s的CdS纳米晶,所得样品依次用二甲亚砜和无水乙醇冲洗2次后,于390℃煅烧min,自然冷却至室温即得CdS/ZnO核壳纳米棒阵列。
通过实验,CdS 纳米晶在ZnO纳米棒阵列上的沉积,拓宽和加强电池的光吸收能力;且CdS与ZnO形成一种阶梯式能级结构,可以有效调控光生载流子的传输,有利于提高电池的光电性能。当CdS纳米晶沉积时间为50s时,电池的短路电流和转换效率分别达到4.35mA/cm和1.21%。

Claims (1)

1.一种CdSZnO核壳纳米棒阵列结构的制备方法,其特征在于:称取 0.74g硝酸锌、0.35g六次甲基四胺溶解于蒸馏水中,磁力搅拌20min使其混合均匀,取上述澄清溶液倒入反应釜中,并将FTO导电玻璃倾斜放入聚四氟乙烯反应釜中,于100℃烘 箱中水热反应9h,反应结束后待反应釜冷却至室温,取出FTO导电玻璃用无水乙醇和蒸馏水分别冲洗4次后,室温干燥后于380-390℃煅烧20-25min,自然冷却至室温即得ZnO纳米棒阵列,以ZnO纳米棒阵列为工作电极、Pt电极为对电极,在含有0.63g氯化镉、0.3g硫粉的二甲亚砜溶液中,控制电流为15mA,于100-105℃下电沉积50s的CdS纳米晶,所得样品依次用二甲亚砜和无水乙醇冲洗2次后,于380-390℃煅烧20-25min,自然冷却至室温即得。
CN201610655622.7A 2016-08-11 2016-08-11 一种CdSZnO核壳纳米棒阵列结构的制备方法 Pending CN106252431A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610655622.7A CN106252431A (zh) 2016-08-11 2016-08-11 一种CdSZnO核壳纳米棒阵列结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610655622.7A CN106252431A (zh) 2016-08-11 2016-08-11 一种CdSZnO核壳纳米棒阵列结构的制备方法

Publications (1)

Publication Number Publication Date
CN106252431A true CN106252431A (zh) 2016-12-21

Family

ID=58079148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610655622.7A Pending CN106252431A (zh) 2016-08-11 2016-08-11 一种CdSZnO核壳纳米棒阵列结构的制备方法

Country Status (1)

Country Link
CN (1) CN106252431A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269698A (zh) * 2018-02-06 2018-07-10 太原理工大学 一种金属硫化物的电化学制备方法及其应用
CN112899721A (zh) * 2021-01-18 2021-06-04 西北农林科技大学 一种三维ZnO/CdS纳米阵列电极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220615A (zh) * 2011-05-13 2011-10-19 中国科学院理化技术研究所 制备CdS/ZnO纳米管阵列光电极的方法
CN102412369A (zh) * 2011-10-14 2012-04-11 中国科学院等离子体物理研究所 一种有机/无机杂化太阳电池及其制备方法
CN102543471A (zh) * 2012-01-17 2012-07-04 西安交通大学 CdS、CdSe量子点分段复合敏化双层ZnO纳米棒光阳极的制备方法
CN103066154A (zh) * 2012-12-31 2013-04-24 东华大学 一种ZnO/CdS/Cu2ZnSnS4 pn 结纳米棒阵列的制备方法
CN105498802A (zh) * 2015-12-04 2016-04-20 福州大学 一种氧化锌-金-硫化镉三元复合型光催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220615A (zh) * 2011-05-13 2011-10-19 中国科学院理化技术研究所 制备CdS/ZnO纳米管阵列光电极的方法
CN102412369A (zh) * 2011-10-14 2012-04-11 中国科学院等离子体物理研究所 一种有机/无机杂化太阳电池及其制备方法
CN102543471A (zh) * 2012-01-17 2012-07-04 西安交通大学 CdS、CdSe量子点分段复合敏化双层ZnO纳米棒光阳极的制备方法
CN103066154A (zh) * 2012-12-31 2013-04-24 东华大学 一种ZnO/CdS/Cu2ZnSnS4 pn 结纳米棒阵列的制备方法
CN105498802A (zh) * 2015-12-04 2016-04-20 福州大学 一种氧化锌-金-硫化镉三元复合型光催化剂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269698A (zh) * 2018-02-06 2018-07-10 太原理工大学 一种金属硫化物的电化学制备方法及其应用
CN112899721A (zh) * 2021-01-18 2021-06-04 西北农林科技大学 一种三维ZnO/CdS纳米阵列电极及其制备方法

Similar Documents

Publication Publication Date Title
An et al. Photostability and photodegradation processes in colloidal CsPbI3 perovskite quantum dots
Luo et al. Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells
De la Mora et al. Materials for downconversion in solar cells: Perspectives and challenges
Luo et al. Highly efficient core–shell CuInS 2–Mn doped CdS quantum dot sensitized solar cells
Parize et al. ZnO/TiO2/Sb2S3 core–shell nanowire heterostructure for extremely thin absorber solar cells
Yu et al. ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells
Yang et al. CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media
Luo et al. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
Xu et al. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application
Fujimoto et al. Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition
Halder et al. Plight of Mn doping in colloidal CdS quantum dots to boost the efficiency of solar cells
Zhang et al. Enhanced photocatalytic property of γ-CsPbI3 perovskite nanocrystals with WS2
Bhosale et al. Influence of copper concentration on sprayed CZTS thin films deposited at high temperature
Zhang et al. Mechanism of water effect on enhancing the photovoltaic performance of triple-cation hybrid perovskite solar cells
Guo et al. Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting
CN104183704B (zh) 一种量子点共敏化型钙钛矿太阳能电池的制备方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN103881709A (zh) 一种多级孔TiO2/量子点复合材料的制备方法
Liu et al. Controllable synthesis of Cu2In2ZnS5 nano/microcrystals and hierarchical films and applications in dye-sensitized solar cells
Lin et al. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells
Liu et al. Integration of photoelectrochemical devices and luminescent solar concentrators based on giant quantum dots for highly stable hydrogen generation
Lee et al. Induced growth of CsPbBr3 perovskite films by incorporating metal chalcogenide quantum dots in PbBr2 films for performance enhancement of inorganic perovskite solar cells
CN106128772B (zh) 一种硫化铅量子点光伏电池的制备方法
Liu et al. High-efficiency nanorod-nanosheet arrays sandwich photoelectrode for photoelectrochemical water splitting
Bai et al. Self-Assembled vertically aligned hetero-epitaxial ZnO/CdS core/shell array by all CBD process: platform for enhanced visible-light-driven pec performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161221