CN106216664A - 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒 - Google Patents

一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒 Download PDF

Info

Publication number
CN106216664A
CN106216664A CN201610832477.5A CN201610832477A CN106216664A CN 106216664 A CN106216664 A CN 106216664A CN 201610832477 A CN201610832477 A CN 201610832477A CN 106216664 A CN106216664 A CN 106216664A
Authority
CN
China
Prior art keywords
silver nano
particle
grain
spherical silver
monocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610832477.5A
Other languages
English (en)
Other versions
CN106216664B (zh
Inventor
李永生
郑楠
潘珊
于海宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201610832477.5A priority Critical patent/CN106216664B/zh
Publication of CN106216664A publication Critical patent/CN106216664A/zh
Application granted granted Critical
Publication of CN106216664B publication Critical patent/CN106216664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明所述的制备单晶球形银纳米颗粒的方法,包括:利用硝酸银、聚乙烯吡咯烷酮和有机溶剂制备分散有银纳米颗粒的胶体溶液;向胶体溶液中加入异丙醇、乙醇、去离子水、氨水和正硅酸乙酯,在银纳米颗粒的表面形成致密的二氧化硅层,然后冷冻干燥得到坯体;将坯体放入管式炉中并在惰性气氛中煅烧,形成包覆二氧化硅壳层的单晶球形银纳米颗粒,其中,煅烧温度为800‑1000℃;向包覆二氧化硅壳层的单晶球形银纳米颗粒中加入氢氧化钠、二乙胺和去离子水,去掉表面的二氧化硅层,得到单晶球形银纳米颗粒。本发明通过在银纳米颗粒的外表面形成二氧化硅层来作为煅烧的表面保护层,然后通过高温退火工艺来制备单晶球形银纳米颗粒。

Description

一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米 颗粒
技术领域
本发明涉及纳米与光电材料领域,更具体地涉及一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒。
背景技术
纳米金属粒子的表面等离子体共振(SPR)为很多方面,如化学或生物传感、成像、肿瘤光热治疗、太阳能能量收集等的应用,开拓了新的发展空间。银纳米结构的材料由于其在可见光区域具有很强的局域表面等离子体共振(LSPR),近年来引起研究者浓厚的研究兴趣。
银纳米结构的LSPR与其形状及大小有着密切的联系,目前各种各样的银纳米结构已被合成,包括线、盘、立方体、条、双锥、八面体、非对称截断八面体等,其并不呈现为球形。然而球形的银纳米结构由于表面光滑,在被做成光电器件后不容易堆积,可以降低电极电阻和提高光电转换效率。因此,迫切需要合成一种球形的银纳米结构。
而且,已合成的这些形状的银纳米粒子均为多晶结构,而非单晶结构。然而银纳米粒子的晶型与其光电性能有着密切的关系。例如对于用于太阳能电池的正面银浆而言,其中的主要成分银粉的晶型如果是单晶,会提高光电转换效率,因为单晶比多晶更有利于电子的传输,可以有效减少电能损耗。因此,迫切需要合成一种单晶结构的银纳米结构。
在其他工作中,提到过用化学腐蚀法来制备单晶球形银纳米颗粒。腐蚀力(如刻蚀)已被发现是一个合成复杂金属纳米晶体中的有效办法。刻蚀已被用于在纳米晶生长的早期阶段控制种子形成的晶型,激活特定一种纳米晶面的择优生长,创建中空结构以及截断尖锐的角或边。为了溶解金属,湿刻蚀剂通常含有氧化剂和一个配位体,这个配位体与所得到的金属离子配位。夏幼楠课题组(Cobley,C.M.,Rycenga,M.,Zhou,F.,Li,Z.Y.,&Xia,Y.(2009).Controlled etching as a route to high quality silver nanospheres foroptical studies.The Journal of Physical Chemistry C,113(39),16975-16982)用Fe(III)来刻蚀银纳米立方体尖锐的角和边得到球形银纳米粒子。Yujie Xiong(XiongY.Morphological changes in Ag nanocrystals triggered by citratephotoreduction and governed by oxidative etching[J].Chemical Communications,2011,47(5):1580-1582)用柠檬酸光还原也成功实现银立方体到球形银纳米粒子的转变,整个形状的演变是一个氧化刻蚀的过程。这些方法虽然合成步骤简单,但要求实验条件精确控制,重复性欠佳。总结起来,其制备存在以下问题:需要对反应物的浓度及实验条件进行精确控制,影响实验的可重复性;首先要求合成单晶的银纳米正方体,对一般的近球形的银纳米颗粒不适用;只能少量地制备单晶球形银纳米颗粒,极大地限制其在实际生活中的应用范围。
发明内容
本发明旨在提供一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒,其形成的银纳米结构为球形的单晶结构,在被做成光电器件后不容易发生堆积且能有效提高光电转换效率和减少电能损耗。
本发明所述的制备单晶球形银纳米颗粒的方法,包括如下步骤:S1,利用硝酸银、聚乙烯吡咯烷酮和有机溶剂制备分散有银纳米颗粒的胶体溶液;S2,向所述胶体溶液中加入异丙醇、乙醇、去离子水、氨水和正硅酸乙酯,在所述银纳米颗粒的表面形成致密的二氧化硅层,然后冷冻干燥得到坯体;S3,将坯体放入管式炉中并在惰性气氛中煅烧,形成包覆二氧化硅壳层的单晶球形银纳米颗粒,其中,煅烧温度为800-1000℃;以及S4,向包覆二氧化硅壳层的单晶球形银纳米颗粒中加入氢氧化钠、二乙胺和去离子水,去掉表面的二氧化硅层,得到单晶球形银纳米颗粒。
在所述步骤S1中,所述有机溶剂为乙二醇或水合肼;所述银纳米颗粒为正方体和/或近球形的银纳米颗粒。
所述步骤S1包括:硝酸银和聚乙烯吡咯烷酮的质量比为(2-5):(3-6),乙二醇作为溶剂和还原剂,在140-160℃反应得到分散有单晶银纳米正方体的胶体溶液;或者,硝酸银和聚乙烯吡咯烷酮按照质量比(7-9):(6-8),水合肼作为还原剂(水作为溶剂),在50-80℃反应得到分散有近球状的多晶银纳米颗粒的胶体溶液。
所述步骤S2包括:将胶体溶液、异丙醇、乙醇按照体积比为1:(110-150):(8-10)混合均匀,在40-70℃下搅拌,然后将去离子水和氨水按照体积比(9-11):(5-8)同时加入,最后加入正硅酸乙酯。
在所述步骤S2中,异丙醇、乙醇、去离子水、氨水及正硅酸乙酯的体积比为(11000-15000):(8000-10000):(9000-11000):(500-800):(2-5)。
所述步骤S3中的煅烧时间为3-5小时。
所述步骤S4包括:将包覆二氧化硅壳层的单晶球形银纳米颗粒和氢氧化钠按照质量比(2-5):(8-11)混合均匀,加入去离子水和乙二胺,在100℃下继续搅拌得到单晶球形银纳米颗粒。
所述步骤S4中的搅拌时间为0.5-2h。
本发明还提供一种根据上述制备方法所获得的单晶球形银纳米颗粒。
本发明的制备单晶球形银纳米颗粒的方法,通过在银纳米颗粒的外表面形成二氧化硅层来作为煅烧的表面保护层,然后通过高温退火工艺来制备单晶球形银纳米颗粒,所得的银纳米颗粒结晶性好,形状为球形,从而可以有效地解决现有技术中单晶球形银纳米颗粒的制备工艺要求高、适用范围窄、制备量少等问题。本发明的制备方法,与刻蚀方法相比,并不局限于作用于银纳米正方体,实际上对近球形的银纳米正方体同样适用,具有普适性。而且,根据本发明的制备方法简单高效,重复性好。
附图说明
图1是根据本发明的制备单晶球形银纳米颗粒的方法的工艺流程图;
图2是按照实施例1的工艺制备的40nm的单晶球形银纳米颗粒,(a)透射电子显微镜图;(b)选区电子衍射图;
图3是按照实施例1的工艺制备的40nm的单晶球形银纳米颗粒的紫外-可见-近红外消光光谱图;
图4是按照实施例2的工艺制备的60nm的单晶球形银纳米颗粒,(a)透射电子显微镜图;(b)选区电子衍射图;
图5是按照实施例2的工艺制备的60nm的单晶球形银纳米颗粒的紫外-可见-近红外消光光谱图;
图6是按照实施例3的工艺制备的单晶球形银纳米颗粒,(a)低倍透射电子显微镜图;(b)高倍透射电子显微镜图;(c)选区电子衍射图;
图7是按照实施例3的工艺制备的单晶球形银纳米颗粒的紫外-可见-近红外消光光谱图。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
实施例1
(1)首先合成40nm银纳米正方体。硝酸银和聚乙烯吡咯烷酮按照质量比2:6混合,加入50ml乙二醇,在140℃较热搅拌得到暗绿色分散有银纳米正方体的溶液,接着用丙酮和去离子水分别洗涤三次,最后将产物溶解在8ml去离子水中;
(2)将(1)得到的胶体溶液、异丙醇、乙醇按照体积比1:110:10混合均匀,在50℃下搅拌,然后将去离子水和氨水按照体积比9:8同时加入,最后加入正硅酸乙酯10微升。反应完后,用去离子水洗涤三次最后将产物溶解在1ml去离子水中,然后冷冻干燥;
(3)将(2)得到的样品放入管式炉中,氮气气氛,800℃保温4小时;
(4)将(3)得到的样品和氢氧化钠按照质量比2:11混合均匀,然后加入100ml去离子水和1ml二乙胺,加热到100℃回流0.5小时,离心之后用去离子水洗两次,最后将产物溶解到1ml去离子水中。
将根据本实施例制得的单晶球形银纳米颗粒溶液进行透射电镜和选区电子衍射表征,结果如图2所示。由图可知该单晶球形银纳米颗粒的直径为40nm左右,选区电子衍射图的斑点说明该银纳米颗粒为单晶。
将该单晶球形银纳米颗粒溶液进行紫外-可见-近红外光谱表征,结果如图3所示。结果显示,该单晶球形银纳米颗粒出现一个等离子峰,位于410nm,而且半峰宽较窄说明该样品粒径分布单一。
实施例2
(1)硝酸银和聚乙烯吡咯烷酮按照质量比4:5混合,加入50ml乙二醇,在160℃较热搅拌得到暗绿色分散有银纳米正方体的溶液,接着用丙酮和去离子水分别洗涤三次,最后将产物溶解在8ml去离子水中;
(2)(3)(4)同实施例1。
将根据本实施例制得的单晶球形银纳米颗粒溶液进行透射电镜和选区电子衍射表征,结果如图4所示。由图可知该单晶球形银纳米颗粒的直径为60nm左右,选区电子衍射图的斑点说明该银纳米颗粒为单晶。
将该单晶球形银纳米颗粒溶液进行紫外-可见-近红外光谱表征,结果如图5所示。结果显示,该单晶球形银纳米颗粒出现一个等离子峰,位于460nm。
实施例3
(1)首先合成近球状银纳米粒子。硝酸银和聚乙烯吡咯烷酮按照质量比7:6比例混合,加入20ml水合肼的水溶液,在50℃反应得到分散有近球状的银纳米颗粒的胶体溶液;
(2)(3)(4)同实施例1。
将根据本实施例制得的单晶球形银纳米颗粒溶液进行透射电镜和选区电子衍射表征,结果如图6所示。由图可知该单晶球形银纳米颗粒的直径为10-50nm范围内,选区电子衍射图的斑点说明该银纳米颗粒为单晶。
将该单晶球形银纳米颗粒溶液进行紫外-可见-近红外光谱表征,结果如图7所示。结果显示,该单晶球形银纳米颗粒出现一个等离子峰,位于400nm。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (9)

1.一种制备单晶球形银纳米颗粒的方法,其特征在于,包括如下步骤:
S1,利用硝酸银、聚乙烯吡咯烷酮和有机溶剂制备分散有银纳米颗粒的胶体溶液;
S2,向所述胶体溶液中加入异丙醇、乙醇、去离子水、氨水和正硅酸乙酯,在所述银纳米颗粒的表面形成致密的二氧化硅层,然后冷冻干燥得到坯体;
S3,将坯体放入管式炉中并在惰性气氛中煅烧,形成包覆二氧化硅壳层的单晶球形银纳米颗粒,其中,煅烧温度为800-1000℃;以及
S4,向包覆二氧化硅壳层的单晶球形银纳米颗粒中加入氢氧化钠、二乙胺和去离子水,去掉表面的二氧化硅层,得到单晶球形银纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于,在所述步骤S1中,所述有机溶剂为乙二醇或水合肼;所述银纳米颗粒为正方体和/或近球形的银纳米颗粒。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤S1包括:硝酸银和聚乙烯吡咯烷酮的质量比为(2-5):(3-6),乙二醇作为溶剂和还原剂,在140-160℃反应得到分散有单晶银纳米正方体的胶体溶液;或者,硝酸银和聚乙烯吡咯烷酮按照质量比(7-9):(6-8),水合肼作为还原剂,在50-80℃反应得到分散有近球状的多晶银纳米颗粒的胶体溶液。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤S2包括:将胶体溶液、异丙醇、乙醇按照体积比为1:(110-150):(8-10)混合均匀,在40-70℃下搅拌,然后将去离子水和氨水按照体积比(9-11):(5-8)同时加入,最后加入正硅酸乙酯。
5.根据权利要求4所述的制备方法,其特征在于,在所述步骤S2中,异丙醇、乙醇、去离子水、氨水及正硅酸乙酯的体积比为(11000-15000):(8000-10000):(9000-11000):(500-800):(2-5)。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤S3中的煅烧时间为3-5小时。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤S4包括:将包覆二氧化硅壳层的单晶球形银纳米颗粒和氢氧化钠按照质量比(2-5):(8-11)混合均匀,加入去离子水和乙二胺,在100℃下继续搅拌得到单晶球形银纳米颗粒。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤S4中的搅拌时间为0.5-2h。
9.一种根据上述权利要求1-8中任一项所述的制备方法所获得的单晶球形银纳米颗粒。
CN201610832477.5A 2016-09-20 2016-09-20 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒 Active CN106216664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610832477.5A CN106216664B (zh) 2016-09-20 2016-09-20 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610832477.5A CN106216664B (zh) 2016-09-20 2016-09-20 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒

Publications (2)

Publication Number Publication Date
CN106216664A true CN106216664A (zh) 2016-12-14
CN106216664B CN106216664B (zh) 2018-10-16

Family

ID=58075725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610832477.5A Active CN106216664B (zh) 2016-09-20 2016-09-20 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒

Country Status (1)

Country Link
CN (1) CN106216664B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106938194A (zh) * 2017-03-16 2017-07-11 天津大学 一种单分散高催化性能溶液态银纳米颗粒的合成方法和应用
CN107186221A (zh) * 2017-05-08 2017-09-22 华南师范大学 一种银纳米颗粒的合成方法
CN108723385A (zh) * 2018-06-07 2018-11-02 大连民族大学 一种单晶银纳米球水相制备方法
CN112186138A (zh) * 2019-07-02 2021-01-05 湖南杉杉新能源有限公司 含w高镍三元正极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045655A (ja) * 2004-08-09 2006-02-16 Mitsubishi Materials Corp 銀ナノ粒子とその製造方法
KR101494892B1 (ko) * 2013-02-08 2015-02-27 조선대학교산학협력단 다각형 은 나노입자의 제조방법
CN104400000A (zh) * 2014-11-07 2015-03-11 中国船舶重工集团公司第七一二研究所 一种球形银粉的制备方法
CN105921765A (zh) * 2016-05-24 2016-09-07 中国科学院化学研究所 一种粒径可控棒状银粉的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045655A (ja) * 2004-08-09 2006-02-16 Mitsubishi Materials Corp 銀ナノ粒子とその製造方法
KR101494892B1 (ko) * 2013-02-08 2015-02-27 조선대학교산학협력단 다각형 은 나노입자의 제조방법
CN104400000A (zh) * 2014-11-07 2015-03-11 中国船舶重工集团公司第七一二研究所 一种球形银粉的制备方法
CN105921765A (zh) * 2016-05-24 2016-09-07 中国科学院化学研究所 一种粒径可控棒状银粉的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLAIRE M. COBLEY: "Controlled Etching as a Route to High Quality Silver Nanosperes for Optical Studies", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
YUJIE XIONG: "Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching", 《CHEMICAL COMMUNICATIONS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106938194A (zh) * 2017-03-16 2017-07-11 天津大学 一种单分散高催化性能溶液态银纳米颗粒的合成方法和应用
CN106938194B (zh) * 2017-03-16 2020-03-27 天津大学 一种单分散高催化性能溶液态银纳米颗粒的合成方法和应用
CN107186221A (zh) * 2017-05-08 2017-09-22 华南师范大学 一种银纳米颗粒的合成方法
CN107186221B (zh) * 2017-05-08 2019-07-23 华南师范大学 一种银纳米颗粒的合成方法
CN108723385A (zh) * 2018-06-07 2018-11-02 大连民族大学 一种单晶银纳米球水相制备方法
CN112186138A (zh) * 2019-07-02 2021-01-05 湖南杉杉新能源有限公司 含w高镍三元正极材料及其制备方法

Also Published As

Publication number Publication date
CN106216664B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
Kumar et al. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review
Meng et al. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials
Bilecka et al. Microwave chemistry for inorganic nanomaterials synthesis
Zhang et al. Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange
CN106216664B (zh) 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒
Li et al. Synthesis of rhombic hierarchical YF 3 nanocrystals and their use as upconversion photocatalysts after TiO 2 coating
Kumar et al. Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications
Salavati-Niasari et al. Sonochemical synthesis of Dy2 (CO3) 3 nanoparticles, Dy (OH) 3 nanotubes and their conversion to Dy2O3 nanoparticles
CN101717122B (zh) 一种微波法制备四氧化三铁纳米片的方法
CN101412541B (zh) 一种合成棒状和海胆状氧化钼基纳米材料的方法
Yin et al. Synthesis and photoluminescent properties of CaMoO4 nanostructures at room temperature
Quan et al. Polyol-mediated synthesis of PbS crystals: shape evolution and growth mechanism
Mulinari et al. Microwave-hydrothermal synthesis of single-crystalline Co 3 O 4 spinel nanocubes
CN103447549B (zh) 钴纳米球的制备方法
CN111099650A (zh) CeO2纳米球形颗粒的熔盐法合成方法
Wang et al. General methods for large-scale production of nanostructured V2O5 with controlled morphologies
Yang et al. Fabrication of Cu2O@ Cu2O core–shell nanoparticles and conversion to Cu2O@ Cu core–shell nanoparticles in solution
CN114392734A (zh) 一种氧化钨复合材料及其制备方法和应用
CN109187486A (zh) 一种银纳米片及其制备方法与用途
Tian et al. Luminescence properties, and anti-counterfeiting application of one-dimensional electrospun Y2Ti2O7: Ho/Yb nanostructures
Jadhav et al. Effect of different additives on the size control and emission properties of Y2O3: Eu3+ nanoparticles prepared through the coprecipitation method
CN107032406B (zh) 一种钼酸锰微纳米束及其制备方法
CN108996478B (zh) 一种MNx超级晶体及其制备方法和应用
Das et al. Sonochemical synthesis of LaMnO3 nano-powder
Cao et al. Porous ZnO nanobelts: synthesis, mechanism, and morphological evolutions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant