CN106187189A - 一种储能微波介质陶瓷材料及其制备方法 - Google Patents

一种储能微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106187189A
CN106187189A CN201610541177.1A CN201610541177A CN106187189A CN 106187189 A CN106187189 A CN 106187189A CN 201610541177 A CN201610541177 A CN 201610541177A CN 106187189 A CN106187189 A CN 106187189A
Authority
CN
China
Prior art keywords
ball
catio
energy storage
xndalo
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610541177.1A
Other languages
English (en)
Other versions
CN106187189B (zh
Inventor
郑兴华
刘洋
肖腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610541177.1A priority Critical patent/CN106187189B/zh
Publication of CN106187189A publication Critical patent/CN106187189A/zh
Application granted granted Critical
Publication of CN106187189B publication Critical patent/CN106187189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种储能微波介质陶瓷材料及其制备方法。先预烧制备CaTiO3‑NdAlO3粉体,然后添加不同量的MgO‑Al2O3‑SiO2玻璃粉体,最后制备储能微波介质陶瓷材料。本发明陶瓷材料具有钙钛矿晶相结构以及良好的致密性(相对密度>99%),并且具有优异的微波介电性能和储能性能:介电常数ε为30~100,击穿电场强度Eb为180~531kV/cm,储能密度E为0.08~0.5J/cm3,微波介电性能(2~15GHz范围):介电常数ε为30~100,Qf为15000‑20000GHz,温度系数可调。本发明制备工艺简单,烧结温度较低,具有极大的工业应用价值。

Description

一种储能微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷制备及应用技术领域,具体涉及一种储能微波介质陶瓷材料及其制备方法。
背景技术
随着能源的不断消耗,石油、天然气等不可再生问题,人们对能源需求的日益增长,加之能源传输的弊端,为此开发新能源与能源存储的问题迫在眉睫。介质陶瓷作为电容器因轻便、环保、高效等优点受到广泛关注。目前,作为储能介质被开发的材料主要有三类:电池、超级电容器与储能介质电容器。其中电池作为储能密度最高的器件,具有符合小型化的要求,但因其利用材料的氧化还原反应,所以拥有很低的功率密度(<500W/kg),同时对环境危害极大。超级电容器有比电池更高的功率密度和比电介质电容器更高的储能密度,但其结构复杂、操作电压低、漏电流大、循环周期短。电介质电容器具有存储释放能量快、传输功率大、组合灵活、技术成熟、价格低廉等优点。由于脉冲器件的实质是将脉冲能量在时间尺度上进行压缩,以获得在极短时间内(20-100ns)的高峰值功率输出,因此作为脉冲功率技术设备主体部分的高功能脉冲电源,电容器储能相较于机械能储能和电化学储能具有以上优势,使得其在脉冲功率装置中应用广泛,并且是脉冲功率技术的核心。对于脉冲功率应用的储能介质要求具有高的介电常数和高的击穿电场强度。
目前,根据电介质极化性质随外电场变化的规律,储能介质材料可以分为三种:线性电介质、铁电体和反铁电体材料。线性电介质介电常数虽然较低,但是其几乎不随外加电场频率的变化而变化,可用于高频下,而且具有响应快速、可逆、多次充放电、储能效率接近100%的优点。铁电材料虽然具有很高的介电常数,但介电常数会随着电场的增大而降低,而且通常击穿电场强度不高,因而储能密度不高。反铁电体具有较高介电常数和高的击穿电场强度,因此具有理论上的高储能密度。随着微波通信产业的小型集成化、多功能化的快速发展,近年来开发了系列的低损耗微波介质陶瓷材料,CaTiO3-NdAlO3微波介质陶瓷就是其中典型代表,其具有中介电常数、高品质因数和良好的频率温度系数,广泛应用于微波卫星通信领域。
目前报道的储能介质多为铁电反铁电陶瓷、玻璃陶瓷和聚合物,有关线性电介质报道甚少,而有关微波介质材料作为储能材料的报道更少。CaTiO3-NdAlO3作为Ku频段的微波介质陶瓷广泛应用于卫星数字电视,同时具有高频率脉冲功率器件应用的潜力,目前其储能性能尚未见报道。本发明旨在保持CaTiO3-NdAlO3系陶瓷优异的微波介电性能的同时,通过添加玻璃,降低其烧成温度、拓宽烧成温度范围,并且提高击穿电场强度,从而获得较高储能密度、微波介质多功能陶瓷材料。
发明内容
为了克服现有储能介质陶瓷的工艺复杂、使用频率偏低的不足,本发明提供一种储能微波介质陶瓷材料及其制备方法。所制得的储能微波介质材料陶瓷具有优异的微波介电性能及储能特性。
为实现上述目的,本发明采用如下技术方案:
一种储能微波介质陶瓷材料,其化学组成表达式为:
(1-x)CaTiO3-xNdAlO3+a%(mMgO -nAl2O3-kSiO2);其中,x为摩尔分数,0.1≤x≤0.6;a为CaTiO3-NdAlO3质量的百分比,1≤a≤30;m、n、k为质量百分比,15≤m≤20,20≤n≤28,52≤k≤60。
所述的储能微波介质陶瓷材料:介电常数ε为30~100,击穿电场强度Eb为180~531kV/cm,储能密度E为0.08~0.5J/cm3;微波介电性能(2~15GHz范围):介电常数ε为30~100,Qf为15000-20000GHz,温度系数可调。
如上所述的储能微波介质陶瓷材料的制备方法,具体包括以下步骤:
(1)(1-x)CaTiO3-xNdAlO3粉体的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中0.1≤x≤0.6,x为摩尔分数,称量CaCO3、TiO2、Nd2O3和Al2O3电子级粉末;称量好的粉末在去离子水或者酒精中混合球磨8~24小时,其中球磨介质为氧化锆球、刚玉球或者玛瑙球中一种或者多种,球/料质量比不低于1:1,装罐量为罐体容积的1/2~4/5,球磨转速100~250转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1250~1350℃保温3小时合成(1-x)CaTiO3-xNdAlO3粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中15≤m≤20,20≤n≤28,52≤k≤60,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合均匀的粉体置于坩埚中,在1450~1600℃保温4小时,然后水淬制得10-50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将步骤(1)制得的 (1-x)CaTiO3-xNdAlO3粉体与步骤(2)制得的1%~30%的mMgO -nAl2O3-kSiO2玻璃粉体在去离子水或者酒精中混合球磨8~24小时,其中球磨介质为氧化锆球、刚玉球或者玛瑙球中一种或者多种,球/料质量比不低于1:1,装罐量为罐体容积的1/2~4/5,球磨转速100-250转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂PVA或者PVB溶液混合,粘结剂添加比例为3~10wt%,在100MPa的压力下压制成圆片;将所得陶瓷片排胶后在空气中于先于850~950℃保温1-2小时,随后在1000~1300℃保温1-6小时烧结,获得致密陶瓷材料。
样品加工成两面光滑、厚度为0.7mm的薄片,披银电极既成。
本发明的显著优点在于:
本发明提供的储能微波介质陶瓷材料,采用的原料不含Pb、Bi、Cd等任何损害人体健康、污染环境的成分,制备工艺简单,烧结温度较低;具有优异的微波介电性能和储能性能:介电常数ε为30~100,击穿电场强度Eb为180~531kV/cm,储能密度E为0.08~0.5J/cm3,微波介电性能(2~15GHz范围):介电常数ε为30~100,Qf为15000-20000GHz,温度系数可调。
附图说明
图1为本发明的储能微波介质陶瓷材料的SEM图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.3,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在去离子水中球磨24小时,其中球磨介质为氧化锆球,球/料质量比1.5:1,装罐量为罐体容积的1/2,球磨转速100转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1300℃保温3小时合成(1-x)CaTiO3-xNdAlO3粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=15,n=25,k=60,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1500℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将(1-x)CaTiO3-xNdAlO3(x=0.3)陶瓷粉体与2%的mMgO-nAl2O3-kSiO2玻璃在去离子水中混合球磨12小时,其中球磨介质为氧化锆球,球/料质量比1.5:1,装罐量为罐体容积的1/2,球磨转速100转/分钟;球磨后的混合浆料烘干后与粘结剂聚乙烯醇(PVA)溶液混合,PVA添加比例为8wt%,在100MPa的压力下压制成圆片;将所得陶瓷片排胶后在空气中烧结,随炉升温到950℃保温1小时,然后升温到1250℃保温3小时,然后随炉冷却到室温,获得致密的陶瓷材料。
样品加工成两面光滑、厚度为0.7mm的薄片,披银电极既成,然后测试介电性能,计算储能密度,性能如表1。另加工4mm的厚片测试微波介电性能(表2)。
实施例2
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.3,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在去离子水中球磨8小时,其中球磨介质为刚玉球,球/料质量比2:1,装罐量为罐体容积的3/5,球磨转速250转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1250℃保温3小时合成(1-x)CaTiO3-xNdAlO3粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=20,n=20,k=60,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1470℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将预烧处理后的(1-x)CaTiO3-xNdAlO3陶瓷预烧粉体与5%的mMgO -nAl2O3-kSiO2玻璃在去离子水中球磨12小时,其中球磨介质为刚玉球,球/料质量比2:1,装罐量为罐体容积的3/5,球磨转速250转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂聚乙烯醇(PVA)溶液混合,PVA添加比例为8wt%,在100MPa的压力下压制成圆片;将制得的陶瓷片排胶后在空气中烧结,随炉升温到850℃保温2小时,然后升温到1200℃保温6小时,然后随炉冷却到室温,获得致密的陶瓷材料。
样品加工成两面光滑、厚度为0.7mm的薄片,披银电极既成,然后测试介电性能,计算储能密度,性能如表1。另加工4mm的厚片测试微波介电性能(表2)。
实施例3
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.3,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在酒精中球磨16小时,其中球磨介质为玛瑙球,球/料质量比2.1:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1300℃保温3小时合成(1-x)CaTiO3-xNdAlO3粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=18,n=28,k=54,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1550℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将预烧处理后的(1-x)CaTiO3-xNdAlO3陶瓷预烧粉体与10%的mMgO -nAl2O3-kSiO2玻璃在酒精中球磨8小时,其中球磨介质为氧化锆球和刚玉球,球/料质量比2.1:1,装罐量为罐体容积的1/2,球磨转速150转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂聚乙烯醇(PVA)溶液混合,PVA添加比例为3wt%,在100MPa的压力下压制成圆片;将所得陶瓷片排胶后在空气中烧结,随炉升温到900℃保温1.5小时,然后升温到1150℃保温2小时,然后随炉冷却到室温,获得致密的陶瓷材料。
样品加工成两面光滑、厚度为0.7mm的薄片,披银电极既成,然后测试介电性能,计算储能密度,性能如表1。另加工4mm的厚片测试微波介电性能(表2)。
实施例4
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.3,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在去离子水中球磨12小时,其中球磨介质为刚玉球和玛瑙球,球/料质量比2.2:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1300℃保温3小时合成(1-x)CaTiO3-xNdAlO3预烧粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=20,n=28,k=52,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1550℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将预烧处理后的(1-x)CaTiO3-xNdAlO3(x=0.3)陶瓷预烧粉体与20%的mMgO -nAl2O3-kSiO2玻璃在去离子水中球磨12小时,其中球磨介质为刚玉球和玛瑙球,球/料质量比2.2:1,装罐量为罐体容积的4/5,球磨转速150转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂聚乙烯醇(PVA)溶液混合,PVA添加比例为10wt%,在100MPa的压力下压制成圆片;将制得的陶瓷片排胶后在空气中烧结,随炉升温到850℃保温2小时,然后升温到1100℃保温2小时,然后随炉冷却到室温,获得致密的陶瓷材料;
样品加工成两面光滑、厚度为0.7mm的薄片,披银电极既成,然后测试介电性能,计算储能密度,性能如表1。另加工4mm的厚片测试微波介电性能(表2)。
实施例5
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.2,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在酒精中球磨18小时,其中球磨介质为氧化锆球,球/料质量比2.3:1,装罐量为罐体容积的1/2,球磨转速250转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1300℃保温3小时合成(1-x)CaTiO3-xNdAlO3预烧粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=20,n=25,k=55,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1500℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将预烧处理后的(1-x)CaTiO3-xNdAlO3 (x=0.2)陶瓷预烧粉体与1%的mMgO -nAl2O3-kSiO2玻璃在去离子水中球磨8小时,其中球磨介质为氧化锆球,球/料质量比2.3:1,装罐量为罐体容积的3/5,球磨转速200转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂聚乙烯醇(PVA)溶液混合,PVA添加比例为5wt%,在100MPa的压力下压制成圆片;将制得的陶瓷片排胶后在空气中烧结,随炉升温到950℃保温1小时,然后升温到1300℃保温1小时,然后随炉冷却到室温,获得致密的陶瓷材料;
样品加工成两面光滑、厚度为0.7mm的薄片,披银电极既成,然后测试介电性能,计算储能密度,性能如表1。另加工4mm的厚片测试微波介电性能(表2)。
实施例6
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.4,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在去离子水中球磨24小时,其中球磨介质为刚玉球,球/料质量比2.5:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1300℃保温3小时合成(1-x)CaTiO3-xNdAlO3预烧粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=20,n=26,k=54,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1570℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将预烧处理后的(1-x)CaTiO3-xNdAlO3 (x=0.4)陶瓷预烧粉体与30%的mMgO -nAl2O3-kSiO2玻璃在酒精中球磨8小时,其中球磨介质为刚玉球,球/料质量比2.5:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂PVB溶液混合,PVB添加比例为8wt%,在100MPa的压力下压制成圆片;将陶瓷片排胶后在空气中烧结,随炉升温到950℃保温1小时,然后升温到1000℃保温2小时,然后随炉冷却到室温,获得致密的陶瓷材料;
样品加工成两面光滑、厚度为0.7mm的薄片,披银电极既成,然后测试介电性能,计算储能密度,性能如表1。另加工4mm的厚片测试微波介电性能(表2)。
实施例7
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.1,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在去离子水中球磨24小时,其中球磨介质为刚玉球,球/料质量比2.5:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1300℃保温3小时合成(1-x)CaTiO3-xNdAlO3预烧粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=20,n=26,k=54,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1450℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将预烧处理后的(1-x)CaTiO3-xNdAlO3 (x=0.4)陶瓷预烧粉体与15%的mMgO -nAl2O3-kSiO2玻璃在酒精中球磨8小时,其中球磨介质为刚玉球,球/料质量比2.5:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂PVB溶液混合,PVB添加比例为8wt%,在100MPa的压力下压制成圆片;将陶瓷片排胶后在空气中烧结,随炉升温到950℃保温1小时,然后升温到1150℃保温2小时,然后随炉冷却到室温,获得致密的陶瓷材料。
实施例8
(1)(1-x)CaTiO3-xNdAlO3预烧粉料的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,其中x=0.6,x为摩尔分数,称量CaCO3、TiO2、Nd2O3、Al2O3电子级粉末;称量好的粉末在去离子水中球磨24小时,其中球磨介质为刚玉球,球/料质量比2.5:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后置于氧化铝坩埚中以1300℃保温3小时合成(1-x)CaTiO3-xNdAlO3预烧粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,其中m=20,n=26,k=54,m、n、k为质量百分比,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合好的粉体置于坩埚中,在1600℃中保温4小时,然后水淬制得10~50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3+a(mMgO -nAl2O3-kSiO2)陶瓷制备
将预烧处理后的(1-x)CaTiO3-xNdAlO3 (x=0.4)陶瓷预烧粉体与15%的mMgO -nAl2O3-kSiO2玻璃在酒精中球磨8小时,其中球磨介质为刚玉球,球/料质量比2.5:1,装罐量为罐体容积的4/5,球磨转速200转/分钟;球磨后的混合浆料烘干后,制得的粉体与粘结剂PVB溶液混合,PVB添加比例为8wt%,在100MPa的压力下压制成圆片;将陶瓷片排胶后在空气中烧结,随炉升温到950℃保温1小时,然后升温到1200℃保温2小时,然后随炉冷却到室温,获得致密的陶瓷材料。
表1 实施例样品的储能特性
表2 实施例样品的微波介电性能
本发明陶瓷具有钙钛矿晶相结构,并且由其扫描电镜SEM图(图1)可知具有良好的致密性(相对密度>99%)。由表1和2可知本发明陶瓷具有在Ku频段微波频率下具有高介电常数、高品质因数和近零温度系数,同时具有良好的储能特性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1. 一种储能微波介质陶瓷材料,其特征在于:所述陶瓷材料的化学组成表达式为:(1-x)CaTiO3-xNdAlO3+a%(mMgO -nAl2O3-kSiO2);其中,x为摩尔分数,0.1≤x≤0.6;a为CaTiO3-NdAlO3质量的百分比,1≤a≤30;m、n、k为质量百分比,15≤m≤20,20≤n≤28,52≤k≤60。
2.根据权利要求1所述的储能微波介质陶瓷材料,其特征在于:所述储能微波介质陶瓷材料的介电常数ε为30~100,Qf为15000-20000GHz,击穿电场强度Eb为180~531kV/cm,储能密度E为0.08~0.5J/cm3
3. 一种如权利要求1-2所述的储能微波介质陶瓷材料的制备方法,其特征在于:具体包括以下步骤:
(1)(1-x)CaTiO3-xNdAlO3粉体的制备
按照化学式(1-x)CaTiO3-xNdAlO3进行配料,称量CaCO3、TiO2、Nd2O3和Al2O3电子级粉末;称量好的粉末在去离子水或者酒精中混合球磨8~24小时;球磨后的混合浆料烘干后置于氧化铝坩埚中以1250~1350℃保温3小时合成(1-x)CaTiO3-xNdAlO3粉体;
(2)mMgO -nAl2O3-kSiO2玻璃粉体的制备
按照化学式mMgO -nAl2O3-kSiO2进行配料,称量MgO、Al2O3和SiO2电子级粉末并混合均匀,将混合均匀的粉体置于坩埚中,在1450~1600℃中保温4小时,然后水淬制得10-50微米的玻璃粉体;
(3)(1-x)CaTiO3-xNdAlO3 +a(mMgO -nAl2O3-kSiO2)陶瓷制备
将步骤(1)制得的(1-x)CaTiO3-xNdAlO3粉体与步骤(2)制得的mMgO -nAl2O3-kSiO2玻璃粉体在去离子水或者酒精中混合球磨8-24小时;球磨后的混合浆料烘干后,制得的粉体与粘结剂PVA或者PVB溶液混合,粘结剂添加比例为3~10wt%,在100MPa的压力下压制成圆片;将所得陶瓷片排胶后在空气中于先于850~950℃保温1~2小时,随后在1000~1300℃保温1~6小时烧结,获得致密陶瓷材料。
4.根据权利要求3所述的一种储能微波介质陶瓷材料的制备方法,其特征在于:步骤(1)和步骤(3)中球磨的工艺参数为:球磨介质为氧化锆球、刚玉球或者玛瑙球中一种或者多种,球/料质量比不低于1:1,装罐量为罐体容积的1/2~4/5,球磨转速100~250转/分钟。
CN201610541177.1A 2016-07-11 2016-07-11 一种储能微波介质陶瓷材料及其制备方法 Active CN106187189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610541177.1A CN106187189B (zh) 2016-07-11 2016-07-11 一种储能微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610541177.1A CN106187189B (zh) 2016-07-11 2016-07-11 一种储能微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106187189A true CN106187189A (zh) 2016-12-07
CN106187189B CN106187189B (zh) 2019-02-22

Family

ID=57474103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610541177.1A Active CN106187189B (zh) 2016-07-11 2016-07-11 一种储能微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106187189B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156465A (zh) * 2019-06-10 2019-08-23 南京信息工程大学 一种中介电常数陶瓷介质谐振器材料的制备方法
CN111825445A (zh) * 2019-04-22 2020-10-27 中南大学深圳研究院 一种高介电常数微波介质陶瓷材料、制备及其应用
CN112876239A (zh) * 2021-03-15 2021-06-01 无锡市高宇晟新材料科技有限公司 掺杂堇青石的复相微波介质陶瓷材料、制备方法及其应用
CN115838283A (zh) * 2022-12-19 2023-03-24 华南理工大学 一种储能复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270899A (ja) * 1992-03-27 1993-10-19 Matsushita Electric Ind Co Ltd セラミック基板用組成物
CN105693237A (zh) * 2016-01-21 2016-06-22 中国科学院上海硅酸盐研究所 一种高耐压陶瓷电介质材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270899A (ja) * 1992-03-27 1993-10-19 Matsushita Electric Ind Co Ltd セラミック基板用組成物
CN105693237A (zh) * 2016-01-21 2016-06-22 中国科学院上海硅酸盐研究所 一种高耐压陶瓷电介质材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIGENG MIAO ET AL.: "Use of a Dielectric Glass to Join Dielectric Ceramics for Microwave", 《ADVANCED MATERIALS RESEARCH》 *
张具琴等: "《电磁场与微波技术》", 31 August 2015, 中国铁道出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825445A (zh) * 2019-04-22 2020-10-27 中南大学深圳研究院 一种高介电常数微波介质陶瓷材料、制备及其应用
CN111825445B (zh) * 2019-04-22 2023-02-17 中南大学深圳研究院 一种高介电常数微波介质陶瓷材料、制备及其应用
CN110156465A (zh) * 2019-06-10 2019-08-23 南京信息工程大学 一种中介电常数陶瓷介质谐振器材料的制备方法
CN110156465B (zh) * 2019-06-10 2021-12-28 南京信息工程大学 一种中介电常数陶瓷介质谐振器材料的制备方法
CN112876239A (zh) * 2021-03-15 2021-06-01 无锡市高宇晟新材料科技有限公司 掺杂堇青石的复相微波介质陶瓷材料、制备方法及其应用
CN115838283A (zh) * 2022-12-19 2023-03-24 华南理工大学 一种储能复合材料及其制备方法
CN115838283B (zh) * 2022-12-19 2023-12-15 华南理工大学 一种储能复合材料及其制备方法

Also Published As

Publication number Publication date
CN106187189B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
Wu et al. Temperature stable microwave dielectric ceramic 0.3 Li2TiO3–0.7 Li (Zn0. 5Ti1. 5) O4 with ultra-low dielectric loss
CN106187189B (zh) 一种储能微波介质陶瓷材料及其制备方法
Manan et al. High energy storage density with ultra-high efficiency and fast charging–discharging capability of sodium bismuth niobate lead-free ceramics
Mao et al. Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO 3 antiferroelectric ceramics
CN104692799A (zh) 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
CN106588006B (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
Zhang et al. Influence of sintering temperature on energy storage properties of BaTiO3–(Sr1− 1.5 xBix) TiO3 ceramics
Du et al. Correlation between crystal structure and microwave dielectric properties of CaRE 4 Si 3 O 13 (RE= La, Nd, Sm, and Er)
Wang et al. Low-Temperature Sintering Li 3 Mg 1.8 Ca 0.2 NbO 6 Microwave Dielectric Ceramics with LMZBS Glass
Sayyadi-Shahraki et al. Microwave dielectric properties and chemical compatibility with silver electrode of Li2TiO3 ceramic with Li2O–ZnO–B2O3 glass additive
Chen et al. Microstructure, dielectric and ferroelectric properties of (1− x) BaTiO 3–x BiYbO 3 ceramics fabricated by conventional and microwave sintering methods
Chen et al. Microwave dielectric properties and its compatibility with silver electrode of LiNb 0.6 Ti 0.5 O 3 with B 2 O 3 and CuO additions
CN105174944A (zh) 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN108117385A (zh) 一种大尺寸高耐电强度氧化钛基介质陶瓷材料及其制备方法和应用
Liu et al. Screening sintering aids for 0.88 (Bi0. 4Na0. 2K0. 2Ba0. 2) TiO3–0.12 Sr (Mg1/3Nb2/3) O3 high‐entropy dielectric ceramics
Yi et al. Effects of sintering method and BiAlO3 dopant on dielectric relaxation and energy storage properties of BaTiO3–BiYbO3 ceramics
CN107445616B (zh) 一种钛酸锶基无铅耐高压储能陶瓷材料及其制备方法
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN109957194A (zh) 一种复合薄膜及其制作方法
Feng et al. Microstructures and energy-storage properties of (1− x)(Na 0.5 Bi 0.5) TiO 3–x BaTiO 3 with BaO–B 2 O 3–SiO 2 additions
CN106187165A (zh) 一种高储能密度介质陶瓷材料及其制备方法
Xing et al. Low-temperature sintering and microwave dielectric properties of LiF-doped 0.2 Li 2 ZrO 3–0.8 MgO ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant