CN106186082A - 一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用 - Google Patents

一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用 Download PDF

Info

Publication number
CN106186082A
CN106186082A CN201610593930.1A CN201610593930A CN106186082A CN 106186082 A CN106186082 A CN 106186082A CN 201610593930 A CN201610593930 A CN 201610593930A CN 106186082 A CN106186082 A CN 106186082A
Authority
CN
China
Prior art keywords
nanoparticles
hallow nanoparticles
phase transformation
hallow
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610593930.1A
Other languages
English (en)
Other versions
CN106186082B (zh
Inventor
洪振生
周凯强
真义超
黄志高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201610593930.1A priority Critical patent/CN106186082B/zh
Publication of CN106186082A publication Critical patent/CN106186082A/zh
Application granted granted Critical
Publication of CN106186082B publication Critical patent/CN106186082B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种Fe2O3相变合成的Fe3O4空心纳米粒子及其在钠离子电池中的应用。所述Fe3O4空心纳米粒子是将氯化铁和对苯二甲酸溶解到N,N‑二甲基甲酰胺中,然后滴入氢氧化钠搅拌混匀,再转移到反应釜中进行反应,经离心洗涤得到红色Fe2O3空心纳米粒子,最后在氩气氛围下经高温退火后相变制得。本发明通过溶剂热法一步合成Fe2O3空心纳米粒子前驱体,再经由热处理引起Fe2O3相变生成Fe3O4,所得Fe3O4空心纳米粒子表现出优异的储钠性能,可用作钠离子电池负极材料。

Description

一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用
技术领域
本发明属于电极材料技术领域,具体涉及一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用。
背景技术
锂离子电池(LIBs)由于具有高容量、高电压和循环寿命长等显著优点而被广泛应用于移动电子设备、国防工业、电动汽车等领域。但是随着锂离子电池的不断普及,锂(碳酸锂)的价格不断上升,而锂资源也存在地球中储量较少、分布不均、难以开采等问题。钠元素相比于锂而言,储量更丰富,价格低廉且来源广泛,因而钠离子电池近年来得到广泛的关注,未来在储能领域的大规模应用上具有比LIBs更好的应用前景。但钠离子电池因缺乏合适的负极材料而制约其实际应用,因此,开发性能优异的钠离子电池负极材料是当前该领域的研究热点和重点。
发明内容
本发明的目的在于提供一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用,所得Fe3O4空心纳米粒子表现出优异的储钠性能,可作为负极材料,用于制备钠离子电池。
为实现上述目的,本发明采用如下技术方案:
一种Fe2O3相变合成的Fe3O4空心纳米粒子,其是将0.1-0.4 g氯化铁和0.1-0.6 g对苯二甲酸溶解到8-10 mL N,N-二甲基甲酰胺中,搅拌混匀后滴入1-4 mL 0.1-0.5 mol/L氢氧化钠,继续搅拌10-20 min,然后于130-170℃反应釜中反应3-12h,反应物经离心洗涤得红色产物,即为Fe2O3空心纳米粒子;所得Fe2O3空心纳米粒子于氩气氛围下,经300-500℃退火后相变生成所述Fe3O4空心纳米粒子。
所得Fe3O4空心纳米粒子可作为负极材料,用于制备钠离子电池。
本发明的显著优点在于:
本方法巧妙应用参与反应的有机配体,与Fe3+配位结合形成过渡状态的金属有机复合物,然后,金属有机复合物经溶解再结晶的过程,形成Fe2O3空心纳米粒子前驱体,再在氩气氛围下还原得到Fe3O4空心纳米粒子。
本发明制备成本低,产品纯度高、性能优异,且可大量合成。所制备的Fe3O4空心纳米粒子在钠离子电池中表现出相对较高的比容量和良好的循环稳定性,为铁基电极材料的设计和应用提供了良好的方法和指导。
附图说明
图1为Fe2O3空心纳米粒子前驱体与Fe3O4空心纳米粒子的XRD图。
图2为Fe3O4空心纳米粒子的扫描电镜图(a)和透射电镜图(b)。
图3为Fe3O4空心纳米粒子的充放电曲线图。
图4为Fe3O4与Fe2O3空心纳米粒子的循环性能对比图。
具体实施方式
一种Fe2O3相变合成的Fe3O4空心纳米粒子,其是将0.1-0.4 g氯化铁和0.1-0.6 g对苯二甲酸溶解到8-10 mL N,N-二甲基甲酰胺中,搅拌混匀后滴入1-4 mL 0.1-0.5 mol/L氢氧化钠,继续搅拌10-20 min,然后于130-170℃反应釜中反应3-12h,反应物经离心洗涤得红色产物,即为Fe2O3空心纳米粒子;所得Fe2O3空心纳米粒子于氩气氛围下,经300-500℃退火后相变生成所述Fe3O4空心纳米粒子。
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将0.1 g氯化铁和0.1 g对苯二甲酸溶解到8 mL N,N-二甲基甲酰胺中,搅拌混匀后滴入1 mL 0.1 mol/L氢氧化钠,继续搅拌10 min,然后于130℃反应釜中反应12h,反应物经离心洗涤得红色产物,即为Fe2O3空心纳米粒子;所得Fe2O3空心纳米粒子于氩气氛围下,经300℃退火后相变生成所述Fe3O4空心纳米粒子。
实施例2
将0.2 g氯化铁和0.3 g对苯二甲酸溶解到9 mL N,N-二甲基甲酰胺中,搅拌混匀后滴入2 mL 0.2 mol/L氢氧化钠,继续搅拌15 min,然后于150℃反应釜中反应8h,反应物经离心洗涤得红色产物,即为Fe2O3空心纳米粒子;所得Fe2O3空心纳米粒子于氩气氛围下,经400℃退火后相变生成所述Fe3O4空心纳米粒子。
实施例3
将0.4 g氯化铁和0.6 g对苯二甲酸溶解到10 mL N,N-二甲基甲酰胺中,搅拌混匀后滴入4 mL 0.5 mol/L氢氧化钠,继续搅拌20 min,然后于170℃反应釜中反应3h,反应物经离心洗涤得红色产物,即为Fe2O3空心纳米粒子;所得Fe2O3空心纳米粒子于氩气氛围下,经500℃退火后相变生成所述Fe3O4空心纳米粒子。
图1为Fe2O3空心纳米粒子前驱体与Fe3O4空心纳米粒子的XRD图。从图1中可以看出,所得Fe2O3空心纳米粒子前驱体为纯相斜方晶体,所得Fe3O4空心纳米粒子为纯相立方晶体。
图2为Fe3O4空心纳米粒子的扫描电镜图(a)和透射电镜图(b)。从图2中可以看出,所得Fe3O4纳米粒子的内部是空心结构,其整体粒径在100-200 nm之间,而且由许多尺寸大约为15-20 nm的小粒子组成。
用所制备的Fe3O4纳米粒子作为钠离子电池负极材料进行测定。钠离子电池组装:Fe3O4纳米粒子:聚偏氟乙烯:乙炔黑=80-85:5-10:10-15混合研磨后均匀地涂在1.2 cm2的铜片上做负极,正极为金属钠,电解质是1M NaClO4的EC+DEC (EC/ DEC=1/1 v/v) 溶液。电池组装在氩气保护下手套箱里进行(氧气和水分含量均低于1ppm)。
图3为Fe3O4空心纳米粒子的充放电曲线图。从图3中可以看出,Fe3O4空心纳米粒子的充放电曲线是斜坡型的充放电曲线,无明显电压平台;在电流密度为100 mA/g的电流密度下,其首次放电容量达442 mAh/g,首次充电容量达221 mAh/g。
图4为Fe3O4与Fe2O3空心纳米粒子的循环性能对比图。从图4中可以看出,Fe2O3虽然具有较高的首次放电容量(686 mAh/g),但随后其容量迅速下降,经过60次循环后,其容量只有15 mAh/g;而Fe3O4经过60次循环之后,其可逆比容量仍稳定在150 mAh/g。
由此可见,与Fe2O3纳米粒子相比,Fe3O4纳米粒子具有相对较高的比容量和良好的循环稳定性,其更适合作为电极材料。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1. 一种Fe2O3相变合成的Fe3O4空心纳米粒子,其特征在于:将0.1-0.4 g氯化铁和0.1-0.6 g对苯二甲酸溶解到8-10 mL N,N-二甲基甲酰胺中,搅拌混匀后滴入1-4 mL 0.1-0.5mol/L氢氧化钠,继续搅拌10-20 min,然后于130-170℃中反应3-12h,反应物经离心洗涤得Fe2O3空心纳米粒子;所得Fe2O3空心纳米粒子于氩气氛围下,经300-500℃退火后相变生成所述Fe3O4空心纳米粒子。
2.一种如权利要求1所述Fe3O4空心纳米粒子在钠离子电池中的应用。
CN201610593930.1A 2016-07-27 2016-07-27 一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用 Expired - Fee Related CN106186082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610593930.1A CN106186082B (zh) 2016-07-27 2016-07-27 一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610593930.1A CN106186082B (zh) 2016-07-27 2016-07-27 一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用

Publications (2)

Publication Number Publication Date
CN106186082A true CN106186082A (zh) 2016-12-07
CN106186082B CN106186082B (zh) 2017-11-10

Family

ID=57495124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610593930.1A Expired - Fee Related CN106186082B (zh) 2016-07-27 2016-07-27 一种Fe2O3相变合成的Fe3O4空心纳米粒子及其应用

Country Status (1)

Country Link
CN (1) CN106186082B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107572595A (zh) * 2017-08-17 2018-01-12 合肥国轩高科动力能源有限公司 一种中空多孔结构氧化铁负极材料的制备方法
CN108807882A (zh) * 2018-05-24 2018-11-13 江西师范大学 一种具有多孔八面体结构的Fe2O3/Fe3O4@C/G复合材料的制备方法
CN110078130A (zh) * 2019-05-19 2019-08-02 东北电力大学 一种中空结构铁基化合物的制备方法及其作为超级电容器负极材料的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179997A1 (en) * 2002-10-30 2004-09-16 Council Of Scientific And Industrial Research Single-step simple and economical process for the preparation of nanosized acicular magnetic iron oxide particles of maghemite phase
CN101698516A (zh) * 2009-11-06 2010-04-28 南京大学 空心球形四氧化三铁纳米材料的制法
CN104167536A (zh) * 2014-07-09 2014-11-26 浙江大学 尺寸可控的球形四氧化三铁纳米颗粒的制备方法及用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179997A1 (en) * 2002-10-30 2004-09-16 Council Of Scientific And Industrial Research Single-step simple and economical process for the preparation of nanosized acicular magnetic iron oxide particles of maghemite phase
CN101698516A (zh) * 2009-11-06 2010-04-28 南京大学 空心球形四氧化三铁纳米材料的制法
CN104167536A (zh) * 2014-07-09 2014-11-26 浙江大学 尺寸可控的球形四氧化三铁纳米颗粒的制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕庆荣等: "四氧化三铁亚微空心球的制备及表征", 《功能材料与器件学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107572595A (zh) * 2017-08-17 2018-01-12 合肥国轩高科动力能源有限公司 一种中空多孔结构氧化铁负极材料的制备方法
CN108807882A (zh) * 2018-05-24 2018-11-13 江西师范大学 一种具有多孔八面体结构的Fe2O3/Fe3O4@C/G复合材料的制备方法
CN108807882B (zh) * 2018-05-24 2022-04-26 江西师范大学 一种具有多孔八面体结构的Fe2O3/Fe3O4@C/G复合材料的制备方法
CN110078130A (zh) * 2019-05-19 2019-08-02 东北电力大学 一种中空结构铁基化合物的制备方法及其作为超级电容器负极材料的应用
CN110078130B (zh) * 2019-05-19 2021-11-26 东北电力大学 一种中空结构铁基化合物的制备方法及其作为超级电容器负极材料的应用

Also Published As

Publication number Publication date
CN106186082B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
Li et al. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries
Dang et al. Controlled synthesis of hierarchical Cu nanosheets@ CuO nanorods as high-performance anode material for lithium-ion batteries
Wang et al. Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries
Liu et al. CoP3@ PPy microcubes as anode for lithium-ion batteries with improved cycling and rate performance
Shi et al. Catalytic cobalt phosphide Co2P/carbon nanotube nanocomposite as host material for high performance lithium-sulfur battery cathode
CN102044666B (zh) 一种锂电池用磷酸铁锂复合材料的制备方法
Xu et al. The preparation and role of Li2ZrO3 surface coating LiNi0. 5Co0. 2Mn0. 3O2 as cathode for lithium-ion batteries
CN105390674B (zh) 一种钠离子电池二硒化铁/硫掺杂石墨烯负极复合材料及其制备方法
CN105355877B (zh) 一种石墨烯‑金属氧化物复合负极材料及其制备方法
Xu et al. Preparation of bi-component ZnO/ZnCo2O4 nanocomposites with improved electrochemical performance as anode materials for lithium-ion batteries
CN108258223B (zh) 一种多级结构的球形n掺杂c包覆金属氧化物负极材料的制备方法
Zhang et al. Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries
CN107293743A (zh) 一种含铁酸镍多孔纳米管的钠离子电池正极材料及其制备方法
CN102104143A (zh) 一种高性能动力电池用复合材料的水热合成法
Zhang et al. Synthesis and electrochemical properties of different sizes of the CuO particles
Wang et al. Revealing the unique process of alloying reaction in Ni-Co-Sb/C nanosphere anode for high-performance lithium storage
CN103107313B (zh) 锡基氧化物/石墨烯复合材料及其制备方法和应用
CN106450207B (zh) 一种锡化硒/氧化锡复合材料及其制备方法及应用
Hai et al. Facile controlled synthesis of spinel LiMn2O4 porous microspheres as cathode material for lithium ion batteries
Santhoshkumar et al. Time-efficient synthesis of MnO2 encapsulated α-Fe2O3 ellipsoids for lithium ion battery applications
Sun et al. Simultaneous interfacial interaction and built-in electric field regulation of GaZnON@ NG for high-performance lithium-ion storage
Chen et al. TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries
Fu et al. Synthesis and Investigation of CuGeO 3 Nanowires as Anode Materials for Advanced Sodium-Ion Batteries
Du et al. A general gelatin-assisted strategy to hierarchical porous transition metal oxides with excellent lithium-ion storage
Wang et al. Ultrafine ZnS nanoparticles embedded in N-doped carbon as advanced anode materials for lithium ion batteries and sodium ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171110

Termination date: 20200727

CF01 Termination of patent right due to non-payment of annual fee