CN106098922B - 一种Cu掺杂立方相Ca2Si热电材料 - Google Patents

一种Cu掺杂立方相Ca2Si热电材料 Download PDF

Info

Publication number
CN106098922B
CN106098922B CN201610452327.1A CN201610452327A CN106098922B CN 106098922 B CN106098922 B CN 106098922B CN 201610452327 A CN201610452327 A CN 201610452327A CN 106098922 B CN106098922 B CN 106098922B
Authority
CN
China
Prior art keywords
powder
cubic
thermoelectric materials
doping
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610452327.1A
Other languages
English (en)
Other versions
CN106098922A (zh
Inventor
温翠莲
熊锐
萨百晟
裘依梅
林逵
洪云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610452327.1A priority Critical patent/CN106098922B/zh
Publication of CN106098922A publication Critical patent/CN106098922A/zh
Application granted granted Critical
Publication of CN106098922B publication Critical patent/CN106098922B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Abstract

本发明公开了一种Cu掺杂立方相Ca2Si热电材料,其是将Ca粉、Si粉和Cu粉在Ar气保护气氛下混合均匀后,将所得混合物粉末与研磨钢球在Ar气保护气氛中放入真空不锈钢球磨罐中密封,经球磨反应后采用等离子烧结的方式进行真空烧结压片,即得片状Cu掺杂立方相Ca2Si热电材料。由于Cu元素具有和碱土金属类似的性质,当Cu元素加入后,容易取代Ca位,作为施主掺杂,提供导电电子作为载流子,从而提高材料的电导率与热电性能。本发明具有工艺简单、操作容易、成本低等优势,所得Cu掺杂立方相Ca2Si热电材料纯度较高,结合紧密,有较好的产业化前景。

Description

一种Cu掺杂立方相Ca2Si热电材料
技术领域
本发明属于热电功能材料技术领域,具体涉及一种Cu掺杂立方相Ca2Si热电材料。
背景技术
随着能源危机的日益严峻,迫切需要积极推进和提倡使用洁净的可再生能源,特别是重视可再生能源新技术开发与产业化投资相结合,以降低可再生能源的利用成本。温差电器件可实现热能与电能间的相互转换,是适用范围很广的绿色环保型能源器件。以半导体温差发电模块制造的半导体发电机和制冷器,只要有温差存在即能发电,供电时可进行制冷,其工作时无噪音、无污染,使用寿命超过十年,可广泛的应用到废热发电、冰箱制冷等重要的基础应用中,因而是一种应用广泛的绿色能源器件。当前,由于受热电材料性能的限制,热电器件的应用还远没有达到取代机械制冷机的地步,这已成为热电器件大规模应用的瓶颈,因此高性能热电材料是当前国际材料研究领域的热点课题之一。热电材料的性能主要由无量纲品质因子ZT值表征:ZT=Tσα2/κ,其中T为绝对温度,σ为材料的电导率,α为Seebeck系数,κ为热导率。
目前Ga、As、In、Pb、Te等元素因其性能优异而被广泛用于制造半导体材料和半导体器件,但这些元素大部分有毒,并且资源面临枯竭。Fe、Si、Ca等元素在地球上储藏量大,对生物体无害。碱土金属硅化物Ca2Si材料,其直接带隙约为0.31eV,是由资源寿命极长的Ca、Si元素组成,能循环利用,对地球无污染,且由于钙硅化合物Ca2Si与现有的硅基技术有着优良的兼容性,被认为是很有前景的新型环境友好半导体材料,在太阳能电池以及热电转化等领域具有潜在的应用前景。
从目前国内外的研究情况来看,有关立方相Ca2Si的研究都是理论计算相关的研究,对Ca2Si掺杂的理论研究罕有报道。通过掺杂能有效改变光学材料的晶胞体积及晶胞内各原子的晶体学位置,调制材料的电子结构,从而改变材料的电性能。本发明结合了低温的机械合金化法以及高压放电等离子真空烧结法,使材料能够在较低的温度下进行反应并在较为高压低温的真空环境下烧结成致密的Cu掺杂立方相Ca2Si,有望作为中温区的热电材料之一,广泛应用于各个领域。目前,关于Cu掺杂立方相Ca2Si热电材料仍几乎未见报道。
发明内容
本发明的目的在于提供一种操作工艺简单、产品组分易控制的Cu掺杂立方相Ca2Si热电材料,其通过掺杂Cu,以提高Ca2Si材料的载流子浓度,从而提高材料的电导率和热电性能。
为实现上述目的,本发明采用如下技术方案:
一种Cu掺杂立方相Ca2Si热电材料,其制备方法包括以下步骤:
1)将Ca粉、Si粉和Cu粉在Ar气保护气氛下混合均匀,得到混合物粉末;
2)在Ar气保护气氛下,将步骤1)所得混合物粉末与研磨钢球放入真空不锈钢球磨罐中,密封;
3)将步骤2)准备好的真空不锈钢球磨罐放入球磨机中,以500~2000 rpm的转速球磨5~100 h,使混合物粉末充分反应;
4)将步骤3)反应好的粉末取出,装入所需规格的不锈钢模具中,采用等离子烧结的方式,在50~600 MPa的压力下升温至100~500 ℃,保持10~120 min进行真空烧结压片,即得片状Cu掺杂立方相Ca2Si热电材料。
步骤1)中Ca粉、Si粉和Cu粉按Ca、Si、Cu的摩尔比为81:20:0.5~10进行混合。
步骤2)中研磨钢球与混合物粉末的重量比为2~16:1;所述研磨钢球的粒径为0.2~1.5 cm,使用前依次采用丙酮、酒精进行超声波清洗,超声波清洗总时间为10~30 min。
步骤4)中升温的速率为5~20 ℃/min。
本发明与现有技术相比具有以下优点:
(1)本发明烧结过程中使用不锈钢模具配套进行处理,从而能够在较低的温度下承受较高的烧结压力,有效地控制烧结过程中常出现的Ca的氧化和挥发,使所得产品成分较纯,密度较高。
(2)本发明所得Cu掺杂Ca2Si基块体的热电性能优于现有的Ca2Si材料,其机理是Cu元素具有和碱土金属类似的性质,当Cu元素加入后,容易取代Ca位,作为施主掺杂,提供导电电子作为载流子,从而提高材料的电导率与热电性能。
(3)本发明采用低温机械合金化和放电等离子真空烧结法相结合制备Cu掺杂立方相Ca2Si热电材料,其工艺简单,操作容易,并且反应温度较低,不易出现Ca原子的氧化反应和Ca2Si相的分解。同时,其可通过控制Ca、Si和Cu的原子比、烧结温度、升温速率和升温时间等,实现成分可控,以满足大规模生产需要,并降低成本。
附图说明
图1为未掺杂Cu(a)和掺杂Cu(b)的Ca2Si热电材料的扫描电镜图。
图2为未掺杂Cu(a)和掺杂Cu(b)的Ca2Si热电材料的透射电镜图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
所用研磨钢球的粒径为0.2~1.5 cm,使用前依次采用丙酮、酒精进行超声波清洗,超声波清洗总时间为10~30 min。
实施例1
一种Cu掺杂立方相Ca2Si热电材料的制备方法包括以下步骤:
1)将Ca粉、Si粉和Cu粉按Ca、Si、Cu的摩尔比为81:20:0.5在Ar气保护气氛下混合均匀,得到混合物粉末;
2)将步骤1)所得混合物粉末、研磨钢球、真空不锈钢球磨罐以及电子天平放入充有一个大气压Ar气的手套箱中;在手套箱中按重量比3:1精确称取研磨钢球与混合物粉末,并将其放入真空不锈钢球磨罐中,然后将真空不锈钢球磨罐密封好,以避免氧气进入;而后从手套箱中取出真空不锈钢球磨罐;
3)将步骤2)准备好的真空不锈钢球磨罐放入球磨机中,以2000 rpm的转速球磨5h,使混合物粉末充分反应;
4)将步骤3)反应好的粉末取出,装入所需规格的不锈钢模具中,采用等离子烧结的方式,在300 MPa的压力下按5 ℃/min的升温速率,将温度升至300 ℃,保持120 min进行真空烧结压片,即得片状Cu掺杂立方相Ca2Si热电材料。
实施例2
一种Cu掺杂立方相Ca2Si热电材料的制备方法包括以下步骤:
1)将Ca粉、Si粉和Cu粉按Ca、Si、Cu的摩尔比为81:20:6在Ar气保护气氛下混合均匀,得到混合物粉末;
2)将步骤1)所得混合物粉末、研磨钢球、真空不锈钢球磨罐以及电子天平放入充有一个大气压Ar气的手套箱中;在手套箱中按重量比16:1精确称取研磨钢球与混合物粉末,并将其放入真空不锈钢球磨罐中,然后将真空不锈钢球磨罐密封好,以避免氧气进入;而后从手套箱中取出真空不锈钢球磨罐;
3)将步骤2)准备好的真空不锈钢球磨罐放入球磨机中,以500 rpm的转速球磨100h,使混合物粉末充分反应;
4)将步骤3)反应好的粉末取出,装入所需规格的不锈钢模具中,采用等离子烧结的方式,在50 MPa的压力下按20 ℃/min的升温速率,将温度升至500 ℃,保持20 min进行真空烧结压片,即得片状Cu掺杂立方相Ca2Si热电材料。
图1为未掺杂Cu(a)和实施例2制备的掺杂Cu(b)的Ca2Si热电材料的扫描电镜图。由图1形貌对比可以看出,掺杂有Cu元素的改性Ca2Si热电材料烧结后更加致密,且表面更为光滑平整,有利于提高材料的导电性能。
图2为未掺杂Cu(a)和实施例2制备的掺杂Cu(b)的Ca2Si热电材料的透射电镜图。由图2透射扫描形貌对比可以看出,掺杂有Cu元素的改性Ca2Si热电材料的纳米颗粒边缘更为光滑,其有利于提高材料烧结的致密度和载流子迁移速度,从而提高材料的导电性能。
实施例3
一种Cu掺杂立方相Ca2Si热电材料的制备方法包括以下步骤:
1)将Ca粉、Si粉和Cu粉按Ca、Si、Cu的摩尔比为81:20:10在Ar气保护气氛下混合均匀,得到混合物粉末;
2)将步骤1)所得混合物粉末、研磨钢球、真空不锈钢球磨罐以及电子天平放入充有一个大气压Ar气的手套箱中;在手套箱中按重量比8:1精确称取研磨钢球与混合物粉末,并将其放入真空不锈钢球磨罐中,然后将真空不锈钢球磨罐密封好,以避免氧气进入;而后从手套箱中取出真空不锈钢球磨罐;
3)将步骤2)准备好的真空不锈钢球磨罐放入球磨机中,以1000 rpm的转速球磨50h,使混合物粉末充分反应;
4)将步骤3)反应好的粉末取出,装入所需规格的不锈钢模具中,采用等离子烧结的方式,在600 MPa的压力下按10 ℃/min的升温速率,将温度升至100 ℃,保持60 min进行真空烧结压片,即得片状Cu掺杂立方相Ca2Si热电材料。
表1为实施例1-3所得热电材料的能谱分析结果。
表1 能谱分析结果
表2为实施例1-3所得Cu掺杂立方相Ca2Si热电材料的电性能测定结果。
表2 Cu掺杂立方相Ca2Si热电材料的电性能测定结果
由表2中对比可以看出,材料掺杂Cu改性后,仍然呈现为P型半导体,同时能够在提高载流子浓度的基础上提高空穴的迁移率,对于提高材料的导电性能,从而提高热电性能有着重要的作用。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种Cu掺杂立方相Ca2Si热电材料,其特征在于:其制备方法包括以下步骤:
1)将Ca粉、Si粉和Cu粉在Ar气保护气氛下混合均匀,得到混合物粉末;
2)在Ar气保护气氛下,将步骤1)所得混合物粉末与研磨钢球放入真空不锈钢球磨罐中,密封;
3)将步骤2)准备好的真空不锈钢球磨罐放入球磨机中,以500~2000 rpm的转速球磨5~100 h,使混合物粉末充分反应;
4)将步骤3)反应好的粉末取出,装入所需规格的不锈钢模具中,采用等离子烧结的方式,在50~600 MPa的压力下升温至100~500 ℃,保持10~120 min进行真空烧结压片,即得片状Cu掺杂立方相Ca2Si热电材料。
2.如权利要求1所述Cu掺杂立方相Ca2Si热电材料,其特征在于:步骤1)中Ca粉、Si粉和Cu粉按Ca、Si、Cu的摩尔比为81:20:(0.5~10)进行混合。
3.如权利要求1所述Cu掺杂立方相Ca2Si热电材料,其特征在于:步骤2)中研磨钢球与混合物粉末的重量比为(2~16):1;
所述研磨钢球的粒径为0.2~1.5 cm,使用前依次采用丙酮、酒精进行超声波清洗,超声波清洗总时间为10~30 min。
4.如权利要求1所述Cu掺杂立方相Ca2Si热电材料,其特征在于:步骤4)中升温的速率为5~20 ℃/min。
CN201610452327.1A 2016-06-22 2016-06-22 一种Cu掺杂立方相Ca2Si热电材料 Expired - Fee Related CN106098922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610452327.1A CN106098922B (zh) 2016-06-22 2016-06-22 一种Cu掺杂立方相Ca2Si热电材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610452327.1A CN106098922B (zh) 2016-06-22 2016-06-22 一种Cu掺杂立方相Ca2Si热电材料

Publications (2)

Publication Number Publication Date
CN106098922A CN106098922A (zh) 2016-11-09
CN106098922B true CN106098922B (zh) 2018-04-13

Family

ID=57237779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610452327.1A Expired - Fee Related CN106098922B (zh) 2016-06-22 2016-06-22 一种Cu掺杂立方相Ca2Si热电材料

Country Status (1)

Country Link
CN (1) CN106098922B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085641B (zh) * 2017-11-09 2019-11-05 吉林大学 一种具有高硬且疏水特性的保护涂层及制备方法与应用
JP7291461B2 (ja) * 2018-02-20 2023-06-15 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
CN108502887A (zh) * 2018-04-28 2018-09-07 福州大学 一种化学法合成钙的硅化物的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220119A (zh) * 2015-10-27 2016-01-06 福州大学 一种Ag掺杂Mg2Si基热电薄膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220119A (zh) * 2015-10-27 2016-01-06 福州大学 一种Ag掺杂Mg2Si基热电薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mg2Si 与掺杂系列的电子结构与热电性能研究;闵新民 等;《功能材料》;20051110;第35卷;全文 *

Also Published As

Publication number Publication date
CN106098922A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN102931335B (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
CN103011838B (zh) 一种BiCuSeO基热电氧化物粉体的制备方法
JP2021515411A (ja) n−型Mg−Sb基室温熱電材料及びその製造方法
CN106098922B (zh) 一种Cu掺杂立方相Ca2Si热电材料
CN106116587A (zh) 一种立方相Ca2Si热电材料及其制备方法
CN108374198A (zh) 一种单晶Bi2Te3热电材料的制备方法
CN102643085A (zh) 一种BiCu1-xSeO基氧化物热电陶瓷材料及其制备方法
CN107887495A (zh) 一种一步制备Cu2Se/BiCuSeO复合热电材料的方法
CN105932148B (zh) 一种Ag掺杂立方相Ca2Si热电材料
CN107176589B (zh) 一种制备纳米化Mg3Sb2热电材料的方法
CN110408989B (zh) 一种氧化物热电材料BiCuSeO单晶体及其制备方法
CN103555986B (zh) 一种(Bi0.8Sb0.2)2Te3纳米热电材料的制备方法
CN107195767A (zh) 一种五元n型热电材料及其制备方法
CN106129241A (zh) 固相反应法制备层错结构硫族化合物热电材料的方法
CN103409656B (zh) 一种热电材料Mg2Sn及其制备方法
CN103811653B (zh) 一种多钴p型填充方钴矿热电材料及其制备方法
CN108258110A (zh) 一种制备SiGe热电材料的方法
CN111048658A (zh) 一种SnI2掺杂CsGeI3钙钛矿型热电材料及其制备方法
CN107032763A (zh) 一种制备n型CaMnO3基热电陶瓷的方法
CN105859299A (zh) 一种Na掺杂立方相Ca2Si热电材料及其制备方法
CN107324291A (zh) 一步制备BiCuSeO基块体热电材料的方法
CN109087987B (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
CN110218888A (zh) 一种新型Zintl相热电材料及其制备方法
CN104946918A (zh) 一种快速制备AgInSe2基热电材料的新方法
JP5660528B2 (ja) GaあるいはSnでドーピングされたバルク状マンガンシリサイド単結晶体あるいは多結晶体およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180413

Termination date: 20210622