CN106064945A - 钙锂镱共掺杂的pzt基压电陶瓷及其制备方法 - Google Patents

钙锂镱共掺杂的pzt基压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN106064945A
CN106064945A CN201610390890.0A CN201610390890A CN106064945A CN 106064945 A CN106064945 A CN 106064945A CN 201610390890 A CN201610390890 A CN 201610390890A CN 106064945 A CN106064945 A CN 106064945A
Authority
CN
China
Prior art keywords
pzt
piezoelectric ceramic
base piezoelectric
ytterbium codope
pzt base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610390890.0A
Other languages
English (en)
Inventor
刘洪�
张倩
朱建国
余萍
徐威
陈强
肖定全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201610390890.0A priority Critical patent/CN106064945A/zh
Publication of CN106064945A publication Critical patent/CN106064945A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • C04B2235/326Tungstates, e.g. scheelite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Composite Materials (AREA)

Abstract

本发明提供一种钙、锂、镱共掺杂的PZT基压电陶瓷,该压电陶瓷的化学通式为xPb(Ni1/ 3Nb2/3)O3–yPb(Mg1/2W1/2)O3–(1–x–y)Pb(Zr0.5Ti0.5)O3+u wt%CaCO3+v wt%Li2CO3+wmol%Yb2O3,其中0.02≤x≤0.15,0.02≤y≤0.15,0.08≤u≤0.5,0.08≤v≤0.5,0≤w≤0.4。本发明还提供了上述钙、锂、镱共掺杂的PZT基压电陶瓷的制备方法。该压电陶瓷烧结温度低,并且兼具良好的压电性能和较高的居里温度。

Description

钙锂镱共掺杂的PZT基压电陶瓷及其制备方法
技术领域
本发明属于压电陶瓷材料领域,具体涉及一种钙锂镱共掺杂的PZT基压电陶瓷及其制备方法。
背景技术
PZT是传统的压电陶瓷,具有良好的介电、铁电、压电、热释电等效应,其原料价格低廉,适于工厂化生产,对其掺杂改性可以得到适用于多种用途的陶瓷材料。多层压电陶瓷有交替陶瓷层和内部金属电极层。随着科学技术的高速发展,多层压电陶瓷得到了越来越广泛的研究,广泛应用于制动器、转换器、传感器。一般将Ag-Pd电极用于多层陶瓷的内电极,其共烧温度范围为920~980℃,而纯Ag的内电极则要求不高于900℃的烧结温度。
传统含铅压电陶瓷在约1200℃高温下烧结,因此纯Ag(熔点≈961℃)内部电极不能在这么高的温度下使用,而Ag-Pd电极层也会扩散到陶瓷层,导致陶瓷电学性能的恶化,从而影响多层器件的可靠性。为了实现与纯银电极的900℃低温共烧,国内外对如何降低PZT基陶瓷的烧结温度进行了研究。研究表明,通过添加助熔剂可降低烧结温度。将ZnO、Na2CO3、CaCO3、Li2CO3、Bi2O3和CuO添加到压电陶瓷中可以实现900℃低温下的烧结。如Chan-hee Nam在American Ceramics(2011,94(10),3442–3448)中公开了向PNN–PZT中加入1.0mol%CuO作为助熔剂,获得了d33=620pC/N,TC=200℃的压电陶瓷。虽然陶瓷材料的压电性能较高,但是居里温度较低,在实际应用中较难满足较高的温度需求。Han,H.S在Trans.Electr.Electron.Mater.(2011,12(6),249–252)报道了以0.1wt%Li2CO3作为助熔剂加入到PMN–PFN–PZT体系中,得到d33=425pC/N,TC=351℃的压电陶瓷。其Tc较高,但是压电性能明显下降。
发明内容
本发明的目的在于针对现有技术的不足,本发明的第一个目的是提供一种钙、锂、镱共掺杂的PZT基压电陶瓷,该压电陶瓷烧结温度低,并且兼具良好的压电性能和较高的居里温度;本发明的第二个目的是提供上述钙、锂、镱共掺杂的PZT基压电陶瓷的制备方法,以降低PZT基压电陶瓷的烧结温度,同时提高压电性能和居里温度。
针对本发明的第一个发明目的,本发明提供一种钙、锂、镱共掺杂的PZT基压电陶瓷,该压电陶瓷的化学通式为xPb(Ni1/3Nb2/3)O3-yPb(Mg1/2W1/2)O3-(1–x–y)Pb(Zr0.5Ti0.5)O3+u wt%CaCO3+v wt%Li2CO3+w mol%Yb2O3,其中0.02≤x≤0.15,0.02≤y≤0.15,0.08≤u≤0.5,0.08≤v≤0.5,0≤w≤0.4。u wt%、v wt%、表示对应组分占钙锂镱共掺杂的PZT基压电陶瓷的质量百分比;w mol%表示对应组分占钙锂镱共掺杂的PZT基压电陶瓷摩尔百分比。
针对本发明的第二个发明目的,通过在PZT基压电陶瓷中掺入钙、锂、镱,使得在掺杂元素的作用下,Li+及Yb3+进入A或B位,在850~950℃的烧结温度下,制备得到兼具良好压电性能和较高的居里温度的PZT基压电陶瓷,具体工艺步骤如下:
(1)PZT基陶瓷粉体的制备:将根据化学通式确定的各组分配方量的原料置入球磨机球磨破碎混合,混合均匀后在750~850℃下保温烧结2~4h,保温结束后冷却至室温并再次进行球磨破碎,得到PZT基陶瓷粉体;
(2)造粒压片:向步骤(1)所得PZT基陶瓷粉体中加入聚乙烯醇溶液进行造粒,然后将造粒所得粒料压制成片,得到PZT基陶瓷片;
(3)排胶烧结:将步骤(2)所得PZT基陶瓷片排胶后在850~950℃下保温烧结2~4h,得到烧结PZT基压电陶瓷片;
(4)极化:将步骤(3)所得烧结PZT基压电陶瓷片表面涂覆银浆后,在650~750℃下保温烧结10~20min,保温结束后冷却至室温,然后在硅油中进行极化,得到钙锂镱共掺杂的PZT压电陶瓷。
上述方法中,步骤(1)中两次球磨的优选为以无水乙醇为分散介质,各组分原料总量与无水乙醇的用量质量比优选为1:(1.2~2.0)。在行星球磨机上以100~450rmp的转速球磨10~24h,球磨后进行干燥。所述干燥可以是在烤灯下烘烤2~3小时。
上述方法中,将所得粒料压制成片的具体工艺优选为:在10~20MPa的压力下压制成直径约为10~15mm,厚度约为0.8~1.2mm的钙、锂、镱共掺杂的PZT基压电陶瓷片。
上述方法中,步骤(2)中所述聚乙烯醇溶液的质量浓度为最好为5~10%。
上述方法中,步骤(3)中排胶的具体工艺优选为:将步骤(2)所得PZT基陶瓷片在450~550℃下保温4~10h。
上述方法中,步骤(4)中所述银浆的质量浓度为5~15%。
上述方法中,步骤(4)中在硅油中进行极化的具体工艺为:在80~120℃的硅油中,极化场强为2~5kV/mm条件下保持电场强度15~30min。
与现有技术相比,本发明具有以下有益效果:
1、本发明提供的钙、锂、镱共掺杂PZT基压电陶瓷,烧结温度低,为850~950℃并具有良好的压电性能,d33高达565pC/N,在室温下利用安捷伦4294A精密阻抗仪在1kHz的频率下测得介电损耗不大于千分之三,且居里温度大于290℃。
2、本发明提供的钙、锂、镱共掺杂PZT基压电陶瓷,其物相为纯钙钛矿相,如图1所示,掺钙、锂、镱共掺杂提高了烧结活性使晶粒致密均匀且生长充分,致密,如图2所示。
附图说明
图1为实施例1~4制备得到的压电陶瓷材料的X射线衍射(XRD)图谱。
图2为为实施例2制备得到的压电陶瓷材料的扫描电镜(SEM)照片。
图3为实施例1~4制备得到的压电陶瓷材料的压电性能图。
图4为实施例1~4制备得到的压电陶瓷材料的介电常数随温度的变化。
具体实施方式
下面通过具体实施方式对本发明所述钙、锂、镱共掺杂的PZT基压电陶瓷作进一步说明。
实施例1
(1)PZT基陶瓷粉体的制备
按照通式0.08Pb(Ni1/3Nb2/3)O3-0.02Pb(Mg1/2W1/2)O3-0.90Pb(Zr0.5Ti0.5)O3+0.30wt%CaCO3+0.20wt%Li2CO3+0mol%Yb2O3表示,(x=0.08,y=0.02,u=0.30,v=0.20,w=0)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以100rmp的转速球磨24h,球磨后烤灯下烘烤2小时进行干燥得到混合粉料,将所得混合粉料在800℃下保温3h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤3小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为10wt%的聚乙烯醇溶液进行造粒,然后在10MPa的压力下压制成直径约为10mm,厚度约为1.2mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在550℃下保温4h进行排胶后,在850℃下保温烧结4h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆10wt%的银浆后,在650℃下保温烧结20min,保温结束后冷却至室温,然后在在90℃的硅油中,极化场强为5kV/mm条件下保持电场强度15min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
制得的钙、锂、镱共掺杂的PZT压电陶瓷的XRD图谱见图1,图1表明PZT压电陶瓷为纯钙钛矿相;采用ZJ-3型准静态d33仪,测得的压电系数d33见图3,为532pC/N;利用安捷伦4980A精密阻抗仪连接温控炉测得介电常数随温度的变化见图4,可从图4得到样品的居里温度为307℃。
实施例2
(1)PZT基陶瓷粉体的制备
按照通式0.08Pb(Ni1/3Nb2/3)O3-0.02Pb(Mg1/2W1/2)O3-0.90Pb(Zr0.5Ti0.5)O3+0.30wt%CaCO3+0.20wt%Li2CO3+0.10mol%Yb2O3表示,(x=0.08,y=0.02,u=0.30,v=0.20,w=0.10)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以450rmp的转速球磨10h,球磨后烤灯下烘烤3小时进行干燥得到混合粉料,将所得混合粉料在750℃下保温4h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤3小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为8wt%的聚乙烯醇溶液进行造粒,然后在20MPa的压力下压制成直径约为14mm,厚度约为0.9mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在550℃下保温4h进行排胶后,在900℃下保温烧结3h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆12wt%的银浆后,在700℃下保温烧结10min,保温结束后冷却至室温,然后在在120℃的硅油中,极化场强为2kV/mm条件下保持电场强度30min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
制得的钙、锂、镱共掺杂的PZT压电陶瓷的XRD图谱见图1,图1表明PZT压电陶瓷为纯钙钛矿相;采用ZJ-3型准静态d33仪,测得的压电系数的d33见图3,为563pC/N;利用安捷伦4980A精密阻抗仪连接温控炉测得介电常数随温度的变化见图4,可从图4得到样品的居里温度为301℃。SEM图如图2所示,SEM表明样品晶粒形状规则,结晶充分,致密无孔洞。
实施例3
(1)PZT基陶瓷粉体的制备
按照通式0.08Pb(Ni1/3Nb2/3)O3-0.02Pb(Mg1/2W1/2)O3-0.90Pb(Zr0.5Ti0.5)O3+0.30wt%CaCO3+0.20wt%Li2CO3+0.20mol%Yb2O3表示,(x=0.08,y=0.02,u=0.30,v=0.20,w=0.20)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以300rmp的转速球磨18h,球磨后烤灯下烘烤3小时进行干燥得到混合粉料,将所得混合粉料在850℃下保温2h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤2小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为10wt%的聚乙烯醇溶液进行造粒,然后在15MPa的压力下压制成直径约为13mm,厚度约为1mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在450℃下保温10h进行排胶后,在950℃下保温烧结2h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆5wt%的银浆后,在750℃下保温烧结10min,保温结束后冷却至室温,然后在在110℃的硅油中,极化场强为4kV/mm条件下保持电场强度16min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
制得的钙、锂、镱共掺杂的PZT压电陶瓷的XRD图谱见图1,图1表明PZT压电陶瓷为纯钙钛矿相;采用ZJ-3型准静态d33仪,测得的压电系数d33见图3,为552pC/N;利用安捷伦4980A精密阻抗仪连接温控炉测得介电常数随温度的变化见图4,可从图4得到样品的居里温度为300℃。
实施例4
(1)PZT基陶瓷粉体的制备
按照通式0.08Pb(Ni1/3Nb2/3)O3-0.02Pb(Mg1/2W1/2)O3-0.90Pb(Zr0.5Ti0.5)O3+0.30wt%CaCO3+0.20wt%Li2CO3+0.30mol%Yb2O3表示,(x=0.08,y=0.02,u=0.30,v=0.20,w=0.30)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以200rmp的转速球磨20h,球磨后烤灯下烘烤3小时进行干燥得到混合粉料,将所得混合粉料在800℃下保温3h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤3小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为10wt%的聚乙烯醇溶液进行造粒,然后在20MPa的压力下压制成直径约为15mm,厚度约为0.8mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在500℃下保温8h进行排胶后,在900℃下保温烧结4h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆15wt%的银浆后,在650℃下保温烧结15min,保温结束后冷却至室温,然后在在80℃的硅油中,极化场强为5kV/mm条件下保持电场强度25min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
制得的钙、锂、镱共掺杂的PZT压电陶瓷的XRD图谱见图1,图1表明PZT压电陶瓷为纯钙钛矿相;采用中科院声学所的ZJ-3型准静态d33仪,测得的压电系数d33见图3,为539pC/N;利用安捷伦4980A精密阻抗仪连接温控炉测得介电常数随温度的变化见图4,可从图4得到样品的居里温度为304℃。
实施例5
(1)PZT基陶瓷粉体的制备
按照通式0.08Pb(Ni1/3Nb2/3)O3-0.02Pb(Mg1/2W1/2)O3-0.90Pb(Zr0.5Ti0.5)O3+0.30wt%CaCO3+0.20wt%Li2CO3+0.40mol%Yb2O3表示,(x=0.08,y=0.02,u=0.30,v=0.20,w=0.40)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以400rmp的转速球磨11h,球磨后烤灯下烘烤2小时进行干燥得到混合粉料,将所得混合粉料在750℃下保温4h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤3小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为6wt%的聚乙烯醇溶液进行造粒,然后在18MPa的压力下压制成直径约为10mm,厚度约为1.2mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在500℃下保温7h进行排胶后,在900℃下保温烧结4h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆10wt%的银浆后,在750℃下保温烧结12min,保温结束后冷却至室温,然后在在120℃的硅油中,极化场强为3kV/mm条件下保持电场强度30min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
制得的钙、锂、镱共掺杂的PZT压电陶瓷的XRD图谱见图1,图1表明PZT压电陶瓷为纯钙钛矿相;采用中科院声学所的ZJ-3型准静态d33仪,测得的压电系数的d33见图3,为486pC/N;利用安捷伦4980A精密阻抗仪连接温控炉测得介电常数随温度的变化见图4,可从图4得到样品的居里温度为307℃。
实施例6
(1)PZT基陶瓷粉体的制备
按照通式0.02Pb(Ni1/3Nb2/3)O3-0.1Pb(Mg1/2W1/2)O3-0.88Pb(Zr0.5Ti0.5)O3+0.10wt%CaCO3+0.30wt%Li2CO3+0mol%Yb2O3表示,(x=0.02,y=0.10,u=0.10,v=0.30,w=0)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以100rmp的转速球磨24h,球磨后烤灯下烘烤2小时进行干燥得到混合粉料,将所得混合粉料在800℃下保温3h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤3小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为10wt%的聚乙烯醇溶液进行造粒,然后在10MPa的压力下压制成直径约为10mm,厚度约为1.2mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在550℃下保温4h进行排胶后,在850℃下保温烧结4h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆10wt%的银浆后,在650℃下保温烧结20min,保温结束后冷却至室温,然后在在90℃的硅油中,极化场强为5kV/mm条件下保持电场强度15min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
实施例7
(1)PZT基陶瓷粉体的制备
按照通式0.15Pb(Ni1/3Nb2/3)O3-0.05Pb(Mg1/2W1/2)O3-0.80Pb(Zr0.5Ti0.5)O3+0.08wt%CaCO3+0.5wt%Li2CO3+0.2mol%Yb2O3表示,(x=0.15,y=0.05,u=0.08,v=0.5,w=0.2)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以100rmp的转速球磨24h,球磨后烤灯下烘烤2小时进行干燥得到混合粉料,将所得混合粉料在800℃下保温3h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤3小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为10wt%的聚乙烯醇溶液进行造粒,然后在10MPa的压力下压制成直径约为10mm,厚度约为1.2mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在550℃下保温4h进行排胶后,在850℃下保温烧结4h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆10wt%的银浆后,在650℃下保温烧结20min,保温结束后冷却至室温,然后在在90℃的硅油中,极化场强为5kV/mm条件下保持电场强度15min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
实施例8
(1)PZT基陶瓷粉体的制备
按照通式0.05Pb(Ni1/3Nb2/3)O3-0.15Pb(Mg1/2W1/2)O3-0.80Pb(Zr0.5Ti0.5)O3+0.50wt%CaCO3+0.09wt%Li2CO3+0.2mol%Yb2O3表示,(x=0.05,y=0.15,u=0.5,v=0.09,w=0.2)计算称量各原料,以无水乙醇为分散介质,按照各原料总量与无水乙醇的质量比为1:1.5将各原料和无水乙醇加入球磨罐中,在行星球磨机上以100rmp的转速球磨24h,球磨后烤灯下烘烤2小时进行干燥得到混合粉料,将所得混合粉料在800℃下保温3h,保温结束后冷却至室温并再次按照相同方法进行第二次球磨,球磨后烤灯下烘烤3小时进行干燥,得到PZT基陶瓷粉体;
(2)造粒压片
向步骤(1)所得PZT基陶瓷粉体中加入质量浓度为10wt%的聚乙烯醇溶液进行造粒,然后在10MPa的压力下压制成直径约为10mm,厚度约为1.2mm的PZT基压电陶瓷圆片;
(3)排胶烧结
将步骤(2)所得PZT基陶瓷片在550℃下保温4h进行排胶后,在850℃下保温烧结4h,得到烧结PZT基压电陶瓷片;
(4)极化
将步骤(3)所得烧结PZT基压电陶瓷圆片表面涂覆10wt%的银浆后,在650℃下保温烧结20min,保温结束后冷却至室温,然后在在90℃的硅油中,极化场强为5kV/mm条件下保持电场强度15min进行极化,得到钙、锂、镱共掺杂的PZT压电陶瓷。
应用例
将实施例2制备得到的钙、锂、镱共掺杂的PZT基压电陶瓷材料制备成厚度0.2毫米,直径12毫米的圆片,加上电极、引线、膜片、外壳等做成电声器件,制得的电声器件具有很好的声频特性,说明本发明所述钙、锂、镱共掺杂的PZT基压电陶瓷具有良好的压电性能。

Claims (10)

1.一种钙锂镱共掺杂的PZT基压电陶瓷,其特征在于该压电陶瓷的化学通式为xPb(Ni1/3Nb2/3)O3-yPb(Mg1/2W1/2)O3-(1–x–y)Pb(Zr0.5Ti0.5)O3+u wt%CaCO3+v wt%Li2CO3+wmol%Yb2O3,其中0.02≤x≤0.15,0.02≤y≤0.15,0.08≤u≤0.5,0.08≤v≤0.5,0≤w≤0.4;u wt%、v wt%表示对应组分占钙锂镱共掺杂的PZT基压电陶瓷的质量百分比;wmol%表示对应组分占钙锂镱共掺杂的PZT基压电陶瓷的摩尔百分比。
2.权利要求1所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,包括以下工艺步骤:
(1)PZT基陶瓷粉体的制备:将根据化学通式确定的各组分配方量的原料置入球磨机球磨破碎混合,混合均匀后在750~850℃下保温烧结2~4h,保温结束后冷却至室温并再次进行球磨破碎,得到PZT基陶瓷粉体;
(2)造粒压片:向步骤(1)所得PZT基陶瓷粉体中加入聚乙烯醇溶液进行造粒,然后将造粒所得粒料压制成片,得到PZT基陶瓷片;
(3)排胶烧结:将步骤(2)所得PZT基陶瓷片排胶后在850~950℃下保温烧结2~4h,得到烧结PZT基压电陶瓷片;
(4)极化:将步骤(3)所得烧结PZT基压电陶瓷片表面涂覆银浆后,在650~750℃下保温烧结10~20min,保温结束后冷却至室温,然后在硅油中进行极化,得到钙锂镱共掺杂的PZT压电陶瓷。
3.根据权利要求2所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,步骤(1)中所述的球磨破碎是以无水乙醇为分散介质,各组分原料总量与无水乙醇的用量质量比为1:(1.2~2.0)。
4.根据权利要求3所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,所述球磨破碎是在转速为100~450rmp的行星球磨机上球磨破碎10~24h,球磨破碎后进行干燥。
5.根据权利要求4所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于所述干燥是在烤灯下烘烤2~3小时。
6.根据权利要求2~5中任一权利要求所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,步骤(2)中所述粒料在10~20MPa的压力下压制成直径为10~15mm,厚度为0.8~1.2mm的钙锂镱共掺杂的PZT基压电陶瓷片。
7.根据权利要求2~5中任一权利要求所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,所述聚乙烯醇溶液的质量浓度为5~10%。
8.根据权利要求2~5中任一权利要求所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,步骤(3)中所述排胶为在450~550℃下保温4~10h。
9.根据权利要求2~5中任一权利要求所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,步骤(4)中所述银浆的质量浓度为5~15%。
10.根据权利要求2~5中任一权利要求所述钙锂镱共掺杂的PZT基压电陶瓷的制备方法,其特征在于,步骤(4)中所述极化为在80~120℃的硅油中,极化场强为2~5kV/mm条件下保持电场强度15~30min。
CN201610390890.0A 2016-06-02 2016-06-02 钙锂镱共掺杂的pzt基压电陶瓷及其制备方法 Pending CN106064945A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610390890.0A CN106064945A (zh) 2016-06-02 2016-06-02 钙锂镱共掺杂的pzt基压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610390890.0A CN106064945A (zh) 2016-06-02 2016-06-02 钙锂镱共掺杂的pzt基压电陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN106064945A true CN106064945A (zh) 2016-11-02

Family

ID=57420287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610390890.0A Pending CN106064945A (zh) 2016-06-02 2016-06-02 钙锂镱共掺杂的pzt基压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106064945A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673648A (zh) * 2016-12-19 2017-05-17 四川大学 一种氧化镱掺杂低温制备pzt基压电陶瓷
CN114573343A (zh) * 2020-12-01 2022-06-03 四川大学 一种低温制备的高性能pzt改性压电陶瓷
CN115466117A (zh) * 2021-06-10 2022-12-13 四川大学 一种低温制备的具有超高压电常数的pzt基压电陶瓷

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935212A (zh) * 2010-09-09 2011-01-05 西北工业大学 一种锆钛酸钡钙无铅压电陶瓷及其制备方法
CN102285796A (zh) * 2011-06-02 2011-12-21 天津大学 添加氧化镱的反铁电锆钛酸铅电介质陶瓷
CN103496977A (zh) * 2013-09-13 2014-01-08 天津大学 钙铁掺杂的锑锰锆钛酸铅压电陶瓷

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935212A (zh) * 2010-09-09 2011-01-05 西北工业大学 一种锆钛酸钡钙无铅压电陶瓷及其制备方法
CN102285796A (zh) * 2011-06-02 2011-12-21 天津大学 添加氧化镱的反铁电锆钛酸铅电介质陶瓷
CN103496977A (zh) * 2013-09-13 2014-01-08 天津大学 钙铁掺杂的锑锰锆钛酸铅压电陶瓷

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNGHO RYU等: "Effect of Yb Addition on the Sintering Behavior and High Power Piezoelectric Properties of Pb(Zr,Ti)O3–Pb(Mn,Nb)O3", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *
YEONGHO JEONG 等: "Piezoelectric and dielectric characteristics of low-temperature-sintering Pb(Mg1/2W1/2)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics according to the amount of PNN substitution", 《J. ELECTROCERAM》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673648A (zh) * 2016-12-19 2017-05-17 四川大学 一种氧化镱掺杂低温制备pzt基压电陶瓷
CN114573343A (zh) * 2020-12-01 2022-06-03 四川大学 一种低温制备的高性能pzt改性压电陶瓷
CN115466117A (zh) * 2021-06-10 2022-12-13 四川大学 一种低温制备的具有超高压电常数的pzt基压电陶瓷

Similar Documents

Publication Publication Date Title
US8034250B2 (en) Piezoelectric material
CN102249659B (zh) 一种高居里温度铁酸铋基无铅压电陶瓷及其制备方法
CN101200369B (zh) 钛铌锌酸铋钠系无铅压电陶瓷
CN101948309B (zh) 一种掺杂psmzt压电陶瓷及其制备方法和应用
CN101462875A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备工艺
CN101234895A (zh) 一种钛酸铋钠基无铅压电陶瓷
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN110803922A (zh) 一种铋层状无铅压电陶瓷的制备方法
CN110590352A (zh) 低极化场强产生高压电铁酸铋-钛酸钡基压电陶瓷及制备
US20130162108A1 (en) Piezoelectric ceramic and piezoelectric device
CN102390997B (zh) 高耐压铌酸钾钠基无铅压电陶瓷及其制备方法和用途
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN107117965B (zh) 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN102976748B (zh) 高致密钛酸锶钡陶瓷及其制备方法
CN105198417A (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN106064945A (zh) 钙锂镱共掺杂的pzt基压电陶瓷及其制备方法
CN106673648A (zh) 一种氧化镱掺杂低温制备pzt基压电陶瓷
CN103265288B (zh) 大介电常数压电陶瓷及其制备方法
CN101786880B (zh) 一种铌酸钾钠-铌酸钾锂压电陶瓷及其制备方法
Yamatoh et al. Polymerizable complex synthesis of lead-free ferroelectric Na0. 5Bi0. 5TiO3 suppressing evaporation of sodium and bismuth
CN111072065A (zh) 一种[111]取向的钛酸锶模板材料及其制备方法
CN106518058B (zh) 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
CN115403375B (zh) 一种锆钛酸铅压电陶瓷材料及其制备方法
CN106365632B (zh) 三元体系的无铅压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161102

RJ01 Rejection of invention patent application after publication