CN106048435A - 一种高淬透性低屈强比合金钢及制备方法 - Google Patents

一种高淬透性低屈强比合金钢及制备方法 Download PDF

Info

Publication number
CN106048435A
CN106048435A CN201610065359.6A CN201610065359A CN106048435A CN 106048435 A CN106048435 A CN 106048435A CN 201610065359 A CN201610065359 A CN 201610065359A CN 106048435 A CN106048435 A CN 106048435A
Authority
CN
China
Prior art keywords
steel
hour
temperature
yield
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610065359.6A
Other languages
English (en)
Inventor
刘少尊
王春旭
厉勇
黄顺喆
韩顺
刘宪民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610065359.6A priority Critical patent/CN106048435A/zh
Publication of CN106048435A publication Critical patent/CN106048435A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种高淬透性低屈强比超高强度钢及制备方法,属于合金钢技术领域。该钢的化学组成成分重量%为:C 0.33‑0.43%,Cr 0.50‑3.5%,Ni 2.0‑6.0%,Si 0.5‑1.50%,Mn 0.5‑1.50%,Mo 0.5‑2.0%,V0‑0.3%,Nb 0‑0.2%,其余为Fe及其他不可避免的杂质元素。优点在于,与现有技术相比综合性能优良,具有空淬可以得到完全马氏体能力,σb≥1900Mpa和KIC≥90MPam1/2的高韧性和超高强度的同时,具有0.80以下的屈强比,具有优异的强韧性、抗绝热剪切能力、热处理工艺性和经济性。

Description

一种高淬透性低屈强比合金钢及制备方法
技术领域
本发明属于合金钢技术领域,特别涉及一种高淬透性低屈强比(σ0.2b≤0.8)超高强度钢及制备方法,具有优异强韧性(σb≥1900MPa,KIC≥90MPam1/2)、优良的抗绝热剪切能力、良好的热处理工艺性和经济性。
背景技术
在此之前,由于经济性的优势,低合金超高强度钢一直是超高强度钢应用的主力,广泛应用于航空、航天、机械、交通等行业,主要有30CrMnSi、30CrMnSiNi2、D406A、D6AC等,但这些低合金超高强度钢的强度普遍在1800MPa以下,更高强度级别的如300M钢的强度可以达到2000MPa级,但断裂韧性较低,在70MPam1/2以下。
随航空航天产业的发展,对于高韧性高可靠性的设计选材需求越发突出,在具有高强度的同时,需要具有高韧性,同时适应冲击载荷或循环载荷的能力,希望抗拉强度σb≥1900Mpa同时具有KIC≥90MPam1/2的高韧性。在冲击载荷条件使用下,希望具有较低的屈强比,屈强比在0.8以下。
近年来随着零部件形状复杂性增加,希望材料具有更大的淬透性,利用空淬满足复杂淬透性和组织性能一致性的需求。对合金钢的淬透性提出了更高的要求。虽然目前的低合金钢能够提供σb≥1620MPa,KIC≥80MPam1/2的性能,但是与目前航天航空领域对于零部件的需求相比,强度和断裂韧性等的综合性能尚存在差距,强度和韧性均偏低,不能满足技术需求。同时上述用钢均采用油淬工艺,希望零件可以采用空淬即可淬透的淬火能力,满足复杂零件要求。希望能够研制一种价格经济、强度稳定在1900MPa以上,同时具备优良的抗低应力破坏能力,即断裂韧性KIC≥90MPam1/2的超高强度钢,具有0.8以下的屈强比,具有优异的强韧性、热处理工艺性和经济性。
在高应变率条件下,绝热剪切变形断裂是材料普遍的失效模式。材料在高速加载过程中,应变速率可达103~106s-1,整个变形过程的时间极短,由塑性变形产生的热量来不及失散出去,可认为是“绝热”过程。不同材料发生绝热剪切变形的难易程度存在很大的差别,材料的绝热剪切特性直接影响材料的高应变率使用性能。将材料制成Φ4×4mm试样,利用分离式霍普金森压杆进行强迫剪切试验,考验材料所 能承受的极限变形速率,可有效反映材料的抗绝热剪切能力(极限变形速率越高,抗绝热剪切能力越强,即绝热剪切敏感性越低)。
因此,新一代具有高淬透性、低屈强比、低绝热剪切敏感性的低合金超高强度钢日益被提到科研日程上来。
目前典型应用的低合金超高强度钢成分和力学性能见表1和表2:
表1对比钢化学成分(wt%)
表2对比钢力学性能
发明内容
本发明的目的在于提供一种高淬透性低屈强比抗绝热剪切能力良好的超高强度钢及制备方法,是一种高淬透性低屈强比经济型超高强度钢,综合性能优良,具有空淬可以得到完全马氏体能力,σb≥1900MPa和KIC≥90MPam1/2的高韧性和超高强度 的同时,具有0.8以下的屈强比,具有优异的强韧性、抗绝热剪切能力、热处理工艺性和经济性。
基于上述目的,本发明的主要技术方案是在中碳低温回火马氏体钢基础上,较高的Cr、Ni含量使C曲线右移提高淬透性,严格控制Si、Mn的添加可获得较低的屈强比,Cr、Ni含量的配合控制Ms点,添加Mo、Nb、V,形成中合金低温回火马氏体钢。其具体的化学组成成分(重量%)为:C0.33-0.43%,Cr0.50-3.5%,Ni2.0-6.0%,Si0.5-1.50%,Mn0.5-1.50%,Mo0.5-2.0%,V0-0.3%,Nb0-0.2%,其余为Fe及其他不可避免的杂质元素。
上述化学成分的设计依据如下:
C:淬火、回火后为了获得所需的高强度,其抗拉强度与C含量呈直线关系:
σb(MPa)=(294×C%+82)×9.8
式中,C%表示钢中碳含量,适用范围为0.30~0.50%C。为达到1900MPa以上的强度,C含量须在0.33%以上,但过多的C含量会严重恶化钢的塑韧性以及钢的工艺性能,同时严重损害抗绝热剪切能力,因而C含量控制为0.33-0.43%。
Cr:能够有效地提高钢的淬透性和回火抗力,以获得所需的高强度,同时显著提高抗脱碳能力,但含量过高则会显著提高钢的淬火温度、降低钢的韧性和加工性,而且与Ni同时添加会显著降低Ms点。本发明中Cr含量应最高在3.0%左右,因此控制在0.5-3.5%。
Ni:有效地提高钢的淬透性并提高钢的低温韧性。同时降低Ms点,能够获得残余奥氏体,提高钢的韧性,达到3.0%左右明显推迟C曲线,显著提高淬透性,是本发明钢的主要技术措施之一,但过高的Ni含量超过6%时由于Ms点过低,得不到完全马氏体组织,残余奥氏体过多降低强度,必需采用深冷处理使热处理工艺复杂,因此控制在2.0-6.0%。
Si:在钢中加入Si,可抑制残余奥氏体向Fe3C的分解转变,并使回火马氏体脆性区向高温方向移动,降低第一类回火脆性,因此可以采用高温度回火工艺获得良好的强韧性配比,但高Si会降低抗脱碳性能,同时在回火过程中显著提高屈服强度和屈强比,为达到0.80以下的屈强比,本发明钢中Si控制在1.5%以下。
Mn:可以提高钢的淬透性和强度,但Mn含量过高时,有使钢晶粒粗化的倾向,并增加钢的回火脆敏感性,同时增加真空自耗重熔冶金过程中成分偏析,而Mn与Si都提高屈服强度和屈强比,因而控制Mn含量0.5-1.50%。
Mo:有效地提高钢的淬透性和回火抗力的同时,还能够强化晶界。含量小于0.20%难以起到上述作用,但含量超过2.0%则固溶温度显著提高超过950℃,粗化组织降低塑韧性,因此Mo含量控制在0.5-2.0%。
V:在低合金超高强度钢中通过形成细小弥散的MC型析出相进行复合强化,提高钢的强度和韧性。V含量小于0.05%难以起到上述作用,过高的V会降低塑性,控制在0-0.3%。
Nb:细化晶粒,提高钢的韧性,含量小于0.01%起不到上述作用,超过0.3%会增加脆性倾向,本发明控制在小于0.2%。
本发明高冲击韧性超高强度钢易于采用真空感应+真空自耗重熔或电渣重熔工艺,也可采用炉外精炼+真空自耗重熔或电渣重熔工艺,工艺中控制的技术参数如下:
钢锭进行1190-1230℃均匀化处理,8小时≤扩散时间≤60小时,装炉温度≤650℃;
加热温度:1160-1180℃,1100℃≤开锻温度≤1160℃,800℃≤终锻温度≤900℃;
成品退火制度:正火:910-950℃,1小时≤保温时间≤3小时空冷;退火:640-700℃,6小时≤保温时间≤30小时。
最终热处理:淬火处理:加热到880-950℃,热透后保温1-3小时,空冷、风冷或油淬;
回火处理:加热到230-280℃,热透后保温2-4小时,空冷;或进行二次回火处理。
根据上述化学成分及生产方法所制备的本发明钢,具有空淬可以得到完全马氏体能力,σb≥1900Mpa和KIC≥90MPam1/2的高韧性和超高强度的同时,具有0.8以下的屈强比,3600-4300s-1的极限应变速率。具有优异的强韧性、抗绝热剪切能力、热处理工艺性和经济性。
与现有技术相比,本发明综合性能优良,具有更高的强度和断裂韧性,有良好的抗绝热剪切能力,同时具有良好的淬透性和热处理工艺性。
具体实施方式
根据本发明经济型高韧性易旋压易焊接超高强度钢的化学成分范围,采用25公斤真空感应炉制备20公斤的合金锭10炉,其具体化学成分见表3。
试验钢冶炼浇铸成钢锭后,锻前首先进行高温均质化处理制度为:1200℃保温10小时后,降温锻造,锻造加热温度为1150℃。锻造试棒尺寸为:φ15×2000mm、 15×15×2000mm及25×45×Lmm。
锻后试棒首先进行正火、退火热处理:正火处理950℃×1h,空冷、退火处理680℃×5h,空冷。然后送试样段加工拉伸、冲击及断裂韧性试样毛坯。最后进行淬火、回火热处理:淬火处理930℃×1h,空冷;回火处理260℃×3h,AC。试样毛坯磨削加工后即可测试力学性能见表2。
为了对比,在表1和表2列入了对比例低合金超高强度30CrMnSiNi2A、406、D406A钢的化学成分和力学性能。
从表3看出,与对比例低合金30CrMnSiNi2A、406、D406A钢相比,本发明的主要技术方案是显著提高C和Ni的含量,降低Si含量,同时添加更高的Mo、Nb、V,形成中低合金低温回火马氏体钢。更高的C含量来提高强度;更高的Ni含量提高钢的淬透性及获得足够的残余奥氏体提高冲击韧性,同时降低屈强比;严格控制的Si、Mn含量满足低屈强比需要。
由表4看出,本发明钢种与对比例相比,抗拉强度和断裂韧性高于后者,具有稳定的σb≥1900MPa抗拉强度和KIC≥90MPam1/2的断裂韧性,同时具有良好的淬透性和低屈强比,空淬即可以淬透。
由表5看出,本发明钢种同对比例相比,在高应变速率下,抗绝热剪切能力高于后者,具有3800-4200s-1的极限应变速率,同时,均匀塑性应变,冲击吸收能均高于300M钢。
表3本发明实施例与对比例化学成分(wt%)对比表
表4本发明实施例与对比例力学性能对比表
表5本发明实施例与对比例力学性能对比表

Claims (2)

1.一种高淬透性低屈强比超高强度钢,其特征在于,化学组成成分重量%为:C 0.33-0.43%,Cr 0.50-3.5%,Ni 2.0-6.0%,Si 0.5-1.50%,Mn 0.5-1.50%,Mo 0.5-2.0%,V0-0.3%,Nb 0-0.2%,其余为Fe及其他不可避免的杂质元素。
2.一种权利要求1所述的一种高淬透性低屈强比超高强度钢的制备方法,采用真空感应+真空自耗重熔或电渣重熔,或采用炉外精炼+真空自耗重熔或电渣重熔冶炼工艺;其特征在于,工艺中控制的技术参数如下:
钢锭进行1180-1230℃均匀化处理,8小时≤扩散时间≤60小时,装炉温度≤650℃;
加热温度:1150-1180℃,1100℃≤开锻温度≤1160℃,800℃≤终锻温度≤900℃;
成品退火制度:正火:910-930℃,1小时≤保温时间≤3小时空冷;回火:640-700℃,6小时≤保温时间≤30小时;
最终热处理:淬火处理:加热到860-930℃,热透后保温1-3小时,空冷、风冷或油淬;
回火处理:加热到230-280℃,热透后保温2-6小时,空冷;或进行二次回火处理。
CN201610065359.6A 2016-02-01 2016-02-01 一种高淬透性低屈强比合金钢及制备方法 Pending CN106048435A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610065359.6A CN106048435A (zh) 2016-02-01 2016-02-01 一种高淬透性低屈强比合金钢及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610065359.6A CN106048435A (zh) 2016-02-01 2016-02-01 一种高淬透性低屈强比合金钢及制备方法

Publications (1)

Publication Number Publication Date
CN106048435A true CN106048435A (zh) 2016-10-26

Family

ID=57484343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610065359.6A Pending CN106048435A (zh) 2016-02-01 2016-02-01 一种高淬透性低屈强比合金钢及制备方法

Country Status (1)

Country Link
CN (1) CN106048435A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108179359A (zh) * 2018-02-27 2018-06-19 苏州特鑫精密电子有限公司 一种高强度五金弹片的热处理工艺
CN110306127A (zh) * 2019-07-11 2019-10-08 上海交通大学 一种超高强度高韧性合金钢及其制备方法
CN112143960A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种超高强度低屈强比的钢板及其制造方法
CN115094337A (zh) * 2022-07-22 2022-09-23 上海大学(浙江)高端装备基础件材料研究院 一种超高强度合金钢和一种19.8级螺纹紧固件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160282A (ja) * 1998-11-26 2000-06-13 Nkk Corp 耐摩耗性と耐フレーキング性に優れたベイナイト型レール
JP2001049398A (ja) * 1999-08-06 2001-02-20 Toshiba Corp 高靭性耐熱鋼およびタービンロータの製造方法
CN102212760A (zh) * 2011-06-10 2011-10-12 钢铁研究总院 一种高韧性超高强度钢
CN104328359A (zh) * 2014-11-04 2015-02-04 钢铁研究总院 高韧性易旋压易焊接超高强度d506a钢及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160282A (ja) * 1998-11-26 2000-06-13 Nkk Corp 耐摩耗性と耐フレーキング性に優れたベイナイト型レール
JP2001049398A (ja) * 1999-08-06 2001-02-20 Toshiba Corp 高靭性耐熱鋼およびタービンロータの製造方法
CN102212760A (zh) * 2011-06-10 2011-10-12 钢铁研究总院 一种高韧性超高强度钢
CN104328359A (zh) * 2014-11-04 2015-02-04 钢铁研究总院 高韧性易旋压易焊接超高强度d506a钢及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108179359A (zh) * 2018-02-27 2018-06-19 苏州特鑫精密电子有限公司 一种高强度五金弹片的热处理工艺
CN112143960A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种超高强度低屈强比的钢板及其制造方法
CN110306127A (zh) * 2019-07-11 2019-10-08 上海交通大学 一种超高强度高韧性合金钢及其制备方法
CN110306127B (zh) * 2019-07-11 2021-12-17 上海交通大学 一种超高强度高韧性合金钢及其制备方法
CN115094337A (zh) * 2022-07-22 2022-09-23 上海大学(浙江)高端装备基础件材料研究院 一种超高强度合金钢和一种19.8级螺纹紧固件及其制备方法

Similar Documents

Publication Publication Date Title
CN104328359B (zh) 高韧性易旋压易焊接超高强度d506a钢及制备方法
CN106048448B (zh) 一种含Al高模量低温回火合金钢及制备方法
CN108486494B (zh) 钒微合金化1300MPa级别高强热轧钢板和冷轧双相钢板的生产方法
CN106498278B (zh) 一种高强度高延伸率低密度的中厚板及其制备方法
CN106636908B (zh) 一种纳米贝氏体弹簧钢及其制备方法
CN105039862B (zh) Co-free复合强化二次硬化超高强度钢及制备方法
CN107858590B (zh) 一种42CrMo4风力发电机主轴控制方法
CN103695802A (zh) 一种高钼高强度二次硬化超高强度钢及其制备方法
CN110863140B (zh) 一种低合金超高强度结构钢及制备方法
CN104498834B (zh) 一种高韧性超高强度钢的成分及其制备工艺
CN104073736A (zh) 10Ni10Co高韧性二次硬化超高强钢及制备方法
CN106048435A (zh) 一种高淬透性低屈强比合金钢及制备方法
CN106893832A (zh) 一种无碳化物贝/马复相钢的bq&p热处理工艺
CN105018854A (zh) 高耐热性热作模具钢及制备方法
CN104313472B (zh) 一种高碳热轧汽车膜片弹簧钢及其生产方法
CN104911499B (zh) Cu强化Co‑free二次硬化超高强度钢及制备方法
CN106756489A (zh) 布氏硬度450级抗裂纹高强度耐磨钢及其制造方法
CN104313483A (zh) 一种高碳冷轧汽车膜片弹簧钢及其生产方法
CN106148651A (zh) 含Al节Co型高比强度二次硬化超高强度钢及制备方法
CN114351058B (zh) 一种屈服强度2000MPa级合金钢及其制备方法
CN102260823B (zh) 一种屈服强度690MPa级高强钢板及其制造方法
CN104818432A (zh) 一种用于汽轮机组转子的合金材料及其制备方法
CN108866443B (zh) 正火型低屈强比高强度钢板及制备方法
CN104087859A (zh) 钼强化10Ni7Co二次硬化超高强度钢及制备方法
CN104087824A (zh) 一种具有trip效应的超细结构贝氏体钢及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
DD01 Delivery of document by public notice

Addressee: Liu Shaozun

Document name: Notification of Passing Examination on Formalities

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026