CN105977459A - 一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用 - Google Patents

一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用 Download PDF

Info

Publication number
CN105977459A
CN105977459A CN201610300813.1A CN201610300813A CN105977459A CN 105977459 A CN105977459 A CN 105977459A CN 201610300813 A CN201610300813 A CN 201610300813A CN 105977459 A CN105977459 A CN 105977459A
Authority
CN
China
Prior art keywords
tungsten carbide
carbon nano
composite membrane
embedding
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610300813.1A
Other languages
English (en)
Other versions
CN105977459B (zh
Inventor
刘天西
施贻琴
樊玮
郜伟
张龙生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610300813.1A priority Critical patent/CN105977459B/zh
Publication of CN105977459A publication Critical patent/CN105977459A/zh
Application granted granted Critical
Publication of CN105977459B publication Critical patent/CN105977459B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明涉及一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用,复合膜为三维多孔结构。通过静电纺丝制备得到四硫代钨酸铵/聚丙烯腈纳米纤维膜,再通过在氩氢气氛中一步法高温碳化还原制备得到碳化钨/碳纳米纤维复合膜。碳化钨包埋的碳纳米纤维复合膜作为锂离子电池、超级电容器的电极材料的应用。本发明制备的碳化钨/碳纳米纤维复合材料具有优良的导电性和电化学活性。

Description

一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用
技术领域
本发明属于复合纳米材料及其制备和应用领域,特别涉及一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用。
背景技术
碳纳米纤维具有较高的导电性、优异的力学性能、高的比表面积,质轻密度低和良好的化学稳定性等优异的性能。碳纳米纤维广泛应用于催化剂载体,高分子纳米复合材料,能量转换与储存器件的柔性基底材料等领域,广泛应用于航天航空,储能等各个领域。静电纺丝是一种简单而有效地制备碳纳米纤维的技术,通过高压静电将聚合物溶液进行纺丝,再进行预氧化和高温碳化可制备得到具有三维多孔结构、高比表面积和较高导电性的碳纳米纤维纺丝膜。
碳化钨是一类典型的过渡金属碳化物,它属于六方晶系。碳化钨具有良好的导电性(在20℃时电导率为105S cm-1),且纳米尺寸的碳化钨具有良好的潜力取代贵金属作为析氢反应的催化剂,因此,它在催化析氢等领域受到广泛的关注。但是,其在锂离子电池电极材料方面的应用目前还未得深入探索,且纯碳化钨易于团聚,使其活性位点无法得到充分暴露,严重影响了其电化学活性和能量储存的循环稳定性。所以,将碳化钨与碳纳米纤维进行复合应用于柔性自支撑锂离子电池电极材料具有重要意义。
发明内容
本发明所要解决的技术问题是提供一种碳化钨包埋的碳纳米纤维复合膜的制备方法,本发明提供了一种制备过程简单、成本低廉、电化学性能优异的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜的制备方法。
本发明的一种碳化钨包埋的碳纳米纤维复合膜,所述的碳化钨包埋的碳纳米纤维复合膜中碳化钨以纳米粒子的形态均匀分布在碳纳米纤维中。
本发明的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,包括:
(1)将四硫代钨酸铵、聚丙烯腈加入溶剂中,搅拌,得到均一的粘稠分散液;
(2)将上述分散液进行静电纺丝,得到四硫代钨酸铵/聚丙烯腈纺丝膜;
(3)将上述四硫代钨酸铵/聚丙烯腈纺丝膜进行预氧化得到预氧化后的四硫代钨酸铵/聚丙烯腈复合膜,然后热处理,即得碳化钨包埋的碳纳米纤维复合膜。
所述步骤(1)中溶剂为N,N-二甲基甲酰胺。
所述步骤(1)中四硫代钨酸铵、聚丙烯腈的质量比为0.5:1-3:1,优选质量比为1:1-2:1。
所述步骤(2)中静电纺丝的工艺参数为:静电场电压15~25kV,纺丝速度0.05~0.2mmmin-1,接收距离10~25cm。
所述步骤(3)中预氧化具体为:在空气气氛中预氧化,预氧化的温度为200~250℃,升温速率为2℃ min-1,预氧化恒温时间为1~3h,优选所述预氧化恒温时间为1.5h。
所述步骤(3)中热处理具体为:在氩氢气氛中,热处理温度为600~900℃,升温速率为5~10℃ min-1,恒温时间为3~6h,优选所述恒温时间为4h。
本发明的一种碳化钨包埋的碳纳米纤维复合膜的应用,其特征在于:述碳化钨包埋的碳纳米纤维复合膜作为锂离子电池、超级电容器等新能源器件的理想电极材料的应用。
本发明通过简单的工艺设计,制备得到一种新型的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜。该复合材料具有如下优势:静电纺得到的碳纳米复合纤维膜具有独特的自支撑交联结构;将碳化钨纺进碳纳米纤维中可有效抑制其自身的团聚,并且可以阻碍其在锂电池充放电过程中的体积膨胀;碳纳米纤维优异的力学性能使复合材料可作为柔性电极材料能源存储器件;碳化钨本身具备较高的理论储锂容量值,可提高材料整体的比容量。因此,将碳纳米纤维与碳化钨进行有效的复合,可以达到很好的协同增强作用,以制备出性能优异的复合材料。
本发明所提供的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,其制备原料组成包括:聚丙烯腈、四硫代钨酸铵等。
本发明所提供的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,其制备过程是通过静电纺丝制备得到四硫代钨酸铵/聚丙烯腈纳米纤维膜,再通过在氩氢气氛中一步法高温碳化制备得到碳化钨/碳纳米纤维复合膜。
使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)来表征本发明所获得的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜的结构形貌,其结果如下:
(1)碳化钨包埋的碳纳米纤维复合膜数码图片表明所制备的材料具有很好的柔性,可作为一种柔性电极。参见附图1。
(2)SEM测试结果表明:本发明中所制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,四硫代钨酸铵在静电纺丝过程中都被成功纺入聚丙烯腈纤维中,经在氩氢气氛中高温碳化得到均匀的包含碳化钨的碳纳米纤维膜。参见附图2。
(3)TEM测试结果进一步表明:本发明中所制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜中,碳化钨均匀分布在碳纳米纤维中,没有在纤维内部或表面造成任何团聚。参见附图3。碳化钨本身具备较高的理论储锂容量值,当复合膜作为锂离子电池电极材料是可提高材料整体的比容量。且碳化钨以纳米粒子的形态被纺入纤维中可有效抑制其在充放电过程中的体积膨胀与收缩,以此期望提高其倍率性能和循环性能。
(4)XRD测试结果进一步表明:制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜在2θ=26°处有一个较宽的衍射峰,对应于碳纳米纤维;在2θ=37.92°、39.38°、52.19°、61.66°,分别对应W2C(002)、W2C(111)、W2C(200)和W2C(102)晶面的衍射峰。参见附图4。
(5)电化学测试结果表明:纯碳纳米纤维的容量值仅有460mAh g-1。而本发明制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜的容量值高达1450mAh g-1。参见附图5。表明了复合材料的构建对其容量值的提高有着十分重要的作用。
有益效果
(1)本发明制备过程简单,环保,易于操作,是一种有效快捷的制备方法;
(2)实验设计巧妙:
第一,通过静电纺丝和高温碳化技术,简单有效地制备得到具有三维多孔结构和高比表面积的碳纳米纤维膜,将碳化钨纺入碳纳米纤维中可以有效抑制锂离子电池充放电过程中其体积膨胀引起的电极材料坍塌;
第二,所制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜具有较好的柔韧性;
(3)本发明制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,具有优良的导电性和电化学活性,可用作一种理想的锂离子电池以及超级电容器等新能源器件的柔性自支撑电极材料。
附图说明
图1是本发明制备的碳化钨包埋的碳纳米纤维复合膜的图片;
图2是实施例1制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜的SEM图;
图3是实施例1制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜的TEM图;
图4是实施例1制备的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜的XRD谱图;
图5是实施例1制备的碳化钨包埋的碳纳米纤维复合膜、纯碳纳米纤维膜在0.1Ag-1电流密度下的充放电性能图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)将0.75g四硫代钨酸铵和0.5g聚丙烯腈粉末加入到5mL N,N-二甲基甲酰胺溶剂中,持续搅拌,得到均一的粘稠分散液;
(2)将得到的分散液进行静电纺丝,其调节工艺参数为:静电场电压20kV,纺丝速度0.1mmmin-1,接收距离20cm,得到四硫代钨酸铵/聚丙烯腈纺丝膜;
(3)将得到的纺丝膜放在空气气氛下预氧化,预氧化的温度为250℃,升温速率为2℃ min-1,预氧化恒温时间为2h,得到预氧化后的四硫代钨酸铵/聚丙烯腈复合膜;
(4)将得到的预氧化后的四硫代钨酸铵/聚丙烯腈复合膜在氩氢气氛中一步法进行高温碳化,热处理温度为700℃,升温速率为5℃ min-1,恒温时间为5h,得到原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,记为W2C/CNF-1。
在电化学测试中,以所制备的碳纳米纤维复合材料作为正极,锂片作为负极组装扣式半电池,采用电池充放电曲线研究本发明中所制备的碳纤维复合材料的电容量。
实施例1的原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜的SEM图如图2所示,TEM图如图3所示,XRD图如图4所示。充放电曲线如图5所示,电流密度为0.1A g-1,从图中可以看出以制备的碳化钨包埋的碳纳米纤维复合膜组装电池的比容量较之以纯碳纳米纤维有了显著提高。
实施例2
(1)将1g四硫代钨酸铵和0.5g聚丙烯腈粉末加入到5mL N,N-二甲基甲酰胺溶剂中,持续搅拌,得到均一的粘稠分散液;
(2)将得到的分散液进行静电纺丝,其调节工艺参数为:静电场电压20kV,纺丝速度0.1mmmin-1,接收距离20cm,得到四硫代钨酸铵/聚丙烯腈纺丝膜;
(3)将得到的纺丝膜放在空气气氛下预氧化,预氧化的温度为250℃,升温速率为2℃ min-1,预氧化恒温时间为2h,得到预氧化后的四硫代钨酸铵/聚丙烯腈复合膜;
(4)将得到的预氧化后的四硫代钨酸铵/聚丙烯腈复合膜在氩氢气氛中一步法进行高温碳化,热处理温度为700℃,升温速率为5℃ min-1,恒温时间为5h,得到原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,记为W2C/CNF-2。
实施例3
(1)将0.75g四硫代钨酸铵和0.5g聚丙烯腈粉末加入到5mL N,N-二甲基甲酰胺溶剂中,持续搅拌,得到均一的粘稠分散液;
(2)将得到的分散液进行静电纺丝,其调节工艺参数为:静电场电压20kV,纺丝速度0.1mmmin-1,接收距离20cm,得到四硫代钨酸铵/聚丙烯腈纺丝膜;
(3)将得到的纺丝膜放在空气气氛下预氧化,预氧化的温度为250℃,升温速率为2℃ min-1,预氧化恒温时间为2h,得到预氧化后的四硫代钨酸铵/聚丙烯腈复合膜;
(4)将得到的预氧化后的四硫代钨酸铵/聚丙烯腈复合膜在氩氢气氛中一步法进行高温碳化,热处理温度为900℃,升温速率为5℃ min-1,恒温时间为5h,得到原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,记为W2C/CNF-3。
实施例4
(1)将0.5g聚丙烯腈粉末加入到5mL N,N-二甲基甲酰胺溶剂中,持续搅拌,得到均一的粘稠分散液;
(2)将得到的分散液进行静电纺丝,其调节工艺参数为:静电场电压20kV,纺丝速度0.1mmmin-1,接收距离20cm,得到聚丙烯腈纺丝膜;
(3)将得到的纺丝膜放在空气气氛下预氧化,预氧化的温度为250℃,升温速率为2℃ min-1,预氧化恒温时间为2h,得到预氧化后的聚丙烯腈复合膜;
(4)将得到的预氧化后的聚丙烯腈复合膜在氩氢气氛中一步法进行高温碳化,热处理温度为700℃,升温速率为5℃ min-1,恒温时间为5h,得到原位煅烧法制备碳化钨包埋的碳纳米纤维复合膜,记为CNF。

Claims (10)

1.一种碳化钨包埋的碳纳米纤维复合膜,其特征在于:所述的碳化钨包埋的碳纳米纤维复合膜为三维多孔结构,其中碳化钨以纳米粒子的形态均匀分布在碳纳米纤维中。
2.一种碳化钨包埋的碳纳米纤维复合膜的制备方法,包括:
(1)将四硫代钨酸铵、聚丙烯腈加入溶剂中,搅拌,得到分散液;
(2)将上述分散液进行静电纺丝,得到四硫代钨酸铵/聚丙烯腈纺丝膜;
(3)将上述四硫代钨酸铵/聚丙烯腈纺丝膜进行预氧化、热处理,即得碳化钨包埋的碳纳米纤维复合膜。
3.根据权利要求2所述的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,其特征在于:所述步骤(1)中溶剂为N,N-二甲基甲酰胺;四硫代钨酸铵、聚丙烯腈的质量比为0.5:1-3:1。
4.根据权利要求3所述的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,其特征在于:所述步骤(1)中四硫代钨酸铵、聚丙烯腈的质量比为1:1-2:1。
5.根据权利要求2所述的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,其特征在于:所述步骤(2)中静电纺丝的工艺参数为:静电场电压15~25kV,纺丝速度0.05~0.2mm min-1,接收距离10~25cm。
6.根据权利要求2所述的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,其特征在于:所述步骤(3)中预氧化具体为:在空气气氛中预氧化,预氧化的温度为200~250℃,升温速率为2℃·min-1,预氧化恒温时间为1~3h。
7.根据权利要求6所述的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,其特征在于:所述预氧化时间为1.5h。
8.根据权利要求2所述的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,其特征在于:所述步骤(3)中热处理具体为:在氩氢气氛中,热处理温度为600~900℃,升温速率为5~10℃min-1,恒温时间为3~6h。
9.根据权利要求8所述的一种碳化钨包埋的碳纳米纤维复合膜的制备方法,其特征在于:所述恒温时间为4h。
10.一种如权利要求1所述碳化钨包埋的碳纳米纤维复合膜的应用,其特征在于:碳化钨包埋的碳纳米纤维复合膜作为锂离子电池、超级电容器的电极材料的应用。
CN201610300813.1A 2016-05-09 2016-05-09 一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用 Expired - Fee Related CN105977459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610300813.1A CN105977459B (zh) 2016-05-09 2016-05-09 一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610300813.1A CN105977459B (zh) 2016-05-09 2016-05-09 一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用

Publications (2)

Publication Number Publication Date
CN105977459A true CN105977459A (zh) 2016-09-28
CN105977459B CN105977459B (zh) 2019-08-20

Family

ID=56991359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610300813.1A Expired - Fee Related CN105977459B (zh) 2016-05-09 2016-05-09 一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用

Country Status (1)

Country Link
CN (1) CN105977459B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654280A (zh) * 2017-01-11 2017-05-10 安徽工业大学 一种w2c@洋葱状碳/无定形碳纳米复合物及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280896A (zh) * 2015-09-12 2016-01-27 复旦大学 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280896A (zh) * 2015-09-12 2016-01-27 复旦大学 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INYOUNG JEONG: "Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell", 《NANO ENERGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654280A (zh) * 2017-01-11 2017-05-10 安徽工业大学 一种w2c@洋葱状碳/无定形碳纳米复合物及其制备方法和应用

Also Published As

Publication number Publication date
CN105977459B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
Tang et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction
Zhang et al. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor
Ma et al. Nanoporous electrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high-rate supercapacitors
Jayakumar et al. MOF-derived nickel and cobalt metal nanoparticles in a N-doped coral shaped carbon matrix of coconut leaf sheath origin for high performance supercapacitors and OER catalysis
Al-Enizi et al. Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites
CN107201573B (zh) 一种二硫化钴与碳纳米纤维复合材料的制备方法及其应用
Liu et al. Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers
CN105280896A (zh) 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用
Wen et al. Core–shell-structured MnO 2@ carbon spheres and nitrogen-doped activated carbon for asymmetric supercapacitors with enhanced energy density
Huang et al. High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co 3 O 4/MnO 2 hybrid electrodes
Jiang et al. Configuring hierarchical Ni/NiO 3D-network assisted with bamboo cellulose nanofibers for high-performance Ni–Zn aqueous batteries
Sun et al. NiCo 2 O 4 Nanosheet-decorated carbon nanofiber electrodes with high electrochemical performance for flexible supercapacitors
Yan et al. Template-like N, S and O tri-doping activated carbon derived from helianthus pallet as high-performance material for supercapacitors
CN109888239A (zh) 一种一维氮掺杂二硫化镍多孔纤维钠离子电池负极材料及其制备方法以及一种钠离子电池
Zhang et al. New NiMoO 4/CoMoO 4 composite electrodes for enhanced performance supercapacitors
Yang et al. Nickel cobaltite nanosheets coated on metal-organic framework-derived mesoporous carbon nanofibers for high-performance pseudocapacitors
CN111118883A (zh) 一种纤维素基碳纳米纤维复合材料及其制备和应用
Yue et al. Facile synthesis of perovskite CeMnO 3 nanofibers as an anode material for high performance lithium-ion batteries
Amiri et al. Electrospun NiMoO4-encapsulated carbon nanofibers electrodes for advanced supercapacitors
Wang et al. All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo 2 O 4 nanosheet arrays
Liu et al. Use of polyacrylonitrile-based carbon nanolayer modified Co3S4 to improve the overall performance of supercapacitors
Yang et al. A robust hierarchical microcapsule for efficient supercapacitors exhibiting an ultrahigh current density of 300 A g− 1
Sun et al. Preparation of amorphous cobalt/carbon nanofibers composite as binder-free and conductive-free electrode materials for high supercapacitor
CN105977459A (zh) 一种碳化钨包埋的碳纳米纤维复合膜及其制备和应用
Yu et al. Nanosized-MnCo 2 O 4-embedded 1D carbon nanofibres for supercapacitor with promising electrochemical properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190820