CN105968559A - 结晶型热塑性树脂基复合材料的制备方法 - Google Patents

结晶型热塑性树脂基复合材料的制备方法 Download PDF

Info

Publication number
CN105968559A
CN105968559A CN201610326325.8A CN201610326325A CN105968559A CN 105968559 A CN105968559 A CN 105968559A CN 201610326325 A CN201610326325 A CN 201610326325A CN 105968559 A CN105968559 A CN 105968559A
Authority
CN
China
Prior art keywords
thermoplastic resin
composite material
crystal type
preparation
nucleator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610326325.8A
Other languages
English (en)
Other versions
CN105968559B (zh
Inventor
杨其
高雪芹
吴萍萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201610326325.8A priority Critical patent/CN105968559B/zh
Publication of CN105968559A publication Critical patent/CN105968559A/zh
Application granted granted Critical
Publication of CN105968559B publication Critical patent/CN105968559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/10Peculiar tacticity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于高分子复合材料领域,具体涉及一种结晶型热塑性树脂基复合材料的制备方法。本发明提供一种结晶型热塑性树脂基复合材料的制备方法,将结晶型热塑性树脂与成核剂熔融共混制得结晶型热塑性树脂基复合材料;所得复合材料在其高弹态对应的温度下施加频率为20~100rad/min的振动外场,振动时间为1~30min;其中,所述高弹态对应的温度是指玻璃化温度以上熔点以下。本发明方法是在材料的高弹态下施加低频振动,从而改变复合材料的结晶形态结构,进而提高复合材料的综合性能,并该方法简单易实施。

Description

结晶型热塑性树脂基复合材料的制备方法
技术领域:
本发明属于高分子复合材料领域,具体涉及一种结晶型热塑性树脂基复合材料的制备方法。
背景技术:
在结晶性聚合物的加工如注塑、挤出、吹塑、纺丝过程中,聚合物链受到强烈的外场作用(如剪切场、温度场、拉伸、振动等)再结晶。我们发现外场作用对熔融态聚合物分子链的构象、位置、排列和分布都有强烈的影响,进一步影响其结晶动力学以及结晶性聚合物的晶体结构形态并最终决定产品属性。显然,外场的参数优化设计对于提高结晶聚合物的产品性能是至关重要的。
聚合物熔体振动技术能够降低聚合物熔体的粘度、降低加工温度和压力、消除缺陷和提高机械性能。根据之前的研究,振动外场可以影响结晶性聚合物的微观结构并且诱导促进多种晶型的形成。如张杰,申开智,杨良波等在“振动注射对IPP力学性能和晶型的影响”中(现代塑料加工应用,2008,20(3))公开:在高温高频下、低振动压力注射有利于β晶含量的增加,β晶型的生成有利于iPP试样韧性的改善,实现自增韧,说明振动注射成型方法在特定的工艺条件下,能实现注射试样的自增强和自增韧。
现有技术中尚未有关于塑料在高弹态下、在低频下振动加工的相关报道。
发明内容:
本发明的目的在于提供一种结晶型热塑性树脂基复合材料的制备方法,本发明方法是在材料的高弹态下施加低频振动,从而改变复合材料的结晶形态结构,进而提高复合材料的综合性能,并该方法简单易实施。
本发明的技术方案:
本发明提供一种结晶型热塑性树脂基复合材料的制备方法,将结晶型热塑性树脂与成核剂熔融共混制得结晶型热塑性树脂基复合材料;所得复合材料在其高弹态对应的温度下施加频率为20~100rad/min的振动外场,振动时间为1~30min;其中,所述高弹态对应的温度是指玻璃化温度以上熔点以下。
进一步,上述制备方法中,结晶型热塑性树脂与成核剂的质量比为99.7~99.95:0.05~0.3。
优选的,所述结晶型热塑性树脂与成核剂的质量比为99.9:0.1。
进一步,所述成核剂为高分子材料用成核剂。更进一步,所述成核剂为:锡粒子、二苯基己二酰胺、镧的配合物、稀土类(WBG-4、Y3O4)、第三代山梨醇类系列成核剂(SKC—Y5988)或芳酰胺类TM系列成核剂(TMB-4、TMB-5)中的至少一种。
优选的,所述结晶型热塑性树脂为iPP,所述成核剂为TMB-5(芳酰胺类化合物);或:
所述结晶型热塑性树脂为于聚对苯二甲酸乙二醇酯(PET),所述成核剂为羧酸钠盐;或:
所述结晶型热塑性树脂为聚碳酸酯(PC),所述成核剂为苯甲酸钠;或:
所述结晶型热塑性树脂为聚乳酸(PLA),所述成核剂为滑石粉。
所述熔融共混指在结晶型热塑性树脂的熔点以上、热分解温度以下加热机械混匀即可。
当所述结晶型热塑性树脂为iPP,所述成核剂为TMB-5时,结晶型热塑性树脂基复合材料的制备方法为:
将iPP、TMB-5在转矩流变仪上共混,温度为180~220℃(优选为190℃),转矩流变仪混炼剪切速率为40~60rpm(优选为50rpm),混合5~15min(优选为10min)得到共混复合材料;然后用真空压膜机将以上复合材料在180~220℃(优选为200℃),5~15MPa(优选为10MPa)的条件下先预压1~10min(优选为3min)后再压制1~10min(优选为5min)得到圆片(直径为55mm,厚度为1.05mm);然后圆片分别在140~160下施加振动,振动时间为1~5(优选为2min)min,振动频率为100rad/min;其中,iPP与TMB-5的质量比为99.7~99.95:0.05~0.3(优选为99.9:0.1)。
本发明的有益效果为:
本发明在制备结晶型热塑性树脂基复合材料时,熔融共混得到复合材料后,对复合材料片材在高弹态下施加低频振动外场,发现低频振动会改变聚合物晶体尺寸和不同晶体相对含量,特别是增加β晶的相对含量,进而提高其韧性。
由于本发明是在材料的低温高弹态下施加振动场,这样更适用于那些易高温降解的材料。此外,由于本发明是是在低温下施加振动场,也可节约能源。
附图说明:
图1为本发明自制振动机的示意图;图中标示:1-顶板,2-凸轮,3-连杆,4-滑动板,5-弹簧,6-压板,7-加热台,8-底板,9-固定板。
图2为实施例1所得复合材料160℃下振动前后的电镜图。
图3为实施例1所得复合材料在160℃下振动前后的DSC图。
图4为实施例1所得复合材料在190℃下振动前后的DSC图。
图5为实施例1所得复合材料160℃下施加振动前后的WAXD图。
图6为实施例1所得复合材料190℃下施加振动前后的WAXD图。
具体实施方式:
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1 iPP/TMB-5复合材料的制备及振动外场对其结晶形态结构和力学性能
制备方法:将iPP和TMB-5在转矩流变仪上共混,温度为190℃,转矩流变仪混炼剪切速率为50rpm,混合10min得到共混母料;然后用真空压膜机将以上复合材料在200℃,10MPa的条件下先预压3min后再压制5min得到圆片(直径为55mm,厚度为1.05mm);然后圆片分别在160℃(该温度系材料处于高弹态)和190℃(该温度下材料处于熔融状态)下施加振动,其中iPP与TMB-5的质量比为99.7~99.95:0.05~0.3(优选为99.9:0.1)。
采用图1所示的自动振动装置施加振动,振动时间为2min,振动频率分别为100rad/min。
性能测试:
SEM分析:样品在液氮中淬断后用扫描电镜观察样品淬断面的形貌,加速电压为20kV;为了观察样品内部的结晶,先将样品在KMnO4-H2SO4-H3PO4溶液中刻蚀适当的时间后,再在扫描电镜下以不同的放大倍数观察;
DSC分析:称取5~10mg的样品,以10℃/min的速率从40℃升温至200℃得到样品的熔融曲线。
WAXD分析:测试使用石墨弯晶单色器,管压40kV,管流25mA,扫描范围5°到35°;
拉伸力学性能分析:将加工后的片材用裁刀成长50mm,两头宽10mm,厚1mm,中间宽4mm,窄平行部分长度20mm的拉伸样条,在万能材料试验机下以30mm/min的拉伸速率进行拉伸。
结果讨论
图2是所得复合材料在160℃下振动前后的电镜图。(a)和(b)图分别是纯iPP分别在160℃下施加振动处理2分钟和未施加振动但经过相同热处理2分钟SEM图;(c)和(d)图是纯iPP添加0.1wt%成核剂TMB-5试样分别在160℃下施加振动处理2分钟和未施加振动但经过相同热处理2分钟SEM图;可以发现加振后球晶尺寸明显减小,含有成核剂的试样加振后β-ipp更加完善;这主要是因为160℃时,β-iPP已经熔融,而α-iPP并没有;所以β相的分子链运动能力更强,有利于β晶型的形成。
图3是160℃复合材料的DSC结果图;其中,VTPP1指添加了0.1wt%TMB-5并施加振动的试样体系,TPP1指添加了0.1wt%TMB-5但未施加振动的试样体系,VTPP0指未添加成核剂但施加振动的试样体系,TPP0指未添加成核剂也未施加振动的试样体系(下同);分析图3可知:160℃下加工的试样DSC曲线含成核剂TMB-5的试样只有两个明显的熔融峰,分别对应β-iPP(149℃)和α-iPP(164℃);加振后,试样的α和β熔融峰向高温方向移动;表明加振使得分子链排列更加紧密规则,晶体完善程度增加。
图4是190℃复合材料的DSC结果图;分析图4可知:190℃条件下加振使得含有成核剂TMB-5的试样中β-iPP向α-iPP转变,β-iPP含量减少。此外,该加工温度下,α-和β-iPP都熔融,而β-iPP是亚稳定结构,所以β-iPP向α-iPP转变。并且振动外场会使得分子链规整地排入邻近晶格,使晶体更加完善。
图5是160℃下复合材料系施加振动前后的WAXD图,图6是190℃下复合材料系施加振动前后的WAXD图;分析图5和6可知,纯样仅有四个明显的α-iPP衍射峰,分别对应α(11 0)(14.1°)、α(0 4 0)(16.9°)、α(1 3 0)(18.5°)和α(1 1 1)(21.4°);而添加了成核剂的试样则有明显的β特征衍射峰β(3 0 0)(16.1°);根据Turner Jones的公式计算得到β-iPP的相对含量发现160℃加振后β-iPP的含量增加;而190℃加振后试样的β-iPP含量减少,这与DSC计算得到的结晶度结果是一致的。加振后试样的衍射峰变得更加尖锐,说明高弹态下加振更使得结晶更加完善。
表1是振动前后复合材料的力学性能数据,从表中可以发现:160℃加振后试样的断裂强度、弹性模量和断裂伸长率均有一定程度的提高;而190℃加振后试样的断裂强度提高但是弹性模量和裂伸长率降低。由之前的微观形貌、热性能以及β晶相对含量的测定结果可知:160℃加振会使得β-iPP更加完善并且含量增加,所以韧性增加,断裂伸长率增加。同时,加振也使得分子链排列更加规整,这对于α-iPP的完善是有利的,因而其断裂强度和弹性模量都提高。190℃加振β-iPP向α-iPP转变,β-iPP含量降低,α-iPP含量增加,所以材料的断裂伸长率降低而断裂强度提高。其中190℃加工的试样的断裂伸长率超出1000%,可能是与加工温度场的不同使得结晶的完善成都和晶粒尺寸有关。
表1

Claims (8)

1.结晶型热塑性树脂基复合材料的制备方法,其特征在于,将结晶型热塑性树脂与成核剂熔融共混制得结晶型热塑性树脂基复合材料;所得复合材料在其高弹态对应的温度下施加频率为20~100rad/min的振动外场,振动时间为1~30min;其中,所述高弹态对应的温度是指玻璃化温度以上熔点以下。
2.根据权利要求1所述结晶型热塑性树脂基复合材料的制备方法,其特征在于,结晶型热塑性树脂与成核剂的质量比为99.7~99.95:0.05~0.3。
3.根据权利要求2所述结晶型热塑性树脂基复合材料的制备方法,其特征在于,所述结晶型热塑性树脂与成核剂的质量比为99.9:0.1。
4.根据权利要求1~3任一项所述结晶型热塑性树脂基复合材料的制备方法,其特征在于,所述成核剂为高分子材料用成核剂。
5.根据权利要求4所述结晶型热塑性树脂基复合材料的制备方法,其特征在于,所述成核剂为:锡粒子、二苯基己二酰胺、镧的配合物、稀土类、第三代山梨醇类系列成核剂或芳酰胺类TM系列成核剂中的至少一种。
6.根据权利要求5所述结晶型热塑性树脂基复合材料的制备方法,其特征在于,所述结晶型热塑性树脂为等规聚丙烯,所述成核剂为TMB-5;或:
所述结晶型热塑性树脂为于聚对苯二甲酸乙二醇酯,所述成核剂为羧酸钠盐;或:
所述结晶型热塑性树脂为聚碳酸酯,所述成核剂为苯甲酸钠;或:
所述结晶型热塑性树脂为聚乳酸,所述成核剂为滑石粉。
7.根据权利要求6所述结晶型热塑性树脂基复合材料的制备方法,其特征在于,所述结晶型热塑性树脂为等规聚丙烯,所述成核剂为TMB-5时,结晶型热塑性树脂基复合材料的制备方法为:
将等规聚丙烯、TMB-5在转矩流变仪上共混,温度为180~220℃,转矩流变仪混炼剪切速率为40~60rpm,混合5~15min得到共混复合材料;然后用真空压膜机将以上复合材料在180~220℃,5~15MPa的条件下先预压1~10min后再压制1~10min得到圆片;然后圆片在140~160下施加振动,振动时间为1~5min,振动频率为100rad/min;其中,等规聚丙烯与TMB-5的质量比为99.7~99.95:0.05~0.3。
8.根据权利要求7所述结晶型热塑性树脂基复合材料的制备方法,其特征在于,结晶型热塑性树脂基复合材料的制备方法为:
将等规聚丙烯、TMB-5在转矩流变仪上共混,温度为190℃,转矩流变仪混炼剪切速率为50rpm,混合10min得到共混复合材料;然后用真空压膜机将以上复合材料在200℃,10MPa的条件下先预压3min后再压制5min得到直径为55mm,厚度为1.05mm的圆片;然后圆片在140~160下施加振动,振动时间为2min;其中,等规聚丙烯与TMB-5的质量比为99.9:0.1。
CN201610326325.8A 2016-05-17 2016-05-17 结晶型热塑性树脂基复合材料的制备方法 Active CN105968559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610326325.8A CN105968559B (zh) 2016-05-17 2016-05-17 结晶型热塑性树脂基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610326325.8A CN105968559B (zh) 2016-05-17 2016-05-17 结晶型热塑性树脂基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN105968559A true CN105968559A (zh) 2016-09-28
CN105968559B CN105968559B (zh) 2018-07-13

Family

ID=56955667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610326325.8A Active CN105968559B (zh) 2016-05-17 2016-05-17 结晶型热塑性树脂基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN105968559B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328834A (zh) * 2019-06-28 2019-10-15 燕山大学 一种结晶性cfrtp的成形加工方法
CN111978693A (zh) * 2019-05-24 2020-11-24 中国科学院宁波材料技术与工程研究所 高强耐物理老化的聚乳酸材料、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANHUICHEN,GANJIZHONG,YANWANG,ZHONGMINGLI,LIANGBINLI: "Unusual Tuning of Mechanical Properties of Isotactic Polypropylene Using Counteraction of Shear Flow and β-Nucleating Agent on β-Form Nucleation", <MACROMOLECULES> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978693A (zh) * 2019-05-24 2020-11-24 中国科学院宁波材料技术与工程研究所 高强耐物理老化的聚乳酸材料、其制备方法及应用
CN111978693B (zh) * 2019-05-24 2022-03-15 中国科学院宁波材料技术与工程研究所 高强耐物理老化的聚乳酸材料、其制备方法及应用
CN110328834A (zh) * 2019-06-28 2019-10-15 燕山大学 一种结晶性cfrtp的成形加工方法
CN110328834B (zh) * 2019-06-28 2020-04-21 燕山大学 一种结晶性cfrtp的成形加工方法

Also Published As

Publication number Publication date
CN105968559B (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
Papageorgiou et al. β-Nucleated polypropylene: processing, properties and nanocomposites
Bai et al. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent
Chen et al. Competitive growth of α-and β-crystals in β-nucleated isotactic polypropylene under shear flow
Long et al. Effect of polyethylene glycol on mechanical properties of bamboo fiber‐reinforced polylactic acid composites
Suryanegara et al. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites
Chen et al. Poly (lactic acid)/poly (butylene succinate)/calcium sulfate whiskers biodegradable blends prepared by vane extruder: Analysis of mechanical properties, morphology, and crystallization behavior
CN104479205B (zh) 一种石墨烯改性聚乙烯高强度复合薄型制品的注塑成型方法
Hassan et al. Improving Thermal and Mechanical Properties of Injection Moulded Kenaf Fibre-reinforced Polyhydroxy-butyrate Composites through Fibre Surface Treatment.
Fehri et al. Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly (lactic acid): A Mixture Design study
Li et al. Controllable reinforcement of stiffness and toughness of polypropylene via thermally induced self‐assembly of β‐nucleating agent
He et al. Effect of a novel compound nucleating agent calcium sulfate whisker/β-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene
CN105968559A (zh) 结晶型热塑性树脂基复合材料的制备方法
Yang et al. Effective in situ polyamide 6 microfibrils in isotactic polypropylene under microinjection molding: significant improvement of mechanical performance
Zhang et al. Effect of glycidyl methacrylate-grafted poly (ethylene octene) on the compatibility in PLA/PBAT blends and films
Tuccitto et al. Controlling stereocomplex crystal morphology in poly (lactide) through chain alignment
Cui et al. Combined effect of α-nucleating agents and glass fiber reinforcement on a polypropylene composite: A balanced approach
Wang et al. Effect of sodium lignosulfonate/nano calcium carbonate composite filler on properties of isotactic polypropylene
Huang et al. Mechanical properties and crystallization behavior of three kinds of straws/nylon 6 composites
CN106003452A (zh) 热塑性树脂/纤维复合材料的制备方法
Zhen et al. Properties, structure and crystallization of poly lactic acid/zinc oxide pillared organic saponite nanocomposites
Liu et al. Simultaneous Enhancement of Toughness and Strength of Stretched i PP Film via Tiny Amount of β-Nucleating Agent under “Shear-free” Melt-extrusion
JP2006328138A (ja) 植物繊維樹脂複合成形品の製造方法及び植物繊維樹脂複合成形品
Shen et al. High-performance poly (lactide) composites by construction of network-like shish-kebab crystals
Phulkerd et al. Perpendicular orientation between dispersed rubber and polypropylene molecules in an oriented sheet
Zou et al. Self-nucleation efficiency of PDLA in PLAs: crystallization behavior and morphology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant