CN105946858B - 基于遗传算法的四驱电动汽车状态观测器参数优化方法 - Google Patents

基于遗传算法的四驱电动汽车状态观测器参数优化方法 Download PDF

Info

Publication number
CN105946858B
CN105946858B CN201610403778.6A CN201610403778A CN105946858B CN 105946858 B CN105946858 B CN 105946858B CN 201610403778 A CN201610403778 A CN 201610403778A CN 105946858 B CN105946858 B CN 105946858B
Authority
CN
China
Prior art keywords
observer
vehicle
tire force
longitudinal
sliding mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610403778.6A
Other languages
English (en)
Other versions
CN105946858A (zh
Inventor
郭洪艳
麻颖俊
郝宁峰
陈虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610403778.6A priority Critical patent/CN105946858B/zh
Publication of CN105946858A publication Critical patent/CN105946858A/zh
Application granted granted Critical
Publication of CN105946858B publication Critical patent/CN105946858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本发明公开了一种基于遗传算法的四驱电动汽车状态观测器参数优化方法,旨在解决电动汽车状态观测器参数调节困难问题。包括以下步骤:建立车辆单轮滚动模型及简化的三自由度车辆模型;以车辆传感器测量信息车轮转动角速度及驱动力矩作为输入,采用滑模观测器方法设计纵向轮胎力观测器;再以纵向轮胎力估计值、前轮转角、侧向加速度及横摆角速度作为输入,分别设计前、后轴侧向轮胎力滑模观测器;最后以纵向及侧向轮胎力估计值、纵向及侧向加速度、横摆加速度和车辆前轮转角作为输入,设计车辆速度全维状态观测器;基于设计的模块化车辆状态观测器,采用遗传算法分别对各个估计模块进行观测器参数优化。

Description

基于遗传算法的四驱电动汽车状态观测器参数优化方法
技术领域
本发明涉及一种基于遗传算法的模块化四轮驱动电动汽车状态观测器参数优化方法的,属于车辆状态估计技术领域。
背景技术
作为新能源汽车的代表,电动汽车相对于汽油燃烧作为动力的传统汽车而言,在清洁、环保、节能等方面占据明显的优势。因此,电动汽车的保有量呈逐年增加的趋势,而其操纵稳定性及主动安全性问题也得到了广泛的关注。
电动汽车的主动安全性控制***可以有效地提高汽车操纵稳定性,从而减少交通事故的发生。而其各种控制逻辑得以有效实施的前提是准确获得车辆的行驶状态信息。然而由于生产成本及测量误差等因素的制约,在量产车中,部分车辆行驶状态信息无法直接通过车载传感器测量得到。因此,利用可测量的车辆状态信息设计观测器对无法测量的车辆状态信息进行估计逐渐成为了研究热点。
在车辆状态估计问题中,车辆状态观测器参数是影响其估计准确性的重要因素,观测器参数调节问题也是其技术难点。传统的观测器调节通常采用的是基于大量实验的手动调节方法,这种调节方法不仅工作量很大,并且不能保证所调节的参数是当前工况的最佳参数。因此,有必要设计一种智能优化算法对观测器参数进行优化。
发明内容
为解决电动汽车状态观测器参数调节困难问题,本发明提供一种基于遗传算法的四驱电动汽车状态观测器参数优化方法,以模块化的四轮驱动电动汽车状态观测器为例,采用遗传算法进行观测器参数的优化。其中,模块化的车辆状态观测器由纵向轮胎力滑模观测器、侧向轮胎力滑模观测器以及车辆速度全维状态观测器构成。
本发明是通过以下技术方案实现的:
一种基于遗传算法的四驱电动汽车状态观测器参数调节方法,包括以下步骤:
步骤一、建立车辆单轮滚动模型及简化的三自由度车辆模型;
步骤二、模块化车辆状态观测器设计:以车辆传感器测量信息车轮转动角速度及驱动力矩作为输入,采用滑模观测器方法对四个轮的纵向轮胎力设计纵向轮胎力滑模观测器;再以纵向轮胎力估计值、前轮转角、侧向加速度及横摆角速度作为输入,分别设计前、后轴侧向轮胎力滑模观测器;最后以纵向及侧向轮胎力估计值、纵向及侧向加速度、横摆加速度和车辆前轮转角作为输入,设计纵向车速、侧向车速及横摆角速度的车辆速度全维状态观测器;
步骤三、基于步骤二设计的模块化车辆状态观测器,采用遗传算法分别对各个估计模块进行观测器参数优化。
进一步地,所述步骤三中采用遗传算法分别对各个估计模块进行观测器参数优化包括以下步骤:
3.1)采用双变量的标准遗传算法首先分别对车辆四个轮的纵向轮胎力滑模观测器参数进行优化,再以经过参数优化的前轴纵向轮胎力估计值作为输入对前轴侧向轮胎力滑模观测器参数进行优化,最后对后轴侧向轮胎力滑模观测器参数进行优化;
3.2)以经过参数优化的前轴纵向及前、后轴侧向轮胎力估计值作为输入,采用单变量的标准遗传算法对车辆横摆角速度状态观测器进行参数优化;
3.3)以经过参数优化的纵向及侧向轮胎力估计值作为输入,采用多目标遗传算法对车辆纵向、侧向车速观测器参数进行优化,并得到Pareto最优解集。
由于采用了上述的技术方案,本发明的有益效果是:
(1)针对车辆状态观测器参数手动调节困难的问题,提出了一种适用于模块化四轮驱动电动汽车状态观测器的遗传算法参数优化方法。
(2)使用高保真车辆动力学仿真软件veDYNA对优化的观测器参数进行了有效性验证,结果表明本发明所提出的观测器参数优化方法具有一定的效果,能够保证观测器估计结果的准确性。
附图说明
图1车辆单轮滚动动力学模型;
图2车辆俯视受力示意图;
图3模块化车辆状态观测器结构图;
图4遗传算法执行步骤;
图5左前轮纵向轮胎力滑模观测器参数优化结果
图6纵向、侧向车速状态观测器参数优化Pareto前沿
图7纵向轮胎力仿真结果
图8侧向轮胎力仿真结果
图9纵向、侧向速度及横摆角速度仿真结果
表1车辆状态观测器参数优化结果
表2四轮驱动电动汽车参数
表3纵向、侧向车速状态观测器参数优化Pareto最优解
具体实施方式
下面结合附图,对本发明所提出的技术方案进行进一步阐述和说明。
本发明提供了一种基于遗传算法的模块化四轮驱动电动汽车状态观测器参数优化方法,该方法包括以下几个步骤:
步骤一、建立车辆单轮滚动模型及简化的车辆三自由度模型
1.建立车辆单轮滚动模型
为设计纵向轮胎力滑模观测器,将车辆***简化为如图1所示的车辆单轮滚动模型。
由图1可以得到单轮滚动动力学方程如式(1)所示:
其中,J为车轮的转动惯量,单位kg·m2,ωi为每个车轮的转动角速度,单位rad/s,Reff为轮胎的有效半径,单位m,Ti为每个车轮的驱动力矩,单位Nm。
2.建立简化的三自由度车辆模型
图2是车辆俯视受力示意图,为了方便研究,本发明考虑到车辆在纵向、侧向以及横摆方向的受力情况,将整车模型简化为三自由度模型。在车辆上建立坐标系,原点位于汽车的质心,车辆前进的方向为x轴正方向,水平向左为y轴正方向,z轴正方向由右手螺旋定则确定,如图2所示。应用牛顿第二定律可得到简化的三自由度车辆模型动力学方程如式(2)所示
其中,m是汽车总质量,单位kg,r为汽车的横摆角速度,单位rad/s,Vx及Vy是车辆在车体坐标系下的纵向及侧向速度,单位m/s,Iz为整车绕车辆坐标系z轴的转动惯量,单位kg·m2,Fx及Fy分别表示车辆纵向及侧向轮胎力,单位N,Mz为车辆绕z轴转动力矩,单位Nm。
根据力与力矩平衡方程,车辆纵向及侧向轮胎力Fx、Fy和车辆绕z轴转动力矩Mz可以表示为:
其中,Fxi/Fyi(i=1,...,4)分别为四个轮的纵向及侧向轮胎力,单位N,δf是车辆前轮转角,单位rad,lF和lR分别是车辆质心距前/后轴的距离,单位m。
步骤二、模块化车辆状态观测器设计:以车辆传感器测量信息车轮转动角速度及驱动力矩作为输入,采用滑模观测器方法对四个轮的纵向轮胎力设计纵向轮胎力滑模观测器;再以纵向轮胎力估计值、前轮转角、侧向加速度及横摆角速度作为输入,分别设计前、后轴侧向轮胎力滑模观测器;最后以纵向及侧向轮胎力估计值以及纵向及侧向加速度、横摆加速度和车辆前轮转角作为输入,设计纵向、侧向车速及横摆角速度的车辆速度全维状态观测器。将上述设计的各个观测器模块进行集成可以得到模块化车辆状态观测器,其结构图如图3所示。为了方便对本发明的估计问题进行介绍,首先将能够通过车辆传感器直接测量的参数作如下说明:
(1)四个车轮的驱动力矩Ti(i=1,2,3,4)虽然不可直接测量,但可以通过车辆其他可测量信息(发动机力矩Te、发动机转速ωe、制动轮缸压力pt)计算得到,因此可以将其视作可直接测量信息;(2)车辆方向盘的转角信号δ可通过光电编码器测量得到,进而可以通过关系式δf=δ/Isw计算得到车辆的前轮转角δf,Isw为转向传动比;(3)四个车轮的转动角速度ωi(i=1,2,3,4)可通过轮速传感器测量得到;(4)车辆纵向及侧向加速度ax、ay可通过加速度传感器测量得到;(5)车辆横摆角速度r可通过陀螺仪测量得到。
模块化车辆状态观测器设计具体包括以下步骤:
1、纵向轮胎力滑模观测器设计
根据单轮滚动动力学方程,给出一阶***如下:
其中,Ti是***输入,ωi作为***的测量输出量同时也是***状态,当***状态改变时,未知输入量Fxi也随之改变。在这里,Fxi就是我们要估计的状态,则该估计问题可以描述成由测量输出估计出***未知输入的过程。
根据滑模观测器理论,在这里定义***误差为本发明选取滑模面为***误差,即并选取李雅普诺夫函数:
V=S2/2 (5)
对公式(4)求导,可得:
根据状态观测器理论,将公式(3)构造成如下形式,其中Lxi是观测器增益。
将式(4)和式(7)代入(6)中,可以得到:
其中,假设满足以下不等式:
上述假设中,Fxi满足有界条件,则只要ρxi取足够大的值,则假设是可以成立的。将式(9)带入到式(8)中,可以得到:
此时,若取其中sign(S)是符号函数,进而可以将式(10)表示为:
由上述推导过程,本发明设计的滑模观测器形式如下:
结合式(4)和式(12)进一步将***误差导数表示为:
当时间为t1,***达到稳定时,可得因此:
则根据式(14),未知输入量Fxi的估计值可以表示为如下形式:
式(15)就是本发明针对未知输入量设计的滑模观测器,其中,Lxi是反馈增益,ρxi是滑模增益。
由于时间滞后、空间滞后以及***惯性等影响,滑模***容易出现抖振现象,这将增大估计误差从而影响估计结果。为了削弱抖振的影响,本发明采用饱和函数(16)代替符号函数sign(S)。
其中,S表示估计误差,φ>0用于调解函数signeq(S,φ)的斜率。
将式(16)带入式(15)中,可以得到纵向轮胎力滑模观测器形式如下:
2、侧向轮胎力滑模观测器设计
根据简化的车辆三自由度动力学方程,考虑到车辆沿y轴的侧向运动方程和绕z轴的转矩平衡方程,可以得到以下车辆二自由度动力学方程:
其中,ay为车辆侧向加速度,单位m/s,Fyf=Fy1+Fy2为前轴侧向轮胎力,单位N,Fyr=Fy1+Fy2为后轴侧向轮胎力,单位N,Fxf=Fx1+Fx2为前轴纵向轮胎力,单位N。
将式(18)中的前轴侧向轮胎力Fyf和后轴侧向轮胎力Fyr去耦合,得到:
对于前轮侧向轮胎力Fyf,将式(19)化为形如式(4)的一阶***:
其中,r为***状态,同时也是***测量输出,ay为***输入,Fyf为***未知输入量,同时也是要估计的状态。
根据纵向轮胎力滑模观测器设计过程,本发明设计的前轴侧向轮胎力滑模观测器形式如下:
其中,Lyf为前轴侧向轮胎力滑模观测器的反馈增益,ρyf为前轴侧向轮胎力滑模观测器的滑模增益。结合式(20)和式(21)可以看出,在对前轴侧向轮胎力进行估计时,需要以前轴纵向轮胎力的值作为输入。
同理可以设计后轴侧向轮胎力滑模观测器形式如下:
其中,Lyr为后轴侧向轮胎力滑模观测器的反馈增益,ρyr为后轴侧向轮胎力滑模观测器的滑模增益。
3、车辆速度全维状态观测器设计
根据力的平衡方程,纵向、侧向加速度与车辆轮胎力之间的关系可以描述为:
其中,ax、ay分别为车辆的纵向及侧向加速度,单位m/s2。根据式(2)和式(23),纵向、侧向车速及横摆角速度可以进一步表示为:
由于纵向、侧向加速度及横摆角速度可以由车辆传感器直接测量得到,因此选择这三个量作为***测量输出,并将它们与其估计值之差作为车辆速度观测器的校正项,基于非线性全维观测器结构,可以设计出车辆纵向、侧向车速及横摆角速度的车辆速度全维观测器表达式如式(25)所示:
其中,Ki(i=x,y,r)代表观测器增益。利用轮胎力估计值,可以将纵向、侧向加速度估计值以及车辆绕z轴转动力矩估计值表示为:
步骤三、基于步骤二设计的模块化车辆状态观测器,采用遗传算法分别对各个估计模块进行观测器参数优化。优化参数的范围及优化结果如表1所示:
表1车辆状态观测器参数优化结果
其中优化参数范围是由手动调节时的经验值给出的一个较保守的范围,以保证其包含了最优参数,具体包括以下步骤:
1.采用双变量的标准遗传算法首先分别对车辆四个轮的纵向轮胎力滑模观测器参数ρxi/Lxi(i=1,2,3,4)进行优化,再以经过参数优化的前轴纵向轮胎力估计值作为输入对前轴侧向轮胎力滑模观测器参数ρyf/Lyr进行优化,最后对后轴侧向轮胎力滑模观测器参数ρyr/Lyr进行优化。
根据步骤二所设计的纵向轮胎力滑模观测器及前、后轴侧向轮胎力滑模观测器可知,L、ρ是需要优化的观测器参数。对于轮胎力滑模观测器参数优化问题,由于纵向和侧向轮胎力滑模观测器具有相似的结构,因此本发明仅给出以左前轮纵向轮胎力滑模观测器为例,利用遗传算法对观测器参数进行优化的过程。
在对观测器参数进行优化时,使用高保真动力学仿真软件veDYNA,选择四轮驱动电动汽车作为仿真车辆,具体车辆参数如表2所示:
表2四轮驱动电动汽车参数
让车辆行驶在常规高附着双移线工况下,具体工况设置为:在路面摩擦系数μ=0.8的道路上,车辆由静止开始加速,当车辆速度加速到80km/h时,进行双移线操作,之后保持匀速直线运动。其中,考虑到实际中车载传感器测量误差,分别给传感器测量信息车轮转动角速度ωi、驱动力矩Ti、纵向加速度ax、侧向加速度ay、横摆加速度r以及车辆前轮转角δf加上幅值为0.0001的零均值白噪声。
遗传算法(Genetic Algorithm,简称GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按适应度函数从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止,具体执行步骤如图4所示。首先对遗传算法程序进行初始化,具体参数设置为:种群规模为10,进化代数为20精英个数为2,交叉概率为0.8,变异概率为0.2。
适应度函数是指导搜索方向的唯一准则,如何选择它是GA中的关键问题。在进行左前轮纵向轮胎力滑模观测器参数优化时,本发明选取估计误差的均值和均方差作为参数优化的评价指标。为了使优化结果更加准确合理,首先根据式(27)将二者进行归一化处理,
其中,G(xi)∈[0 1],xmin和xmax分别为一组数据中的最小值和最大值,本发明选择适应度函数如下:
其中,Γmx1和Γex1分别是左前轮纵向轮胎力误差的均值和均方差权重因子,M(·)和D(·)分别为求取均值和均方差的函数,
其中,N为单个变量的总个数,N=t/s,t为仿真时间,s为仿真步长。
遗传算法具体执行步骤如图4所示。仿真时,选取Γmx1=0.5,Γex1=0.5,仿真时间为23s,仿真步长为0.01。基于遗传算法的左前轮纵向轮胎力滑模观测器参数优化结果如图5所示,优化过程中,随着种群代数的增加,适应度函数收敛于一个最小值,通过优化我们得到此时的滑模增益为Lx1=25.3026,反馈增益为ρx1=682.3490,相应的适应度函数值为0.13376。
其余三个轮的纵向轮胎力及前、后轴侧向轮胎力观测器参数均按上述过程进行优化,其参数优化结果如表1所示。
2.以经过参数优化的前轴纵向及前、后轴侧向轮胎力估计值作为输入,采用单变量的标准遗传算法对车辆横摆加速度状态观测器进行参数优化。
对于车辆横摆角速度观测器参数优化问题,需要优化的参数是Kr,程序参数初始化时,各参数与上述设置相同。选择的适应度函数如式(30)所示,其中估计误差在常规高附着双移线工况下,其参数优化结果如表1所示。
3.以经过参数优化的纵向及侧向轮胎力估计值作为输入,采用多目标遗传算法对车辆纵向、侧向车速观测器参数进行优化,并得到Pareto最优解集:
由式(25)所示的纵向、侧向车速观测器形式可知,纵向和侧向速度二者互相耦合,在对纵向车速进行估计时要以侧向车速的估计值作为输入,同时,对侧向车速进行估计时也要以纵向车速的估计值作为输入。因此,在对纵向和侧向车速观测器参数进行优化时,单目标的标准遗传算法不再适用。考虑到二者估计值之间的相互影响关系,本发明利用Matlab工具箱中的gamultiobj函数对多目标优化问题进行求解。gamultiobj函数使用受控的精英遗传算法,该算法是带精英策略的快速非支配排序遗传算法(nondominatedsorting genetic algorithm II,NSGA-II)的变体。其基本原理是:在可行域中寻找由优化变量组成的向量,使得一组相互冲突的目标函数尽可能同时达到最小,并通过设置最优前端系数(Pareto Fraction)限制帕累托(Pareto)前沿上个体(精英个体)的数目,从而使所求解收敛于Pareto前沿面。式(31)为纵向和侧向车速观测器参数优化的目标函数
多目标遗传算法参数设置为:最优前端系数为0.3,种群规模为50,进化代数为50,交叉概率为0.8,变异概率0.2。在常规高附着双移线工况下,经过参数优化得到的Pareto前沿如图6所示,所优化变量值及其对应的目标函数值如表3所示:
表3纵向/侧向车速状态观测器参数优化Pareto最优解
序号 K<sub>x</sub> K<sub>y</sub> f<sub>1</sub> f<sub>2</sub>
1 0.0018 0.0099 0.363410 0.376690
2 0.0041 0.0096 0.368920 0.376650
3 0.0043 0.0098 0.373136 0.376647
4 0.0044 0.0098 0.376021 0.376645
5 0.0046 0.0094 0.379915 0.376643
6 0.0050 0.0094 0.388216 0.376638
7 0.0053 0.0098 0.393134 0.376632
8 0.0057 0.0087 0.398318 0.376631
9 0.0058 0.0095 0.400976 0.376628
10 0.0061 0.0092 0.404255 0.376626
11 0.0064 0.0093 0.408570 0.376622
12 0.0070 0.0097 0.416050 0.376618
13 0.0076 0.0091 0.422540 0.376616
14 0.0096 0.0098 0.435631 0.376608
由图6可以看出,两个目标函数是相互冲突的,其中一个目标函数值的减小则会引起另一个目标函数值的增大,因此,在Pareto前沿中则需要权衡两个目标函数,选择出一组适合的解。在表3中可以看出,在列举的14组最优解中,目标函数f1的值相对与目标函数f2的值的变化较大。其最小值与最大值之间的差距也比较大,因此本发明着重考虑变化范围较大的目标函数f1的值,选择一组目标函数f1的值较小的解。最终选择的解如表3中的序号1所示,即Kx=0.0018,Ky=0.0099。
下面给出本发明所述的基于遗传算法的四驱电动汽车状态观测器参数优化方法的离线仿真验证。
为了验证观测器参数优化方法的有效性,首先将表1中所优化出的参数输入到模块化的车辆状态观测器中,并以veDYNA中的四轮驱动电动汽车作为仿真车辆。并以常规高附着双移线工况作为仿真工况,来验证与观测器参数优化时相同工况下的车辆状态观测器估计效果。下面给出具体的实验结果与分析。
考虑到车辆***的对称性,对于纵向轮胎力,只给出左侧纵向轮胎力的仿真结果。图7-9,为该工况下的仿真结果图。图7分别为左前轮及左后轮纵向轮胎力观测器估计结果与veDYNA输出真实值对比曲线以及其估计误差。图8分别为前轮及后轮侧向轮胎力观测器估计结果与veDYNA输出真实值对比曲线以及其估计误差。图9分别纵向/侧向速度及横摆角速度观测器估计结果与veDYNA输出真实值对比曲线以及其估计误差。由仿真结果图可以看出,对于所估计的车辆状态,经过参数优化的观测器估计值可以较好的跟踪上由veDYNA直接输出的真实值,并且有较小的估计误差,这说明本发明所提出的基于遗传算法的观测器参数优化方法具有一定的有效性。

Claims (3)

1.一种基于遗传算法的四驱电动汽车状态观测器参数调节方法,其特征在于,包括以下步骤:
步骤一、建立车辆单轮滚动模型及简化的三自由度车辆模型;
步骤二、模块化车辆状态观测器设计:以车辆传感器测量信息车轮转动角速度及驱动力矩作为输入,采用滑模观测器方法对四个轮的纵向轮胎力设计纵向轮胎力观测器;再以纵向轮胎力估计值、前轮转角、侧向加速度及横摆角速度作为输入,分别设计前、后轴侧向轮胎力滑模观测器;最后以纵向及侧向轮胎力估计值、纵向及侧向加速度、横摆加速度和车辆前轮转角作为输入,设计纵向车速、侧向车速及横摆角速度的车辆速度全维状态观测器;
步骤三、基于步骤二设计的模块化车辆状态观测器,采用遗传算法分别对各个估计模块进行观测器参数优化,具体包括以下步骤:
3.1)采用双变量的标准遗传算法首先分别对车辆四个轮的纵向轮胎力滑模观测器参数进行优化,再以经过参数优化的前轴纵向轮胎力估计值作为输入对前轴侧向轮胎力滑模观测器参数进行优化,最后对后轴侧向轮胎力滑模观测器参数进行优化
3.2)以经过参数优化的前轴纵向及前、后轴侧向轮胎力估计值作为输入,采用单变量的标准遗传算法对车辆横摆角速度状态观测器进行参数优化,并将优化出的观测器参数输入到车辆横摆角速度观测器;
3.3)以经过参数优化的纵向及侧向轮胎力估计值作为输入,采用多目标遗传算法对车辆纵向、侧向车速观测器参数进行优化,并得到Pareto最优解集。
2.如权利要求1所述的一种基于遗传算法的四驱电动汽车状态观测器参数调节方法,其特征在于,所述步骤一建立的车辆单轮滚动模型及简化的三自由度车辆模型为:
1.1)车辆单轮滚动模型:
其中,J为车轮的转动惯量,单位kg·m2,ωi(i=1,2,3,4)分别为四个车轮的转动角速度,单位rad/s,Reff为轮胎的有效半径,单位m,T为每个车轮的驱动力矩,单位N/m;
1.2)简化的三自由度车辆模型
车辆纵向及侧向轮胎力Fx、Fy和车辆绕z轴转动力矩Mz可以表示为:
Fx=(Fx1+Fx2)cosδf-(Fy1+Fy2)sinδf+Fx3+Fx4
Fy=(Fx1+Fx2)sinδf+(Fy1+Fy2)cosδf+Fy3+Fy4
Mz=lF(Fx1+Fx2)sinδf+lF(Fy1+Fy2)cosδf-lR(Fy3+Fy4)
其中,Fxi/Fyi(i=1,...,4)分别为四个轮的纵向及侧向轮胎力,单位N,δf是车辆前轮转角,单位rad,lF和lR分别是车辆质心距前轴和后轴的距离,单位m。
3.如权利要求1所述的一种基于遗传算法的四驱电动汽车状态观测器参数调节方法,其特征在于,所述步骤二设计的模块化车辆状态观测器具体包括:
2.1)纵向轮胎力滑模观测器,形式为:
其中,Lxi(i=1,...,4)分别为每个纵向轮胎力滑模观测器的反馈增益,ρxi(i=1,...,4)分别为每个纵向轮胎力滑模观测器的滑模增益,φ为一个大于0的常数;
2.2)侧向轮胎力滑模观测器,包括:
前轴侧向轮胎力滑膜观测器为:
其中,Lyf为前轴侧向轮胎力滑模观测器的反馈增益,ρyf为前轴侧向轮胎力滑模观测器的滑模增益,Iz为整车绕z轴的转动惯量,单位kg·m2,r为汽车横摆角速度,单位rad/s;
后轴侧向轮胎力滑膜观测器:
其中,Lyr为后轴侧向轮胎力滑模观测器的反馈增益,ρyr为后轴侧向轮胎力滑模观测器的滑模增益;
2.3)车辆速度全维状态观测器设计:
选择纵向加速度、侧向加速度及横摆角速度作为***测量输出,并将它们与其估计值之差作为车辆速度观测器的校正项,基于非线性全维观测器结构,设计出车辆纵向、侧向车速及横摆角速度的车辆速度全维观测器,表达式为:
其中,Ki(i=x,y,r)代表观测器增益,利用轮胎力估计值,可以将纵向、侧向加速度估计值以及车辆绕z轴转动力矩估计值表示为:
其中,ax、ay分别为车辆的纵向及侧向加速度,单位m/s2,m为车辆的总质量,单位kg。
CN201610403778.6A 2016-06-08 2016-06-08 基于遗传算法的四驱电动汽车状态观测器参数优化方法 Active CN105946858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610403778.6A CN105946858B (zh) 2016-06-08 2016-06-08 基于遗传算法的四驱电动汽车状态观测器参数优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610403778.6A CN105946858B (zh) 2016-06-08 2016-06-08 基于遗传算法的四驱电动汽车状态观测器参数优化方法

Publications (2)

Publication Number Publication Date
CN105946858A CN105946858A (zh) 2016-09-21
CN105946858B true CN105946858B (zh) 2019-02-15

Family

ID=56907943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610403778.6A Active CN105946858B (zh) 2016-06-08 2016-06-08 基于遗传算法的四驱电动汽车状态观测器参数优化方法

Country Status (1)

Country Link
CN (1) CN105946858B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106364367B (zh) * 2016-09-29 2018-07-20 西安科技大学 一种四轮独立驱动电动汽车的协调控制方法
CN107512262B (zh) * 2017-08-14 2018-12-21 吉林大学 一种针对执行驱动空间受限时的车辆稳定控制***轮胎力分配方法
CN109407645A (zh) * 2017-08-17 2019-03-01 宝沃汽车(中国)有限公司 获取控制***状态变量的方法及***
CN107719372B (zh) * 2017-09-30 2019-07-12 武汉理工大学 基于动态控制分配的四驱电动汽车动力学多目标控制***
CN108099902B (zh) * 2017-12-18 2019-08-30 长春工业大学 一种体现汽车非线性特性的横摆稳定性控制方法
CN108099900B (zh) * 2017-12-18 2019-09-03 长春工业大学 一种极限工况下保持汽车横向稳定的四轮转向控制方法
CN108216250A (zh) * 2018-01-10 2018-06-29 吉林大学 基于状态观测器的四驱电动汽车速度与道路坡度估计方法
CN108563143A (zh) * 2018-01-10 2018-09-21 吉林大学 基于状态观测器的四驱电动汽车速度与道路坡度估计方法
CN108394413B (zh) * 2018-01-26 2019-08-23 辽宁工业大学 一种四轮独立驱动与转向的电动汽车状态与参数校正方法
CN109849898B (zh) * 2018-12-27 2020-06-26 合肥工业大学 基于遗传算法混合优化gpc的车辆横摆稳定性控制方法
CN110104102B (zh) * 2019-05-22 2020-07-28 桂林电子科技大学 自平衡自行车驱动车轮纵向滑移状态的估计方法
CN110816654B (zh) * 2019-08-08 2021-03-09 中国第一汽车股份有限公司 一种信号估计方法、装置、车辆和存储介质
CN111204332B (zh) * 2020-02-10 2022-07-15 哈尔滨工业大学 一种全工况下优化车辆横摆动态性能的滑模控制方法
CN111231976B (zh) * 2020-02-19 2021-07-20 江苏大学 一种基于变步长的车辆状态估计方法
CN111572552B (zh) * 2020-05-21 2022-02-11 南京晓庄学院 一种车辆主动安全控制方法及装置
CN112659921B (zh) * 2020-12-14 2022-11-22 北京航空航天大学 一种基于遗传算法的独立驱动电动车优化控制器设计方法
CN112298354B (zh) * 2020-12-30 2022-01-28 成都信息工程大学 一种无人驾驶汽车转向***方向盘与前轮转角的状态估计方法
CN114261385B (zh) * 2021-12-10 2024-02-09 吉林大学 一种针对低附着路面的车辆稳定性控制方法
WO2023173280A1 (en) * 2022-03-15 2023-09-21 Huawei Technologies Co.,Ltd. System and method for autonomous vehicle motion planner optimisation
CN116588119B (zh) * 2023-05-30 2024-06-28 同济大学 一种基于轮胎模型参数自适应的车辆状态估计方法
CN117075638B (zh) * 2023-09-26 2024-02-06 南京航空航天大学 一种针对DoS网络攻击的集群无人机协同韧性控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618651B1 (en) * 2002-02-25 2003-09-09 Visteon Global Technologies, Inc. Estimating vehicle velocities using linear-parameter-varying and gain varying scheduling theories
JP5419375B2 (ja) * 2008-03-31 2014-02-19 株式会社アドヴィックス 車両の車輪横力推定装置
KR101870482B1 (ko) * 2014-01-27 2018-06-22 엘에스산전 주식회사 철도 차량의 횡력 추정장치 및 추정방법
CN105313957B (zh) * 2014-07-14 2018-05-04 重庆邮电大学 一种基于复合控制的电动助力转向***助力控制方法
CN104773173A (zh) * 2015-05-05 2015-07-15 吉林大学 一种自主驾驶车辆行驶状态信息估计方法

Also Published As

Publication number Publication date
CN105946858A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105946858B (zh) 基于遗传算法的四驱电动汽车状态观测器参数优化方法
CN106649983B (zh) 用于无人驾驶车辆高速运动规划的车辆动力学模型建模方法
Wang et al. Integrated optimal dynamics control of 4WD4WS electric ground vehicle with tire-road frictional coefficient estimation
CN111845775B (zh) 一种分布式驱动电动汽车行驶状态与惯性参数联合估计方法
CN105946863B (zh) 一种车辆行驶稳定性区域的确定方法
CN105835889B (zh) 一种基于二阶滑模观测器的车辆质心侧偏角的估计方法
CN104077459B (zh) 一种基于悬架kc特性的汽车底盘操稳性能分析模型建立方法
CN108216250A (zh) 基于状态观测器的四驱电动汽车速度与道路坡度估计方法
Lin et al. A novel H∞ and EKF joint estimation method for determining the center of gravity position of electric vehicles
CN109291932A (zh) 基于反馈的电动汽车横摆稳定性实时控制装置及方法
CN103279675B (zh) 轮胎-路面附着系数与轮胎侧偏角的估计方法
Huang et al. Calculation algorithm of tire‐road friction coefficient based on limited‐memory adaptive extended Kalman filter
Manrique-Escobar et al. On the analytical and computational methodologies for modelling two-wheeled vehicles within the multibody dynamics framework: a systematic literature review
Lian et al. Lateral collision avoidance robust control of electric vehicles combining a lane-changing model based on vehicle edge turning trajectory and a vehicle semi-uncertainty dynamic model
Chen et al. Design of vehicle running states-fused estimation strategy using Kalman filters and tire force compensation method
Yu et al. Simultaneous estimation of vehicle’s center of gravity and inertial parameters based on Ackermann’s steering geometry
CN108394413B (zh) 一种四轮独立驱动与转向的电动汽车状态与参数校正方法
CN106671985A (zh) 电动汽车动力学***建模方法
Wang et al. Structured trajectory planning of collision-free lane change using the vehicle-driver integration data
Yin et al. Estimation road slope and longitudinal velocity for four-wheel drive vehicle
CN111814258B (zh) 用于四轮独立电驱动车辆线控转向***传动比的设计方法
Wang et al. Research on Digital Twin Vehicle Stability Monitoring System Based on Side Slip Angle
Bonfitto et al. FUZZY LOGIC METHOD FOR THE SPEED ESTIMATION IN ALL-WHEEL DRIVE ELECTRIC RACING VEHICLES.
Xueyuan et al. Lateral dynamic simulation of skid steered wheeled vehicle
CN108563143A (zh) 基于状态观测器的四驱电动汽车速度与道路坡度估计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant