CN105925608A - 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法 - Google Patents

一种利用CRISPR-Cas9靶向敲除ALK6基因的方法 Download PDF

Info

Publication number
CN105925608A
CN105925608A CN201610471338.4A CN201610471338A CN105925608A CN 105925608 A CN105925608 A CN 105925608A CN 201610471338 A CN201610471338 A CN 201610471338A CN 105925608 A CN105925608 A CN 105925608A
Authority
CN
China
Prior art keywords
alk6
gene
ppdna330
sequence
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610471338.4A
Other languages
English (en)
Inventor
朱鹏
梁贤威
庞春英
邓廷贤
段安琴
陆杏蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE
Original Assignee
GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE filed Critical GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE
Priority to CN201610471338.4A priority Critical patent/CN105925608A/zh
Publication of CN105925608A publication Critical patent/CN105925608A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公布了一种利用CRISPR‑Cas9靶向敲除ALK6基因的方法,该方法通过对多物种进行同源对比选取两对ALK6基因靶序列,利用gRNA的PAM设计原则,合成两对靶序列不同,表达的蛋白相同,带有相同BsmBI粘性末端的DNA双链,将双链与pPDNA330质粒进行连接得到携带有多物种的ALK6同源基因的重组载体,重组载体利用荧光蛋白表达法对基因敲除效率进行检测,选择敲除效率更高的载体转染多物种受体细胞,进行基因敲除并验证,完成对多物种ALK6基因进行简单、高效、精确的基因敲除。

Description

一种利用CRISPR-Cas9靶向敲除ALK6基因的方法
【技术领域】
本发明涉及分子生物学领域,特别涉及一种利用CRISPR-Cas9靶向敲除ALK6基因的方法。
【背景技术】
ALK6是骨形态发生蛋白受体1B(bone morphogenetic protein receptor 1B,BMPR-1B)的别称,是是转化生长因子-β(transforming growth factor-β)超家族一型受体,其通过传递骨形态发生蛋白2(bone morphogenetic protein 2,BMP2)、骨形态发生蛋白4(bone morphogenetic protein 4,BMP4)、骨形态发生蛋白6(bone morphogeneticprotein 6,BMP6)和骨形态发生蛋白15(bone morphogenetic protein 15,BMP15)等配体信号,在哺乳动物生殖过程中发挥非常重要的作用,自然情况下,布鲁拉美利奴等绵羊品种ALK6基因编码区第109位碱基A突变为G,突变个体的***率及多胎率显著高于野生型个体。
第一个被发现携带增加***率的主效基因即ALK6的羊是Booroola羊,ALK6位于绵羊高繁殖力FecB基因所在的6号染色体区域与其相对应人4号染色体q22-q23区域中,与Booroola羊的***率密切相关。ALK6基因编码区A746G碱基突变,导致了谷氨酰胺被精氨酸替换(Q249R),导致绵羊***率与产羔数发生了变化,证明了对该基因进行突变可以使羊的***率增多,从而增加产羔羊数量,ALK6基因具有影响卵泡颗粒细胞分化和卵泡发育、促进***数增加的作用。水牛是单胎动物,其***率低,发情不明显,繁殖力相对低于黄牛,自然情况下极少出现能繁多胎的母本,如果能将动物的ALK6基因进行改变则会大大提高动物的繁殖能力。
改变基因构造通常是进行基因突变,即将DNA分子中发生碱基对的增添、缺失或改变而引起的基因结构改变,而基因突变往往是不定向的,随机的,未知的。为提高改变基因结构的效率,在现今的分子生物学领域中,通常是从特定生物体中提取ALK6基因,再根据基因组的编码顺序来编码进行同源性替代靶基因使上述的ALK6基因被取代或破坏而失活,达到靶向敲除基因的目的,靶向敲除精确度高、容易进行形状分析筛选,大大提高了工作效率。然而该方法仅能对单一物种的某一基因进行基因敲除,不能适用于多物种。
基因编辑常用ZFNs和TALEN技术,然而这两种技术如果要实现定向编辑,则必须合成DNA序列特异性结合蛋白模块,即DNA剪切的实现有赖于FokI核酸酶结构域。这一要求大大限制了这两种技术的发展,而CRISPR/cas9技术则通过gRNA引导核酸内切酶实现DNA特异位点的编辑,突破了ZFNs和TALEN技术的发展限制,是更为高效的基因特异位点的编辑技术。
目前,有些研究开始使用CRISPR/Cas9***进行基因敲除实验,例如PCT专利CN105142669A公开了基于CRISPR的基因组修饰和调控,说明了CRISPR***可用于基因组的修饰和调控,用CRISPR***比ZFN和TALEN更简单、高效的优点,但该专利未公布针对ALK6基因敲除的特定酶切位点和碱基序列,未公布针对ALK6基因的优选片段进行检测、选择的方法,而且也未公布本发明针对ALK6基因敲除所用的重组质粒载体的构建。使用CRISPR/Cas9***由于其可多位点对基因进行修饰。因此,本发明需要解决以下几个问题:(1)构建能靶向敲除多物种的ALK6基因编辑方法;(2)现有技术在基因编辑过程特别是人和水牛基因组编辑的技术平台存在效率低,适用性低的特点,整个平台仍需进行优化和条件摸索;(3)现有技术没有一种能快速、精确的找到靶序列的检测方法,从而进一步提高基因编辑的成功率。
【发明内容】
鉴于上述内容,有必要提供一种简单、高效、准确、适用于多物种特别是针对人和水牛的ALK6基因敲除方法,并进一步提高对靶序列的检测效率,能快速、精确的找到靶序列,提高基因编辑的成功率。
为达到上述目的,本发明所采用的技术方案是:
一种利用CRISPR-Cas9靶向敲除ALK6基因的方法,所述方法包括如下步骤:
(1)构建pPDNA330-ALK6-1和pPDNA330-ALK6-2载体,构建方法如下:
A、从基因数据库中下载多物种ALK6基因的核苷酸序列,并进行同源比对选取两对靶序列,分别为ALK6靶序列1:5’-ATGATAGAAGAAGATGACTC-3’和ALK6靶序列2:5’-GGATCAGGCCTCCCTCTGC-3’;
B.根据同源对比结果和gRNA的PAM设计原则,合成两对与靶序列不同,表达的蛋白相同,带有相同BsmBI粘性末端的DNA双链,分别命名为:ALK6-1和ALK6-2;
C.用BsmBI酶切pPDNA330质粒,将酶切产物进行琼脂糖凝胶电泳,切胶,回收;
D.用连接酶将ALK6-1和ALK6-2分别与BsmBI酶切后的pPDNA330质粒进行连接,得到重组质粒载体,分别命名为:pPDNA330-ALK6-1和pPDNA330-ALK6-2;
(2)对重组质粒载体pPDNA330-ALK6-1和pPDNA330-ALK6-2进行敲除效率的筛选验证、对比,选择ALK6基因敲除效率更高的重组质粒载体转染受体细胞;
(3)转染不同物种的受体细胞,收集转染之后的受体细胞,并提取细胞基因组进行测序,根据基因组测序结果合成检测引物进行PCR扩增,扩增产物连接入pEASY-T1载体,挑取单克隆细菌,进行测序,对ALK6基因敲除表达结果进行检测。
进一步的,所述ALK6-1的上游序列为,5’-ACCGATGATAGAAGAAGATGACTC-3’,下游序列为,5’-AAACGAGTCATCTTCTTCTATCAT-3’;ALK6-2的上游序列5’-ACCGGGATCAGGCCTCCCTCTGC-3’,下游序列为,5’-AAACACAGAGGGAGGCCTGATCC-3’。
进一步的,所述pPDNA330质粒构建方法如下:
(1)优化puro基因,去除其编码区内的酶切位点,但不改变其氨基酸组成:应用StuI和ClaI酶切puc57-puro,将酶切产物进行琼脂糖凝胶电泳,切胶,回收获得puro基因;
(2)应用StuI和bsp119I酶切pcDNA3.1,将酶切产物进行琼脂糖凝胶电泳,切胶,回收获得线性化的pcDNA3.1片段;
(3)用T4连接酶将puro基因和pcDNA3.1片段进行连接得到pPDNA载体;
(4)人工合成U6-BsmbⅠ-gRNA序列,片段位于puc57载体中;
(5)用MluI和NheI酶切puc57-U6-BsmbⅠ-gRNA,将酶切产物进行琼脂糖凝胶电泳,切胶,回收获得U6-BsmbⅠ-gRNA片段;
(6)用MluI和NheI酶切pPDNA载体,将酶切产物进行琼脂糖凝胶电泳,切胶,回收获得线性化的pPDNA载体片段;
(7)T4连接上述U6-BsmbⅠ-gRNA片段和pPDNA载体片段,得到pPDNA-gRNA载体;
(8)用XbaI和NotI酶切pX330载体,将酶切产物进行琼脂糖凝胶电泳,切胶,回收获得cas9片段;
(9)用XbaI和NotI酶切pPDNA-gRNA载体,将酶切产物进行琼脂糖凝胶电泳,切胶,回收获得线性化的pPDNA-gRNA载体片段;
(10)T4连接上述cas9片段和线性化的pPDNA-gRNA载体片段得到pPDNA330载体。
进一步的,所述MluI和NheI酶的反应温度为35-40℃,时间为2.5-3.5h,酶切体系为:2-4μg的ppuc57-puro质粒,3-6μL的10×FastDigest,2.5-4μL的StuI,3μL的ClaI加水至溶液为45-55μL;XbaI和NotI酶的反应温度为35-40℃,时间为2.5-3.5h,酶切体系为:2-4μg的px330质粒,3-6μL的10×FastDigest,2.5-4μLμL XbaI,2.5-4μLμL NotI加水至溶液为45-55μL。
进一步的,所述BsmBI酶切体系反应温度为50-60℃,时间为2.5-3.5h,酶切体系为:2.5-3.5μg的pPDNA330质粒,1.5-2.5μL的10×NEB Buffer3,0.2-0.8μL的BsmBI,加水至溶液为15-25μL。
进一步的,所述重组质粒载体pPDNA330-ALK6-1和pPDNA330-ALK6-2敲除效率的筛选验证选用荧光蛋白表达法进行验证,具体方法如下:
(1)利用RGS-CR做为验证报告载体:使用限制性内切酶EcoRⅠ和BamHⅠ对验证报告载体RGS-CR进行线性化;
(2)合成与ALK6靶序列1和ALK6靶序列2对应的两条带有EcoRⅠ和BamHⅠ粘性末端的DNA双链,分别命名为:#ALK6-1和#ALK6-2;
其中,#ALK6-1引物的上游序列为:5’-AATTCGATGATAGAAGAAGATGACTCTGGG-3’,
下游序列为:5’-GATCCCCAGAGTCATCTTCTTCTATCATCG-3’;
#ALK6-2引物的上游序列为:5’-AATTCGCGGATCAGGCCTCCCTCTGCTGGG-3’,
下游序列为:5’-GATCCCCAGCAGAGGGAGGCCTGATCCGCG-3’;
(3)采用T4连接酶将步骤(1)的RGS-CR线性化产物和步骤(2)带有EcoRⅠ和BamHⅠ粘性末端的#ALK6-1和#ALK6-2两对DNA双链进行连接得到重组质粒载体,分别命名为:RGS-#ALK6-1和RGS-#ALK6-2;
(4)取传代的HEK-293T细胞于4个培养皿中;
(5)取4个离心管编号为1、2、3、4,每个管分别加入含FBS的DMEM;
(6)然后在1号管加pPDNA330-ALK6-1和RGS-#ALK6-1,2号管加pPDNA330和RGS-#ALK6-1,3号管加pPDNA330-ALK6-2和RGS-#ALK6-2,4号管加pPDNA330和RGS-#ALK6-2;最后在每个管中加入罗氏转染试剂,混匀,室温静置后,将混合液分别加入培养皿,并于培养箱中培养,培养完成后在荧光显微镜下观察目的基因的荧光表达情况。
进一步的,所述限制性内切酶EcoRⅠ和BamHⅠ的酶切体系反应温度为35-40℃,时间为2.5-3.5h,酶切体系为:1.5-2.5μg的RGS质粒,1.5-2.5μL的10×NEB Buffer3,0.2-0.8μL的EcoRI,0.2-0.8μL BamHI加水至溶液为15-25μL。
进一步的,所述受体细胞选用人的Hela细胞或水牛的成纤维细胞。
进一步的,所述的人Hela细胞和水牛的成纤维细胞的培养条件为:用含FBS的DMEM的培养基在电转前24小时对人的Hela细胞和水牛的成纤维细胞进行培养,培养条件为35-40℃,4%-6%的CO2
进一步的,所述检测引物选用人或水牛的ALK6-2基因上下游序列做为检测引物,人ALK6-2基因检测引物命名为:hALK6,hALK6上游序列为5’-TTTACTTGGGAAACCATAACTA-3’,下游序列为5’-TGGATTGTAACCATACACCTAC-3’,扩增长度为517bp;水牛的ALK6-2基因检测引物命名为:bufALK6,bufALK6上游序列为5’-GCATTGGGTTAGAACAGGAT-3’,下游序列为5’-CCTTTGTCCACTGCCCTA-3’,扩增长度为196bp。
进一步的,所述PCR体系为:10μLHS(Premix)(Takara),DNA模板1μL,上下游引物各0.5μL,水补至20μL。反应程序为:95℃预变性5min,35循环(95℃变性30sec,55℃退火30sec,72℃延伸30sec),72℃再延伸7min,4℃终止反应。取上述PCR反应的5μL PCR产物,直接进行2%的琼脂糖凝胶电泳,电压120V,时间约30min。
上述的应用CRISPR-Cas9靶向敲除ALK6基因的方法可用于人或水牛的ALK6基因敲除。
本发明具有以下有益效果:
1、本技术方案发明人通过对多物种的AKL6基因进行分析,进行同源比对,选择同源性最高的两对基因序列做为靶序列,进行对ALK6基因的敲除,有效的提高了靶序列的普适性,使利用该靶序列进行编辑的重组质粒载体能适用于多物种。虽然本发明对多物种的ALK6基因进行同源对比选择同源性高的靶序列,然而并不是每一个选择的靶序列都能正确表达,还需要进行表达验证,而且,不同物种的基因组序列是不一样的,如果仅仅利用同源对比选择靶序列而选用其它编辑技术,例如:ZFNs和TALEN编辑技术,由于这两种技术必须合成DNA序列特异性结合蛋白模块,在进行DNA剪切的时候将会受到FokI核酸酶结构域的限制,编辑效率大大降低,如果找出的同源比对的ALK6基因上下游没有FokI核酸酶结构域则不能完成基因的剪切,不能进行基因编辑,同样的,要精确找到有表达效果的靶序列,其检测手段是必不可少的,检测手段必须要简单、高效、准确,才能提高靶序列的准确性。
2、本技术方案选用的CRISPR/Cas9***,CRISPR-Cas9里面需要两个组件,一个是gRNA,另外一个是内切酶也就是Cas9.gRNA包括crRNA和tracrRNA,gRNA结合crRNA的靶标特异性及tracrRNA的脚手架特性(如何翻译scffold)成单一转录子。当gRNA和cas9在细胞内表达时,基因组的靶标会被修饰或永久性的干扰。使用Cas9核酸内切酶只需要提供一个包含特异的20bp的小片段sgRNA(single guide RNA)来决定靶向特异性。sgRNA是由crRNA(CRISPR RNA)与tracrRNA(trans-activating CRISPR RNA)嵌合构成的一个约100个核苷酸大小的RNA。crRNA能够与靶向的DNA形成RNA-DNA复合物,这段靶向DNA序列叫做前间隔序列。crRNA与trancrRNA一起构成的sgRNA与Cas9相互作用形成核糖核蛋白。sgRNA的5’端的约20bp(对应的是crRNA)通过RNA-DNA互补配对指引Cas9与靶序列结合进而对靶位点进行切割,造成DNA双链断裂(double strand break,DSB)。在细胞中,核酸酶造成的DSB在没有修复模板的情况下,以非同源末端连接(nonhomologous end-joining,NHEJ)的方式进行修复。NHEJ能够引起随机长度的碱基***或缺失,可以破坏编码基因的翻译阅读框架,因此,本发明使用CRISPR/Cas9***进行基因编辑不受限制性内切酶的限制,能更简单、高效、多位点的对基因进行修饰,实现了仅构建一个表达载体就能对多物种的同一靶序列进行基因编辑的效果,同时方法简单、高效。
3、本技术方案用验证报告载体RGS-CR对两对靶基因的敲除效率进行检验,采用荧光蛋白和目的基因连接,当目的基因被同源替代靶向敲除时,能启动荧光蛋白表达,在绿光下成像,利用该方法能将基因编辑效果进行体外表达,克服了体内表达周期长的问题,能快速的对基因的转染效率做出迅速和可靠的评估,有效的提高了对靶序列的定向分析、检测作用,提高了靶序列选择的准确度。
【附图说明】
图1为pPDNA330载体结构示意图;
图2为ALK6多物种同源比对及靶标1的设计位点图;
图3为ALK6多物种同源比对及靶标2的设计位点图;
图4为ALK6打靶效率荧光表达检测图;
图5为HELA细胞ALK6基因突变测序结果图;
图6为水牛成纤维细胞ALK6基因突变检测结果图。
【具体实施方式】
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例:
一、pPDNA330载体的制备:
(一)优化puro基因,去除其编码区内的酶切位点,并人工合成后,连入pcDNA3.1(-)载体制备成pPDNA载体。puro优化后的序列见序列表。方法如下:
1、优化puro基因,去除其编码区内的酶切位点,但不改变其氨基酸组成,于生工生物工程(上海)股份有限公司进行puro基因人工合成,合成puro基因位于puc57-puro载体中。
2、应用StuI(Fermentas)和ClaI(Fermentas)酶切puc57-puro,胶回收获得puro基因,酶切体系为:酶切体系为puc57-puro质粒3μg,10×FastDigest 5μL,3μL StuI,3μLClaI,加水至50μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,将约1638bp的目的片段回收,测定浓度,存于-20℃,备用;
3、应用StuI(Fermentas)和bsp119I(Fermentas)酶切pcDNA3.1(-),胶回收获得线性化的pcDNA3.1(-)片段,酶切体系为:酶切体系为pcDNA3.1(-)质粒3μg,10×FastDigest5μL,3μL StuI,3μL bsp119I,加水至50μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,将约5427bp的目的片段回收,测定浓度,存于-20℃,备用;
4、连接上述2、3两步获得的产物,连接体系:1μL T4ligase(Fermentas),1μL 10×T4ligase Buffer(Fermentas),线性化的pcDNA3.1(-)载体片段30ng,pruo基因30ng,加水至10μL,16℃过夜连接。将连接产物导入感受态细胞DH5α进行转化,扩大培养,提取质粒并进行序列测定,得到pPDNA载体。
(二)从携带CRISPR/Cas9的pX330载体上获得Cas9编码区,人工合成U6-BsmbⅠ-gRNA区,克隆至pPDNA载体中制备了含有CRISPR/Cas9的pPDNA330载体,方法如下:
1、人工合成U6-BsmbⅠ-gRNA序列,序列见序列表,片段位于puc57载体中。
2、应用MluI(Fermentas)和NheI(Fermentas)酶切puc57-U6-BsmbⅠ-gRNA,胶回收获得U6-BsmbⅠ-gRNA片段,酶切体系为:酶切体系为puc57-puro质粒3μg,10×FastDigest 5μL,3μL StuI,3μL ClaI,加水至50μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,将约1638bp的目的片段回收,测定浓度,存于-20℃,备用;
3、应用MluI(Fermentas)和NheI(Fermentas)酶切pPDNA载体,胶回收获得线性化的pPDNA载体片段,酶切体系为:酶切体系为pPDNA质粒3μg,10×FastDigest 5μL,3μLMluI,3μL NheI,加水至50μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,切胶回收,测定浓度,存于-20℃,备用;
4、连接上述b、c两步获得的产物,连接体系:1μL T4ligase(Fermentas),1μL 10×T4ligase Buffer(Fermentas),线性化的pPD NA载体片段30ng,U6-BsmbⅠ-gRNA片段30ng,加水至10μL,16℃过夜连接。将连接产物导入感受态细胞DH5α进行转化,扩大培养,提取质粒并进行序列测定,得到pPDNA-gRNA载体。
5、应用XbaI(Fermentas)和NotI(Fermentas)酶切pX330载体,胶回收获得cas9片段,酶切体系为:酶切体系为px330质粒3μg,10×FastDigest 5μL,3μL XbaI,3μL NotI,加水至50μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,切胶回收,测定浓度,存于-20℃,备用;
6、应用XbaI(Fermentas)和NotI(Fermentas)酶切pPDNA-gRNA载体,胶回收获得线性化的pPDNA-gRNA载体片段,酶切体系为:酶切体系为pPDNA-gRNA质粒3μg,10×FastDigest 5μL,3μL XbaI,3μL NotI,加水至50μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,切胶回收,测定浓度,存于-20℃,备用;
7、连接上述5、6两步获得的产物,连接体系:1μL T4ligase(Fermentas),1μL 10×T4ligase Buffer(Fermentas),线性化的pPDNA-gRNA载体片段30ng,cas9片段60ng,加水至10μL,16℃过夜连接。将连接产物导入感受态细胞DH5α进行转化,扩大培养,提取质粒并进行序列测定,得到pPDNA330载体,载体序列见序列表,载体示意图见说明书附图1。
二、靶向敲除基因克隆载体的构建:
靶向多物种ALK6的gRNA寡核苷酸的设计及载体构建。从NCBI数据库中下载多物种ALK6基因的核苷酸序列,并进行同源比对。同源比对结果见说明书附图2和说明书附图3。根据gRNA的PAM设计原则及同源比对的结果,合成了ALK6-1和ALK6-2共2对引物,引物序列分别为,载体构建具体步骤如下:
1、合成ALK6靶序列1:5’-ATGATAGAAGAAGATGACTC-3’,其中上游序列5’-ACCGATGATAGAAGAAGATGACTC-3’,其互补序列5’-AAACGAGTCATCTTCTTCTATCAT-3’;靶序列2:5’-GGATCAGGCCTCCCTCTGC-3’,其中上游序列5’-ACCGGGATCAGGCCTCCCTCTGC-3’,其互补序列5’-AAACACAGAGGGAGGCCTGATCC-3’,引物由生工生物工程(上海)股份有限公司合成。溶解后,各取4.5μL,再加入1μL 10×LA PCR Buffer(Takara),混匀,95℃加热10min,然后置于室温3h,形成带有BsmBI粘性末端的DNA双链;
2、酶切pPDNA330质粒,酶切体系为pPDNA330质粒3μg,10×NEB Buffer3 2μL,0.5μL BsmBI,加水至20μL,55℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,切胶回收,测定浓度,存于-20℃,备用;
3、连接上述a、b两步获得的产物,连接体系:1μL酶切pPDNA330质粒,酶切体系为pPDNA330质粒3μg,10×NEB Buffer3 2μL,0.5μL BsmBI,加水至20μL,55℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,切胶回收,测定浓度,存于-20℃,备用,2μL 10×T4ligaseBuffer(Fermentas),BsmBI酶切的pPDNA330载体30ng,靶序列及其互补序列形成的双链DNA5μL,加水至20μL,16℃过夜连接。将连接产物导入感受态细胞DH5α进行转化,扩大培养,提取质粒并进行序列测定,得到pPDNA330-ALK6-1和pPDNA330-ALK6-2载体。
三、基因敲除效率的验证
1、靶序列敲除效率验证报告载体RGS-CR购自ToolGen,使用限制性内切酶EcoRⅠ和BamHⅠ对RGS载体进行线性化,酶切体系为:RGS质粒2μg,10×BufferK 2μL,0.5μL EcoRI,0.5μL BamHI,加水至20μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,目的片段切胶回收,测定浓度,存于-20℃,备用。
2、合成ALK6的2条靶序列对应的RGS-CR报告载体序列#ALK6-1和#ALK6-2共2对引物,其中#ALK6-1的上游引物序列为5’-AATTCGATGATAGAAGAAGATGACTCTGGG-3’,下游引物序列为5’-GATCCCCAGAGTCATCTTCTTCTATCATCG-3’,#ALK6-2的上游引物序列为5’-AATTCGCGGATCAGGCCTCCCTCTGCTGGG-3’,下游引物序列为5’-GATCCCCAGCAGAGGGAGGCCTGATCCGCG-3’,引物溶解成100μM浓度后,经95℃处理15min,而后自然降温过夜退火,分别得到2条带有EcoRⅠ和BamHⅠ粘性末端的DNA双链退火产物。
3、T4连接RGS线性化产物和DNA双链退火产物,转化感受态细胞,挑取单菌落培养,去内毒提取重组质粒,并通过测序验证质粒,获得RGS-#ALK6-1和RGS-#ALK6-2重组质粒。
4、转染前一天,传代HEK-293T细胞于4个35mm的培养皿中。
5、转染当天,准备4个1.5mL的离心管,每个管中分别加入100μL的含10%FBS的DMEM,再添加质粒;其中,1号管中加500ng的pPDNA330-ALK6-1,100ng的RGS-#ALK6-1;2号管中加500ng的pPDNA330,100ng的RGS-#ALK6-1;3号管中加500ng的pPDNA330-ALK6-2,100ng的RGS-#ALK6-2;4号管中加500ng的pPDNA330,100ng的RGS-#ALK6-2;最后每个管中加入1μL的罗氏转染试剂,混匀,室温静止15min后,将混合液分别加入4个35mm的培养皿,并于37℃、5%CO2培养箱中培养,48h观察荧光表达情况(见说明书附图4)。荧光显示,pPDNA330-ALK6-2的绿色荧光的表达明显多于阴性对照pPDNA330,表明pPDNA330-ALK6-2能有效地引起DSBs,造成ALK6基因突变。
四、筛选出作用效果更好的表达载体,对人和牛的细胞进行转染,敲除ALK6基因。
1、转染前一天,人Hela细胞培养于35mm的培养皿中,培养基为含10%进口胎牛血清(FBS)的DMEM,培养条件为37℃,5%的CO2,转染当天,按照Life 3000试剂盒说明书导入2μg的pPDNA330-ALK6-2质粒,转染后48h,胰酶消化收集细胞,并提取细胞基因组。
2、合成人ALK6基因敲除检测引物hALK6,其中上游引物5’-TTTACTTGGGAAACCATAACTA-3’,下游引物5’-TGGATTGTAACCATACACCTAC-3’,扩增长度为517bp,以pPDNA330-ALK6-2质粒转染的细胞基因组为模板,进行PCR扩增,PCR体系为:10μLHS(Premix)(Takara),DNA模板1μL,上下游引物各0.5μL,水补至20μL。反应程序:95℃预变性5min,35循环(95℃变性30sec,55℃退火30sec,72℃延伸30sec),72℃再延伸7min,4℃终止反应。取上述PCR反应的5μL PCR产物,直接进行2%的琼脂糖凝胶电泳,电压120V,时间约30min。将PCR产物切胶,回收,连接,转化,挑取单克隆,进行测序,PCR扩增产物连接入pEASY-T1载体中,并通过挑取单克隆细菌,测序,对ALK6基因突变进行检测,结果表明pPDNA330-ALK6-2能有效地对人Hela细胞ALK6基因进行编辑(检测结果见说明书附图5)。
3、水牛成纤维细胞培养于60mm的培养皿中,培养基为含10%进口胎牛血清(FBS)的DMEM,培养条件为37℃,5%的CO2,电转当天,胰酶消化收集细胞,通过电转导入2μg的pPDNA330-ALK6-2质粒,转染后48h,收集细胞并提取细胞基因组。
4、合成水牛ALK6基因敲除检测引物bufALK6,其中上游引物5’-GCATTGGGTTAGAACAGGAT-3’,下游引物5’-CCTTTGTCCACTGCCCTA-3’,扩增长度为196bp,以pPDNA330-ALK6-2质粒转染的细胞基因组为模板,进行PCR扩增,PCR体系为:10μLHS(Premix)(Takara),DNA模板1μL,上下游引物各0.5μL,水补至20μL。反应程序:95℃预变性5min,35循环(95℃变性30sec,55℃退火30sec,72℃延伸30sec),72℃再延伸7min,4℃终止反应。取上述PCR反应的5μL PCR产物,直接进行2%的琼脂糖凝胶电泳,电压120V,时间约30min。将PCR产物切胶,回收,连接,转化,挑取单克隆,进行测序,PCR扩增产物连接入pEASY-T1载体中,并通过挑取单克隆细菌,测序,对ALK6基因突变进行检测,结果表明pPDNA330-ALK6-2能有效地对人Hela细胞ALK6基因进行编辑(检测结果见说明书附图6)。
综上所述,本发明通过同源对比选择不同物种控制ALK6基因的两对同源性最高的靶序列,利用CRISPR-Cas9编辑***构建带有靶序列基因的重组质粒,通过荧光蛋白表达法检测能对敲除试验结果进行精确分析,构建了并选择了能靶向敲除ALK6基因的重组载体,通过转染人的Hela细胞和水牛的成纤维细胞,验证了该方法能适用于不同物种,甚至多物种ALK6基因的敲除。本发明的方法具有打靶率高、准确、简单、高效、具有普适性的特点,有效的提高了基因敲除效率和准确性。
上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。

Claims (7)

1.一种利用CRISPR-Cas9靶向敲除ALK6基因的方法,其特征在于,所述方法包括如下步骤:
(1)构建pPDNA330-ALK6-1和pPDNA330-ALK6-2载体,构建方法如下:
A、从基因数据库中下载多物种ALK6基因的核苷酸序列,并进行同源比对选取两对靶序列,分别为ALK6靶序列1:5’-ATGATAGAAGAAGATGACTC-3’和ALK6靶序列2:5’-GGATCAGGCCTCCCTCTGC-3’;
B.根据同源对比结果和gRNA的PAM设计原则,合成两对与靶序列不同,表达的蛋白相同,带有相同BsmBI粘性末端的DNA双链,分别命名为:ALK6-1和ALK6-2;
C.用BsmBI酶切pPDNA330质粒,将酶切产物进行琼脂糖凝胶电泳,再进行切胶回收;
D.用连接酶将ALK6-1和ALK6-2分别与BsmBI酶切后的pPDNA330质粒进行连接,得到重组质粒载体,分别命名为:pPDNA330-ALK6-1和pPDNA330-ALK6-2;
(2)对重组质粒载体pPDNA330-ALK6-1和pPDNA330-ALK6-2进行敲除效率的筛选验证、对比,选择ALK6基因敲除效率更高的重组质粒载体转染受体细胞;
(3)转染不同物种的受体细胞,收集转染之后的受体细胞,并提取细胞基因组进行测序,根据基因组测序结果合成检测引物进行PCR扩增,扩增产物连接入pEASY-T1载体,挑取单克隆细菌,进行测序,对ALK6基因敲除表达结果进行检测。
2.根据权利要求1所述的应用CRISPR-Cas9靶向敲除ALK6基因的方法,其特征在于,所述ALK6-1的上游序列为,5’-ACCGATGATAGAAGAAGATGACTC-3’,下游序列为,5’-AAACGAGTCATCTTCTTCTATCAT-3’;ALK6-2的上游序列5’-ACCGGGATCAGGCCTCCCTCTGC-3’,下游序列为,5’-AAACACAGAGGGAGGCCTGATCC-3’。
3.根据权利要求1所述的应用CRISPR-Cas9靶向敲除ALK6基因的方法,其特征在于,所述pPDNA330质粒构建方法如下:
(1)优化puro基因,去除其编码区内的酶切位点,但不改变其氨基酸组成:应用StuI和ClaI酶切puc57-puro,将酶切产物进行琼脂糖凝胶电泳,切胶,回收获得puro基因;
(2)应用StuI和bsp119I酶切pcDNA3.1,将酶切产物进行琼脂糖凝胶电泳,切凝胶,回收获得线性化的pcDNA3.1片段;
(3)用T4连接酶将puro基因和pcDNA3.1片段进行连接得到pPDNA载体;
(4)人工合成U6-Bsmb Ⅰ-gRNA序列,片段位于puc57载体中;
(5)用MluI和NheI酶切puc57-U6-Bsmb Ⅰ-gRNA,将酶切产物进行琼脂糖凝胶电泳,切凝胶,回收获得U6-Bsmb Ⅰ-gRNA片段;
(6)用MluI和NheI酶切pPDNA载体,将酶切产物进行琼脂糖凝胶电泳,再进行切胶回收获得线性化的pPDNA载体片段;
(7)T4连接上述U6-Bsmb Ⅰ-gRNA片段和pPDNA载体片段,得到pPDNA-gRNA载体;
(8)用XbaI和NotI酶切pX330载体,将酶切产物进行琼脂糖凝胶电泳,再进行切胶回收获得cas9片段;
(9)用XbaI和NotI酶切pPDNA-gRNA载体,将酶切产物进行琼脂糖凝胶电泳,再进行切胶回收获得线性化的pPDNA-gRNA载体片段;
(10)T4连接上述cas9片段和线性化的pPDNA-gRNA载体片段得到pPDNA330载体。
4.根据权利要求1所述的应用CRISPR-Cas9靶向敲除ALK6基因的方法,其特征在于,所述重组质粒载体pPDNA330-ALK6-1和pPDNA330-ALK6-2敲除效率的筛选验证选用荧光蛋白表达法进行验证,具体方法如下:
(1)利用RGS-CR做为验证报告载体:使用限制性内切酶EcoR Ⅰ和BamH Ⅰ对验证报告载体RGS-CR进行线性化;
(2)合成与ALK6靶序列1和ALK6靶序列2对应的两条带有EcoR Ⅰ和BamH Ⅰ粘性末端的DNA双链,分别命名为:#ALK6-1和#ALK6-2;
其中,#ALK6-1引物的上游序列为:5’-AATTCGATGATAGAAGAAGATGACTCTGGG-3’,
下游序列为:5’-GATCCCCAGAGTCATCTTCTTCTATCATCG-3’;
#ALK6-2引物的上游序列为:5’-AATTCGCGGATCAGGCCTCCCTCTGCTGGG-3’,
下游序列为:5’-GATCCCCAGCAGAGGGAGGCCTGATCCGCG-3’;
(3)采用T4连接酶将步骤(1)的RGS-CR线性化产物和步骤(2)带有EcoR Ⅰ和BamH Ⅰ粘性末端的#ALK6-1和#ALK6-2两对DNA双链进行连接得到重组质粒载体,分别命名为:RGS-#ALK6-1和RGS-#ALK6-2;
(4)取传代的HEK-293T细胞于4个培养皿中;
(5)取4个离心管编号为1、2、3、4,每个管分别加入含FBS的DMEM;
(6)然后在1号管加pPDNA330-ALK6-1和RGS-#ALK6-1,2号管加pPDNA330和RGS-#ALK6-1,3号管加pPDNA330-ALK6-2和RGS-#ALK6-2,4号管加pPDNA330和RGS-#ALK6-2;最后在每个管中加入罗氏转染试剂,混匀,室温静置后,将混合液分别加入培养皿,并于培养箱中培养,培养完成后在荧光显微镜下观察目的基因的荧光表达情况。
5.根据权利要求1所述的应用CRISPR-Cas9靶向敲除ALK6基因的方法,其特征在于,所述受体细胞选用人的Hela细胞或水牛的成纤维细胞。
6.根据权利要求1所述的应用CRISPR-Cas9靶向敲除ALK6基因的方法,其特征在于,所述检测引物选用人或水牛的ALK6-2基因的上、下游序列做为检测引物,人ALK6-2基因检测引物命名为:hALK6,hALK6上游序列为5’-TTTACTTGGGAAACCATAACTA-3’,下游序列为5’-TGGATTGTAACCATACACCTAC-3’,扩增长度为517bp;水牛的ALK6-2基因检测引物命名为:bufALK6,bufALK6上游序列为5’-GCATTGGGTTAGAACAGGAT-3’,下游序列为5’-CCTTTGTCCACTGCCCTA-3’,扩增长度为196bp。
7.根据权利要求1-6所述任意一项应用CRISPR-Cas9靶向敲除ALK6基因的方法,其特征在于,所述应用CRISPR-Cas9靶向敲除ALK6基因的方法可用于人或水牛的ALK6基因敲除。
CN201610471338.4A 2016-06-24 2016-06-24 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法 Pending CN105925608A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610471338.4A CN105925608A (zh) 2016-06-24 2016-06-24 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610471338.4A CN105925608A (zh) 2016-06-24 2016-06-24 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法

Publications (1)

Publication Number Publication Date
CN105925608A true CN105925608A (zh) 2016-09-07

Family

ID=56828931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610471338.4A Pending CN105925608A (zh) 2016-06-24 2016-06-24 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法

Country Status (1)

Country Link
CN (1) CN105925608A (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591369A (zh) * 2016-12-16 2017-04-26 广西壮族自治区水牛研究所(中国农业科学院水牛研究所) 一种应用腺病毒***靶向编辑水牛18S rDNA基因的方法
CN107418974A (zh) * 2017-07-28 2017-12-01 新乡医学院 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
CN108048487A (zh) * 2017-12-19 2018-05-18 江西农业大学 一种编辑猪属胎儿成纤维细胞中的bmpr-ib基因方法
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
CN108285892A (zh) * 2018-02-01 2018-07-17 上海市东方医院 一种稳定产生人内源性Ito,s电流的细胞模型及构建方法与应用
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
CN109797170A (zh) * 2019-01-28 2019-05-24 云南大学 一种检测靶向基因敲除效果的方法
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
CN111549058A (zh) * 2020-04-13 2020-08-18 南京农业大学 一种利用CRISPR/Cas9***在猪胎儿成纤维细胞中实现基因敲除的方法
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112175995A (zh) * 2020-09-11 2021-01-05 中山大学中山眼科中心 一种vsx2绿色荧光报告基因载体***及其构建方法
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531705A (zh) * 2014-12-09 2015-04-22 中国农业大学 利用CRISPR-Cas9***敲除动物myostatin基因的方法
CN104651399A (zh) * 2014-12-31 2015-05-27 广西大学 一种利用CRISPR/Cas***在猪胚胎细胞中实现基因敲除的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531705A (zh) * 2014-12-09 2015-04-22 中国农业大学 利用CRISPR-Cas9***敲除动物myostatin基因的方法
CN104651399A (zh) * 2014-12-31 2015-05-27 广西大学 一种利用CRISPR/Cas***在猪胚胎细胞中实现基因敲除的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柳淑芳等: "FecB 基因及BMPR2IB 基因的突变特性与生物学意义", 《遗传》 *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
CN106591369A (zh) * 2016-12-16 2017-04-26 广西壮族自治区水牛研究所(中国农业科学院水牛研究所) 一种应用腺病毒***靶向编辑水牛18S rDNA基因的方法
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
CN107418974A (zh) * 2017-07-28 2017-12-01 新乡医学院 一种利用单克隆细胞分选快速获得CRISPR/Cas9基因敲除稳定细胞株的方法
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108048487A (zh) * 2017-12-19 2018-05-18 江西农业大学 一种编辑猪属胎儿成纤维细胞中的bmpr-ib基因方法
CN108285892A (zh) * 2018-02-01 2018-07-17 上海市东方医院 一种稳定产生人内源性Ito,s电流的细胞模型及构建方法与应用
CN109797170A (zh) * 2019-01-28 2019-05-24 云南大学 一种检测靶向基因敲除效果的方法
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN111549058B (zh) * 2020-04-13 2023-04-25 南京农业大学 一种利用CRISPR/Cas9***在猪胎儿成纤维细胞中实现基因敲除的方法
CN111549058A (zh) * 2020-04-13 2020-08-18 南京农业大学 一种利用CRISPR/Cas9***在猪胎儿成纤维细胞中实现基因敲除的方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112175995A (zh) * 2020-09-11 2021-01-05 中山大学中山眼科中心 一种vsx2绿色荧光报告基因载体***及其构建方法
CN112175995B (zh) * 2020-09-11 2023-04-14 中山大学中山眼科中心 一种vsx2绿色荧光报告基因载体***及其构建方法
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN105925608A (zh) 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法
CN106119283A (zh) 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法
CN105821049B (zh) 一种Fbxo40基因敲除猪的制备方法
CN104651399B (zh) 一种利用CRISPR/Cas***在猪胚胎细胞中实现基因敲除的方法
CN106916820B (zh) 能有效编辑猪ROSA26基因的sgRNA及其应用
CN104404036B (zh) 基于CRISPR/Cas9技术的条件性基因敲除方法
CN110218770B (zh) 特异性检测人源性基因组dna引物及其应用
CN108342480A (zh) 一种基因变异检测质控物及其制备方法
CN107043782B (zh) 一种基因敲除方法及其sgRNA片段与应用
CN106191116A (zh) 基于CRISPR/Cas9的外源基因敲入整合***及其建立方法和应用
CN106434748A (zh) 一种热激诱导型 Cas9 酶转基因斑马鱼的研制及应用
CN105907785A (zh) 化学合成的crRNA用于CRISPR/Cpf1***在基因编辑中的应用
CN108285906A (zh) 一种定点整合外源dna转基因猪的构建方法
CN111778246B (zh) Sdk2基因突变小鼠模型构建方法及其应用
CN109112159A (zh) 基于Cas9介导的定点整合FABP4基因和MSTN基因点突变打靶载体及重组细胞
WO2022111124A1 (zh) 发育正常无肌间刺鱼类新品种培育方法
CN112553079B (zh) 一种表达外源荧光蛋白球虫的构建方法
CN105274141A (zh) 一种用于原始生殖细胞靶向突变的转基因载体及制备方法和用途
CN107365803A (zh) 免药物筛选快速获得小鼠Rosa26基因定点整合外源基因的方法
CN110438128A (zh) 利用CRISPR/Cas9***敲除猪CCAR1基因的方法
CN104059877A (zh) 一种“仿比利时蓝牛”mstn基因型的基因编辑猪的制备方法
CN103952405A (zh) 一种山羊mstn基因定点修饰***及其应用
CN111088290B (zh) 一种杜鹃素在基因编辑中的应用
CN105063023A (zh) 一种锌指核酸酶介导的猪mstn基因突变序列及其应用
CN104212778A (zh) 基于TALEN和pMD18载体的定点突变***及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160907