CN105923765A - 一种厌氧氨氧化反应器的快速启动方法 - Google Patents

一种厌氧氨氧化反应器的快速启动方法 Download PDF

Info

Publication number
CN105923765A
CN105923765A CN201610522945.9A CN201610522945A CN105923765A CN 105923765 A CN105923765 A CN 105923765A CN 201610522945 A CN201610522945 A CN 201610522945A CN 105923765 A CN105923765 A CN 105923765A
Authority
CN
China
Prior art keywords
bioreactor
dynamic membrane
anaerobic
water
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610522945.9A
Other languages
English (en)
Other versions
CN105923765B (zh
Inventor
王伟
徐步德
周婧
于瑞馨
蔡静
席慕华
吴奔腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610522945.9A priority Critical patent/CN105923765B/zh
Publication of CN105923765A publication Critical patent/CN105923765A/zh
Application granted granted Critical
Publication of CN105923765B publication Critical patent/CN105923765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种厌氧氨氧化反应器的快速启动方法,采用动态膜生物反应器,以好氧污泥和/或厌氧污泥作为接种物,控制进水氨氮和亚硝酸盐氮浓度,投加营养溶液,通过动态膜过滤出水,反应器连续运行至少30天以上,可实现生物反应器内厌氧氨氧化菌的快速驯化和富集。本发明适用于城市污水和工业废水的厌氧氨氧化脱氮处理,具有启动快、处理效率高、***运行稳定、出水效果好、成本低等优点。

Description

一种厌氧氨氧化反应器的快速启动方法
一、技术领域
本发明涉及一种厌氧氨氧化反应器的快速启动方法,属于污水脱氮处理领域。
二、背景技术
氨氮已经成为我国水环境中污染物减排的约束性指标之一,如何高效削减氨氮排放量是我国水环境保护面临的重要挑战。传统的生物脱氮工艺以硝化反硝化脱氮技术路线为主,但其普遍存在能耗高、脱氮效率低、碳源不足等问题。近年来,随着厌氧氨氧化脱氮途径的发现,厌氧氨氧化工艺因其独特的低能耗、高效脱氮的特点而受到国内外很多学者的关注。国外污水企业已成功实现厌氧氨氧化为主体的生物脱氮工艺的开发和应用,为解决我国城市污水处理面临的碳氮比低、能耗高、反硝化碳源需求量大等问题带来了曙光。
厌氧氨氧化(Anaerobic Ammonium Oxidation,简称Anammox)是指在厌氧或者缺氧条件下,厌氧氨氧化细菌以NO2 --N为电子受体,氧化NH4 +-N为氮气的生物过程。影响厌氧氨氧化反应的因素主要有温度、pH值、溶解氧等。厌氧氨氧化具有无需外加碳源、脱氮效率高、能耗低、成本低、污泥产率低等优点。与传统硝化反硝化脱氮工艺相比,该过程可降低60%的氧气、100%的有机碳源以及90%的运行费用。在污水生物脱氮方面,尤其是在低碳氮比条件下,该工艺具有广泛的应用前景。但厌氧氨氧化工艺也存在着许多问题,例如厌氧氨氧化菌的生长速率缓慢、世代时间长、接种泥源不足且价格昂贵,由于工艺启动周期过长,在没有厌氧氨氧化菌接种的条件下难以在实际工程中应用。单纯以常规活性污泥接种的Anammox反应器一般需要100-200天才能达到较高的氨氮负荷率和去除率,世界上第一座工程应用的Anammox反应器经过了3年多才实现稳定运行。因此,如何快速启动厌氧氨氧化反应器成为了目前的热点研究问题。
三、发明内容
针对厌氧氨氧化脱氮工艺启动时间长的弊端,本发明的目的是提供一种厌氧氨氧化反应器的快速启动方法。
本发明厌氧氨氧化反应器的快速启动方法,采用动态膜生物反应器,该反应器包括生物反应器与动态膜两部分,以好氧污泥和/或厌氧污泥作为接种物,控制进水氨氮和亚硝酸盐氮浓度,投加营养溶液,通过动态膜过滤出水,反应器连续运行至少30天以上,可实现生物反应器内厌氧氨氧化菌的快速驯化和富集,具体包括如下步骤:
(1)反应器设计
采用动态膜生物反应器,包括生物反应器和动态膜两部分,动态膜设置于生物反应器内部或外部,动态膜外接水泵,通过抽吸作用使污水通过动态膜流出生物反应器;
所述动态膜由大孔网格材料构成,为圆柱管状或平板状,采用错流过滤或死端过滤的方式,动态膜的膜过滤通量为1-200L/(m2﹒h);
所述大孔网格材料可以选择不锈钢钢丝网、铁丝网、铜丝网、铝丝网、尼龙网、无纺布等材料;所述大孔网格材料的孔径为10-1000μm;
所述生物反应器为常规反应器构型,包括完全混合式反应器、水平推流式反应器、混合流反应器、升流式反应器、降流反应器、序批式反应器等,例如CSTR反应器、UASB反应器、SBR反应器、折板反应器、流化床或移动床反应器。
(2)接种污泥
生物反应器内接种污水处理厂的好氧污泥和/或厌氧污泥,接种污泥浓度为0.5-30gMLSS/L并且0.1-25g MLVSS/L,好氧污泥和厌氧污泥混合接种时比例任意。
(3)参数控制
进水参数控制:进水中氨氮浓度为1-1000mg/L、亚硝酸盐氮浓度为0.1-1000mg/L,其中氨氮和亚硝酸盐氮浓度之比为10:1-1:10。进水温度为10-60℃,pH值为6-9,不限制有机物浓度。进水中添加营养溶液。
生物反应器运行参数控制:水力停留时间为0.1小时-10天,溶解氧浓度范围为0-0.5mg/L,反应器温度控制在10-60℃;循环泵回流水量与进水水量的体积比范围为0:1-1000:1;动态膜采用水力清洗、气体清洗、化学清洗或不清洗模式运行,当跨膜压差值为30-50kPa时启动清洗模式运行。
在进水中添加营养溶液,营养溶液组成及进水中具体投加浓度为:KH2PO4(0-2000mg/L),MgSO4(0-500mg/L),CaCl2(0-500mg/L),EDTA(0-500mg/L),FeSO4(0-500mg/L),ZnSO4(0-100mg/L),CuSO4(0-100mg/L),NiCl(0-100mg/L),H3BO4(0-100mg/L),CoCl2(0-100mg/L),MnCl2(0-100mg/L),NaMoO4(0-100mg/L),NaSeO4(0-100mg/L),生物素(0-1000mg/L)。该营养溶液也可以采用富含上述微量金属元素浓度的污水替代。营养溶液中微量金属元素是厌氧氨氧化菌胞内酶形成的必需成分和辅助因子,它不仅可以促进菌群进化,也在调节微生物渗透压及酸碱平衡方面发挥重要的作用。投加营养溶液有助于加速污泥中厌氧氨氧化菌的筛选和生长,从而缩短厌氧氨氧化反应器的启动时间。
(4)操作流程
将大孔网格材料构成的动态膜与接种活性污泥的生物反应器搭接成循环***,回流泵提供循环动力;在厌氧、避光的条件下,污水在进水泵的作用下进入生物反应器进行连续培养,在循环泵的作用下使部分污水在生物反应器中循环流动,并在出水泵的抽吸作用下污水通过动态膜过滤流出。当出水氨氮浓度低于《城镇污水处理厂污染物排放标准(GB18918-2002)》一级A标准(NH3-N≤5mg/L),且氨氮去除率不低于90%,表明厌氧氨氧化反应器成功启动。
与已有技术相比,本发明的有益效果体现在:
1、解决了传统厌氧氨氧化反应器启动时间长的问题
动态膜生物反应器作为厌氧氨氧化启动装置,孔径为10-1000μm的大孔网格材料对接种微生物起到了物理截留和水力筛选作用,为厌氧氨氧化菌的生长提供适宜的环境,能够实现生物反应器污泥龄与水力停留时间的分离,有利于生长缓慢的厌氧氨氧化菌的快速驯化与富集。利用动态膜装置,促进厌氧氨氧化菌在生物反应器中的生长与截留,加快厌氧氨氧化反应器的启动。
2、解决了厌氧氨氧化反应器所需接种物来源的难题
厌氧氨氧化菌增殖速度慢、污泥产率低一直是制约厌氧氨氧化工艺实际应用的重要因素。通过生物反应器与动态膜的耦合,充分利用生物反应器的水力学特性及优越的菌体截留能力,并添加特定的营养溶液,可使好氧污泥或厌氧污泥能够得到快速的驯化,使厌氧氨氧化菌群能够得到高效富集,并能有效减少厌氧氨氧化反应器启动过程中污泥的流失,提高污泥产率。本方法通过添加特定的营养溶液,使得实际应用中厌氧氨氧化反应器接种好氧污泥或厌氧污泥或二者混合作为接种物成为可能,能够大幅度缩短生产性厌氧氨氧化装置的启动时间和降低成本,拓展了厌氧氨氧化技术的应用范围。
3、强化了厌氧氨氧化反应器的工艺稳定性
针对厌氧氨氧化菌抗冲击能力弱的特性,动态膜生物反应器作为厌氧氨氧化反应器,动态膜的截留作用能够避免微生物量的流失;通过动态膜的截滤作用和工艺循环,稀释进水条件,降低进水负荷,减小进水水质及水量对厌氧氨氧化反应器运行的冲击。
4、提升了厌氧氨氧化反应器脱氮处理能力
动态膜生物反应器为兼具附着和悬浮微生物的混合生长型反应器,通过动态膜的截滤功能可以实现生物反应器的泥水分离,保证反应器内有足够的厌氧氨氧化菌数量。通过生物反应器内部和动态膜表面的厌氧氨氧化菌的联合作用,改善废水中厌氧氨氧化反应的效果,提高厌氧氨氧化反应器的容积负荷率。
四、附图说明
图1为本发明反应器示意图,包括进水、进水泵、生物反应器、动态膜、循环泵、出水泵、出水。
图2是反应器进出水中氨氮含量及其去除率的变化图。
图3是反应器进出水中亚硝态氮含量及其去除率的变化图。
五、具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
1、实施概述
采用动态膜生物反应器作为反应装置,以厌氧活性污泥作为接种物,在厌氧遮光的情况下连续运行,通入含氮废水,驯化和培养厌氧氨氧化菌,以去除废水中氨氮。经过32天的运行,经厌氧氨氧化反应器处理后的出水水质如下:NH4 +-N≤1.5mg/L,去除率达95%以上;NO2 --N≤1mg/L,去除率达98%以上,成功实现厌氧氨氧化反应器的快速启动。
2、反应器设计
厌氧氨氧化反应器为外置式动态膜和生物反应器的组合,动态膜外接水泵,通过抽吸作用使污水通过动态膜流出生物反应器。在密闭条件下,废水在进水泵作用下进入反应器进行连续培养启动。在出水泵的抽吸作用下,一部分水通过动态膜过滤流出,剩余的水经过循环泵回流进入生物反应器。生物反应器为混合流反应器,由有机玻璃制作,截面为矩形,有效容积4.2L。动态膜采用孔径为100μm的不锈钢钢丝网作为滤管,动态膜的膜过滤通量为1.0-3.0L/(m2﹒h)。
3、接种污泥
选取安徽省合肥市某污水处理厂的厌氧活性污泥作为种泥,接种后反应器内污泥浓度14.3g MLSS/L并且8g MLVSS/L。
4、参数控制
进水参数控制:进水中NH4 +-N浓度为50-60mg/L,NO2 --N浓度为50-70mg/L,pH值为7.0-8.5,进水中添加营养溶液,营养溶液中微量元素组分及进水中具体投加浓度如下表1所示。
表1
生物反应器运行参数控制:反应器覆有黑布以避免光照对厌氧氨氧化菌的抑制,在严格厌氧避光的情况下采用连续运行模式,以保持稳定的进水基质浓度及有利的生长条件。反应器水力停留时间为24-48h,溶解氧浓度范围为0-0.5mg/L,温度维持在35±1℃。循环泵回流水量与进水水量的体积比为500:1-1000:1;动态膜的跨膜压差值低于30kPa,采用不清洗模式运行。
5、运行结果:生物反应器启动阶段的出水水质结果如图2、图3所示。结果显示,反应器运行23天时,氨氮和亚硝态氮的去除率分别达到95%和85%以上;反应器运行37天时,氨氮及亚硝态氮去除率均达到95%以上,标志着厌氧氨氧化反应器启动成功。

Claims (5)

1.一种厌氧氨氧化反应器的快速启动方法,其特征在于:采用动态膜生物反应器,以好氧污泥和/或厌氧污泥作为接种物,控制进水氨氮和亚硝酸盐氮浓度,投加营养溶液,通过动态膜过滤出水,反应器连续运行至少30天以上,可实现生物反应器内厌氧氨氧化菌的快速驯化和富集,具体包括如下步骤:
(1)反应器设计
采用动态膜生物反应器,包括生物反应器和动态膜两部分,动态膜设置于生物反应器内部或外部,动态膜外接水泵,通过抽吸作用使污水通过动态膜流出生物反应器;
(2)接种污泥
生物反应器内接种污水处理厂的好氧污泥和/或厌氧污泥,接种污泥浓度为0.5-30gMLSS/L并且0.1-25g MLVSS/L,好氧污泥和厌氧污泥混合接种时比例任意;
(3)参数控制
进水参数控制:进水中氨氮浓度为1-1000mg/L、亚硝酸盐氮浓度为0.1-1000mg/L,进水温度为10-60℃,pH值为6-9;
生物反应器运行参数控制:水力停留时间为0.1小时-10天,溶解氧浓度范围为0-0.5mg/L,反应器温度控制在10-60℃;
(4)操作流程
将大孔网格材料构成的动态膜与接种活性污泥的生物反应器搭接成循环***,回流泵提供循环动力;在厌氧、避光的条件下,污水在进水泵的作用下进入生物反应器进行连续培养,在循环泵的作用下使部分污水在生物反应器中循环流动,并在出水泵的抽吸作用下污水通过动态膜过滤流出,当出水氨氮浓度NH3-N≤5mg/L且氨氮去除率不低于90%,表明厌氧氨氧化反应器成功启动。
2.根据权利要求1所述的方法,其特征在于:
所述动态膜由大孔网格材料构成,为圆柱管状或平板状,采用错流过滤或死端过滤的方式,动态膜的膜过滤通量为1-200L/(m2﹒h);所述大孔网格材料为不锈钢钢丝网、铁丝网、铜丝网、铝丝网、尼龙网或无纺布材料;所述大孔网格材料的孔径为10-1000μm。
3.根据权利要求1所述的方法,其特征在于:
进水中控制氨氮和亚硝酸盐氮浓度之比为10:1-1:10。
4.根据权利要求1所述的方法,其特征在于:
在进水中添加营养溶液,营养溶液组成及进水中具体投加浓度为:KH2PO4(0-2000mg/L),MgSO4(0-500mg/L),CaCl2(0-500mg/L),EDTA(0-500mg/L),FeSO4(0-500mg/L),ZnSO4(0-100mg/L),CuSO4(0-100mg/L),NiCl(0-100mg/L),H3BO4(0-100mg/L),CoCl2(0-100mg/L),MnCl2(0-100mg/L),NaMoO4(0-100mg/L),NaSeO4(0-100mg/L),生物素(0-1000mg/L)。
5.根据权利要求1所述的方法,其特征在于:
循环泵回流水量与进水水量的体积比范围为0:1-1000:1。
CN201610522945.9A 2016-07-04 2016-07-04 一种厌氧氨氧化反应器的快速启动方法 Active CN105923765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610522945.9A CN105923765B (zh) 2016-07-04 2016-07-04 一种厌氧氨氧化反应器的快速启动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610522945.9A CN105923765B (zh) 2016-07-04 2016-07-04 一种厌氧氨氧化反应器的快速启动方法

Publications (2)

Publication Number Publication Date
CN105923765A true CN105923765A (zh) 2016-09-07
CN105923765B CN105923765B (zh) 2019-07-19

Family

ID=56826946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610522945.9A Active CN105923765B (zh) 2016-07-04 2016-07-04 一种厌氧氨氧化反应器的快速启动方法

Country Status (1)

Country Link
CN (1) CN105923765B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236682A (zh) * 2017-05-03 2017-10-10 南阳师范学院 厌氧氨氧化污泥菌种的富集培养方法
CN108192839A (zh) * 2018-01-08 2018-06-22 东华理工大学 一种厌氧氨氧化菌的培养基质及其培养方法
CN108217937A (zh) * 2018-02-28 2018-06-29 西安建筑科技大学 一种厌氧氨氧化工艺的快速启动装置及方法
WO2019082071A1 (en) * 2017-10-23 2019-05-02 Tubitak METHOD FOR ENRICHING ANAEROBIC AMMONIUM OXIDATION BACTERIA
CN111422993A (zh) * 2020-03-12 2020-07-17 广东工业大学 一种利用异养反硝化颗粒污泥快速启动自养型氨氧化的方法
CN111547842A (zh) * 2020-05-21 2020-08-18 清华大学 一种建立高质量厌氧氨氧化生物膜的方法
CN112723537A (zh) * 2020-12-30 2021-04-30 吉林化工学院 一种低温厌氧污泥的培养方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024985A (ja) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd 脱窒装置及び脱窒方法
CN101704576A (zh) * 2009-11-13 2010-05-12 江南大学 一种在膜生物反应器中实现同步脱氮的方法
CN103359827A (zh) * 2013-08-14 2013-10-23 哈尔滨工业大学 一种mbr反应器自养脱氮工艺的快速启动方法及利用其同步去除生活污水中碳氮的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024985A (ja) * 2001-07-18 2003-01-28 Kurita Water Ind Ltd 脱窒装置及び脱窒方法
CN101704576A (zh) * 2009-11-13 2010-05-12 江南大学 一种在膜生物反应器中实现同步脱氮的方法
CN103359827A (zh) * 2013-08-14 2013-10-23 哈尔滨工业大学 一种mbr反应器自养脱氮工艺的快速启动方法及利用其同步去除生活污水中碳氮的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236682A (zh) * 2017-05-03 2017-10-10 南阳师范学院 厌氧氨氧化污泥菌种的富集培养方法
WO2019082071A1 (en) * 2017-10-23 2019-05-02 Tubitak METHOD FOR ENRICHING ANAEROBIC AMMONIUM OXIDATION BACTERIA
CN108192839A (zh) * 2018-01-08 2018-06-22 东华理工大学 一种厌氧氨氧化菌的培养基质及其培养方法
CN108217937A (zh) * 2018-02-28 2018-06-29 西安建筑科技大学 一种厌氧氨氧化工艺的快速启动装置及方法
CN111422993A (zh) * 2020-03-12 2020-07-17 广东工业大学 一种利用异养反硝化颗粒污泥快速启动自养型氨氧化的方法
CN111547842A (zh) * 2020-05-21 2020-08-18 清华大学 一种建立高质量厌氧氨氧化生物膜的方法
CN112723537A (zh) * 2020-12-30 2021-04-30 吉林化工学院 一种低温厌氧污泥的培养方法

Also Published As

Publication number Publication date
CN105923765B (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN105923765B (zh) 一种厌氧氨氧化反应器的快速启动方法
CN102718314B (zh) 一种常温低基质厌氧氨氧化工艺的快速启动方法
CN106830573B (zh) 基于强化碳捕获与厌氧氨氧化的低能耗城市污水脱氮方法
CN107162193B (zh) 低氧硝化耦合短程反硝化厌氧氨氧化处理生活污水的装置及方法
Meng et al. Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor
CN104058555B (zh) 基于厌氧氨氧化的低碳氮比城市污水脱氮***及处理工艺
CN110002697B (zh) 垃圾渗滤液uasb产甲烷与分段进水ifas a/o spnapd脱氮装置与方法
CN114477420B (zh) 连续流aoa短程硝化及内源短程反硝化双耦合厌氧氨氧化实现污水深度脱氮的方法与装置
CN110526528A (zh) 一体式短程反硝化厌氧氨氧化水处理快速启动方法及***
CN103121754B (zh) 一种脱氮除磷工艺
CN111422993B (zh) 一种利用异养反硝化颗粒污泥快速启动自养型氨氧化的方法
CN109485150B (zh) 一种管式膜结合后置缺氧内源反硝化深度脱氮除磷的装置
CN205170617U (zh) 一种复合式生活污水处理一体化设备
CN106938863B (zh) 污泥双回流aoa实现城市污水深度脱氮除磷的装置与方法
CN108658377B (zh) 一种同时脱氮除磷的全淹没式污水处理方法
CN110054291A (zh) 低c/n比生活污水短程硝化/厌氧氨氧化后接短程反硝化/厌氧氨氧化工艺的装置和方法
CN104860482A (zh) 上流式厌氧污泥床+缺氧/好氧+厌氧氨氧化反应器工艺处理晚期垃圾渗滤液深度脱氮的方法
CN105712584B (zh) 分段短程硝化合并厌氧氨氧化同步处理养殖场沼液废水与城市污水的脱氮方法与装置
CN110104774A (zh) 连续流分段进水、污泥与发酵污泥分段回流部分反硝化/厌氧氨氧化处理城市污水的装置
CN112919627A (zh) 一种利用铁碳材料快速启动自养型氨氧化的方法
CN113233593B (zh) 污水处理工艺及污水处理装置
CN105692891A (zh) 一种富集高效能厌氧氨氧化污泥的装置及方法
CN108862581A (zh) 一种ao生物膜+污泥发酵耦合反硝化实现污水深度脱氮同步污泥减量的装置和方法
CN109467187A (zh) 废水处理***及其用于高浓度抗生素生产废水的处理工艺
CN106315980A (zh) 一种生活污水二级出水的深度处理***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant