CN105884375A - 一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法 - Google Patents

一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法 Download PDF

Info

Publication number
CN105884375A
CN105884375A CN201610178439.2A CN201610178439A CN105884375A CN 105884375 A CN105884375 A CN 105884375A CN 201610178439 A CN201610178439 A CN 201610178439A CN 105884375 A CN105884375 A CN 105884375A
Authority
CN
China
Prior art keywords
tin
conductive ceramic
composite conductive
phase
si3n4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610178439.2A
Other languages
English (en)
Other versions
CN105884375B (zh
Inventor
江涌
吴澜尔
黄新华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Minzu University
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN201610178439.2A priority Critical patent/CN105884375B/zh
Publication of CN105884375A publication Critical patent/CN105884375A/zh
Application granted granted Critical
Publication of CN105884375B publication Critical patent/CN105884375B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种Si3N4‑TiZrN2‑TiN复合导电陶瓷,合成该复合导电陶瓷的原料包括:Si3N4、ZrN、TiN、Y2O3、La2O3、AlN;该复合导电陶瓷的最终产物里包括Si3N4相、TiN相和金属氮化物的固溶体TiZrN2相。其中,AlN的加入避免了常规方式中加入Al2O3所引起的挥发,并且加入AlN会使最终产品的表面比加入Al2O3光滑;本发明名还给出一种Si3N4‑TiZrN2‑TiN复合导电陶瓷的液相烧结法。本发明有益效果如下:1.电阻率低;本发明的复合导电陶瓷用SX1944四探针测试仪测试样品电阻为10‑2Ω·cm量级,远远低于同类产品。2.机械强度高;本发明的复合导电陶瓷用载荷为10kg,加压时间为5s的条件测量样品的维氏硬度为14.7GPa;利用硬度压痕四角处扩展的裂纹长度计算样品的断裂韧性为7.8MPa.m0.5保持了氮化硅陶瓷原有的强度和硬度。

Description

一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法
技术领域:
本发明涉及导电陶瓷技术领域,具体地说,涉及一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法。
背景技术:
氮化硅(Si3N4)是一种性能很好的结构陶瓷材料,具有质量轻、高强度、高硬度、高耐腐蚀性等,可应用于各行各业。制备氮化硅陶瓷材料的方法很多,有热压、常压、反应等烧结方法,其中常压烧结方法简单易行,耗能少。由于氮化硅是共价键化合物,自扩散系数低,本身很难直接烧结成瓷,因此往往加入一些氧化物等作为烧结助剂进行烧结。常用的有Al2O3、Y2O3、MgO2等。这些添加物在烧结过程中形成液相促使氮化硅陶瓷烧结致密,以达到材料高强度、高硬度的要求。
由于Si3N4陶瓷本身高强度和高硬度的性能使得后期加工困难,常以金刚石刀具进行切割,但传统的金刚石加工的方法加工效率低且成本昂贵。成本低、效率高的放电(电火花)加工技术已成功用于金属制品加工,若能用于加工Si3N4陶瓷则会大大提高加工效率和降低加工成本,但能用放电加工的材料必须具有一定的导电性,其电阻率要求低达100Ω·cm量级及以下,但Si3N4陶瓷属于绝缘体,其电阻率约为1015Ω·cm量级,是不可能用放电方法进行加工的。所以人们想到了用另外一种导电性很好的材料加入Si3N4中制备成Si3N4基复合导电性材料,使其电阻率下降到能用于电火花加工的程度。在CN1272283C的专利里使用了金属Ti和Ta,从而使最终烧结的复合氮化硅电阻率降到100Ω·cm量级,刚刚达到放电加工的要求,并且其硬度和断裂韧性较未加导电助剂的氮化硅陶瓷差。
发明内容:
本发明旨在解决上述问题,提供一种电阻率低、硬度和断裂韧性优良的一种Si3N4-TiZrN2-TiN复合导电陶瓷;同时还提供一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法。
一种Si3N4-TiZrN2-TiN复合导电陶瓷,合成该复合导电陶瓷的原料包括:Si3N4、ZrN、TiN、Y2O3、La2O3、AlN;该复合导电陶瓷的的最终产物里包括Si3N4相、TiN相和金属氮化物的固溶体TiZrN2相。其中,AlN的加入可避免常规方式中加入Al2O3所引起的低温挥发,并且加入AlN会使最终产品的表面比加入Al2O3光滑。
由于是采用烧结工艺来制作的复合导电陶瓷材料,各材料烧结过程中的热膨胀系数是至关重要的的,如果热膨胀系数相差大,则不利于烧结,会影响最终成品的密度、硬度和断裂韧性,故所选择的导电助剂的除了要电阻率低,还要热膨胀系数要与氮化硅相差不大。另外,如果还兼有其它好的机械性能则更为理想。氮化钛和氮化锆都有高电导率,两者的电阻率都在10-4Ω·cm量级,ZrN比TiN更低(TiN:2.07×10-4Ω·cm;ZrN:1.4×10-4Ω·cm);热膨胀系数和氮化硅在一个数量级,均为约10-6K-1,且ZrN更接近氮化硅(Si3N4:3.64×10-6K-1;ZrN:7.3×10-6K-1;TiN:9.35×10-6K-1);另外TiN、ZrN本身都的硬度都比氮化硅高很多,其中,ZrN的硬度比TiN碳化钛更高,ZrN作为添加剂有增强韧性的作用。
优选的,Si3N4∶TiN∶Y2O3∶La2O3∶AlN=(9~11)∶(5.4~6.6)∶(0.8~1.2)∶(0.8~1.2)∶(1.3~1.66),ZrN的加入量为8~15w.t%。
一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法,包括以下步骤:
(1)配料混合:将Si3N4、TiN、Y2O3、La2O3、AlN以(9~11)∶(5.4~6.6)∶(0.8~1.2)∶(0.8~1.2)∶(1.3~1.66)的比例混合,ZrN的加入量为8~15w.t%,之后在研钵中加入酒精研磨1~3h后干燥;其中,Si3N4的α相含量高于70%,纯度高于97%,粒度为0.6~0.8μm,TiN粒度为18~22nm,ZrN粒度为16~21nm;
(2)成型及烧结:将干燥后的混合料用模具干压成型再经冷等静压后放入烧结炉中在N2保护气氛中进行烧结,烧结温度为1760±25℃,保温时间根据样品的大小可设为1~3h。
本发明有益效果如下:
1.电阻率低;本发明的复合导电陶瓷用SX1944四探针测试仪测试样品电阻为10-2Ω·cm量级,远低于同类产品。
2.机械强度高;本发明的复合导电陶瓷用载荷为10kg,加压时间为5s的条件测量样品的维氏硬度为14.7GPa;利用硬度压痕四角处扩展的裂纹长度计算样品的断裂韧性为7.8MPa.m0.5,达到了氮化硅陶瓷原有的高硬度和高断裂韧性。
具体实施方式:
一种Si3N4-TiZrN2-TiN复合导电陶瓷,合成该复合导电陶瓷的原料包括:Si3N4、ZrN、TiN、Y2O3、La2O3、AlN;该复合导电陶瓷的的最终产物里包括Si3N4相、TiN相和金属氮化物的固溶体TiZrN2相。
在本实施方式中,Si3N4∶TiN∶Y2O3∶La2O3∶AlN=(9~11)∶(5.4~6.6)∶(0.8~1.2)∶(0.8~1.2)∶(1.3~1.66),ZrN的加入量为8~15w.t%。
一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法,Si3N4选用α相含量高于70%粉料,纯度高于97%,平均粒度0.7μm;Y2O3、La2O3和AlN为市售,化学纯;TiN购自合肥凯尔纳米能源科技股份有限公司,纯度为99.2%,平均粒度为20nm;ZrN购自锦州金鑫股份有限公司;将各成分按(9~11)∶()∶(5.4~6.6)∶(0.8~1.2)∶(0.8~1.2)∶(1.3~1.66)的比例称量配料,将配好的料加入酒精在玛瑙研钵中混磨2小时或加入酒精和ZrO2球在聚氨酯筒中球磨1小时后置于空气中干燥;再将干燥好的混合料用不锈钢磨具干压成方块后放入烧结炉中在N2保护气氛中进行烧结,烧结温度为1760℃±25℃,保温时间根据样品的大小可设为1-3h。
利用日本理学D/MAX-RB型X射线衍射仪对烧结进行样品的物相分析,证实样品内含有金属氮化物的固溶体TiZrN2

Claims (3)

1.一种Si3N4-TiZrN2-TiN复合导电陶瓷,其特征在于:合成该复合导电陶瓷的原料包括:Si3N4、ZrN、TiN、Y2O3、La2O3、AlN;该复合导电陶瓷的的最终产物里包括Si3N4相、TiN相和金属氮化物的固溶体TiZrN2相。
2.如权利要求1所述的一种Si3N4-TiZrN2-TiN复合导电陶瓷,其特征在于:Si3N4∶TiN∶Y2O3∶La2O3∶AlN=(9~11)∶(5.4~6.6)∶(0.8~1.2)∶(0.8~1.2)∶(1.3~1.66),ZrN的加入量为8~15w.t%。
3.一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法,其特征在于:包括以下步骤:
(1)配料混合:将Si3N4、TiN、Y2O3、La2O3、AlN以(9~11)∶(5.4~6.6)∶(0.8~1.2)∶(0.8~1.2)∶(1.3~1.66)的比例混合,ZrN的加入量为8~15w.t%,之后在研钵中加入酒精研磨1~3h后干燥;其中,Si3N4的α相含量高于70%,纯度高于97%,粒度为0.6~0.8μm,TiN粒度为18~22nm,ZrN粒度为16~21nm;
(2)成型及烧结:将干燥后的混合料用模具干压成型再经冷等静压后放入烧结炉中在N2保护气氛中进行烧结,烧结温度为1760±25℃,保温时间为1~3h。
CN201610178439.2A 2016-03-18 2016-03-18 一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法 Expired - Fee Related CN105884375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610178439.2A CN105884375B (zh) 2016-03-18 2016-03-18 一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610178439.2A CN105884375B (zh) 2016-03-18 2016-03-18 一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法

Publications (2)

Publication Number Publication Date
CN105884375A true CN105884375A (zh) 2016-08-24
CN105884375B CN105884375B (zh) 2018-05-22

Family

ID=57014909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610178439.2A Expired - Fee Related CN105884375B (zh) 2016-03-18 2016-03-18 一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法

Country Status (1)

Country Link
CN (1) CN105884375B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679211A (zh) * 2021-01-29 2021-04-20 北方民族大学 一种ZrN-镧氧化物复相陶瓷及其无压反应烧结制备方法
CN113121245A (zh) * 2019-12-31 2021-07-16 辽宁省轻工科学研究院有限公司 一种可放电加工的氮化硅基复合导电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009839A1 (en) * 2006-06-09 2010-01-14 Antionette Can Ultrahard Composite Materials
CN102170716A (zh) * 2010-12-09 2011-08-31 江苏华盛精细陶瓷科技有限公司 氮化硅发热体的制作方法
CN103096528A (zh) * 2010-12-09 2013-05-08 江苏华盛精细陶瓷科技有限公司 一种氮化硅发热体的制作方法
CN103764595A (zh) * 2011-06-21 2014-04-30 戴蒙得创新股份有限公司 由陶瓷和低体积立方氮化硼形成的复合致密体及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009839A1 (en) * 2006-06-09 2010-01-14 Antionette Can Ultrahard Composite Materials
CN102170716A (zh) * 2010-12-09 2011-08-31 江苏华盛精细陶瓷科技有限公司 氮化硅发热体的制作方法
CN103096528A (zh) * 2010-12-09 2013-05-08 江苏华盛精细陶瓷科技有限公司 一种氮化硅发热体的制作方法
CN103764595A (zh) * 2011-06-21 2014-04-30 戴蒙得创新股份有限公司 由陶瓷和低体积立方氮化硼形成的复合致密体及制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121245A (zh) * 2019-12-31 2021-07-16 辽宁省轻工科学研究院有限公司 一种可放电加工的氮化硅基复合导电陶瓷及其制备方法
CN112679211A (zh) * 2021-01-29 2021-04-20 北方民族大学 一种ZrN-镧氧化物复相陶瓷及其无压反应烧结制备方法
CN112679211B (zh) * 2021-01-29 2022-05-06 北方民族大学 一种ZrN-镧氧化物复相陶瓷及其无压反应烧结制备方法

Also Published As

Publication number Publication date
CN105884375B (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
Wang et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics
Zhang et al. Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB2 ceramics
Bai et al. Microstructures, Electrical, Thermal, and Mechanical Properties of Bulk Ti 2 AlC Synthesized by Self‐Propagating High‐Temperature Combustion Synthesis with Pseudo Hot Isostatic Pressing
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
Medri et al. Properties of slip‐cast and pressureless‐sintered ZrB2–SiC composites
CN102701773A (zh) 自生氮化硅晶须增韧碳化钨复合材料及其制备方法
Júnior et al. Development and evaluation of TiB2–AlN ceramic composites sintered by spark plasma
Zhao et al. Effects of Y2O3–MgO nanopowders content on mechanical and dielectric properties of porous BN/Si3N4 composites
CN105859301A (zh) 一种氮化硅陶瓷及其制备方法
Zhou et al. Effects of the electric current on conductive Si3N4/TiN composites in spark plasma sintering
Sun et al. Low pressure hot pressing of B4C matrix ceramic composites improved by Al2O3 and TiC additives
Cao et al. Effect of Ni addition on pressureless sintering of tungsten diboride
CN105884375A (zh) 一种Si3N4-TiZrN2-TiN复合导电陶瓷的液相烧结法
Tan et al. Fabrication of toughened B4C composites with high electrical conductivity using MAX phase as a novel sintering aid
Ye et al. Effect of addition of micron-sized TiC particles on mechanical properties of Si3N4 matrix composites
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
Lin et al. Spark plasma sintering of ZrO2 fiber toughened ZrB2-based ultra-high temperature ceramics
Zhang et al. Preparation and thermal ablation behavior of HfB2–SiC‐based ultra‐high‐temperature ceramics under severe heat conditions
Lin et al. Comparison of ZrB2–ZrO2f ceramics prepared by hot pressing and pressureless sintering
CN106977198A (zh) 热压烧结氧化锆复合陶瓷绝缘件及其制备方法
CN102976761B (zh) 一种h-BN/ZrC可加工陶瓷的制备方法
CN102211940A (zh) 高性能氧化钇氮化硅陶瓷的生产方法
Yoleva et al. ADDITION ON THERMAL HYSTERESIS OF ALUMINUM TITANATE
CN102992774B (zh) 一种h-BN/HfB2可加工陶瓷的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180522

Termination date: 20210318

CF01 Termination of patent right due to non-payment of annual fee