CN105874259A - 用于热绝缘的微区碳材料 - Google Patents

用于热绝缘的微区碳材料 Download PDF

Info

Publication number
CN105874259A
CN105874259A CN201380080885.4A CN201380080885A CN105874259A CN 105874259 A CN105874259 A CN 105874259A CN 201380080885 A CN201380080885 A CN 201380080885A CN 105874259 A CN105874259 A CN 105874259A
Authority
CN
China
Prior art keywords
purposes
carbon
foam
carbon material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380080885.4A
Other languages
English (en)
Other versions
CN105874259B (zh
Inventor
马丁·卡迪克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Engineered Carbons GmbH
Original Assignee
Orion Engineered Carbons GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Engineered Carbons GmbH filed Critical Orion Engineered Carbons GmbH
Publication of CN105874259A publication Critical patent/CN105874259A/zh
Application granted granted Critical
Publication of CN105874259B publication Critical patent/CN105874259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及包含盘状碳颗粒和中空敞开的锥的颗粒状碳材料在热绝缘应用中的使用。

Description

用于热绝缘的微区碳材料
技术领域
本发明涉及颗粒状微结构碳材料在热绝缘应用中优选作为绝热填料(athermanous filler)的用途。
背景技术
用于节能的热绝缘在期望可持续发展和增加能量成本的情况下已经很突出。热绝缘在能源价格增加和资源日益稀缺的情况下获得越来越大的重要性,今后将必须满足对减少CO2排放的期望,能量需求中可持续减少的必要性以及防热和防冷的日益增加要求的需求。这些用于优化热绝缘的日益增加要求的需求同样适用于建筑物例如新的建筑物或现有的建筑物并且适用于移动物体、后勤(logistics)和固定部门(stationary sector)的热绝缘。
诸如钢、混凝土、砌石和玻璃等建筑材料以及天然岩石是相对好的导热体使得由其制造的建筑物的外墙在寒冷天气时从内向外很快地放热。因此,开发的目的在于,首先,在例如混凝土和砌石的情况下通过增大这些建筑材料的孔隙度来提高绝缘性能(insulation properties),其次,利用热绝缘材料包覆外墙。目前使用最多的热绝缘材料是具有低导热性的材料。使用的材料既包括有机绝缘材料又包括无机绝缘材料例如诸如聚苯乙烯和聚氨酯的泡沫塑料;诸如木丝和软木的木纤维材料;诸如***、亚麻、羊毛的植物或动物纤维;矿石和玻璃棉、板形式的泡沫玻璃;硅酸钙板和石膏板。那些热绝缘材料主要以泡沫板或压制板和模制品的形式单独或与其它结合使用。提供热绝缘的另一有效方式是基于真空热绝缘的原理的真空绝缘板(VIP)的使用。那些VIP包括支持真空并且被高度气密覆盖材料包围的多孔芯材料。可用于芯的材料包括开孔聚合物泡沫、微纤维材料、煅制氧化硅和珍珠岩。
上述每种材料和真空/材料组合物的热绝缘能力分别通过添加能与红外辐射相互作用的绝热材料并因此减少红外传输而进一步改善。例如,绝热材料可用作热绝缘聚合物泡沫和真空绝热板中的填料。可膨胀热塑性聚合物和在这些之中特别地可膨胀聚苯乙烯(EPS)是已经熟知的并且长时间用于制备膨胀物品的传统绝缘材料,其中在各种可适用区域中可采用该膨胀物品,在各种可适用的区域之中,最重要的一个是热绝缘。因为聚合物的热传导率在这些值具有最小值,所以膨胀的聚苯乙烯的平板通常以约30g/l的密度使用。降到该极限以下不是有益的,虽然在技术上是可行的,但是因为它使得板的热传导率急剧增加,其必须通过增大其厚度来补偿。为了避免该缺点,聚合物可用诸如石墨(例如购自巴斯夫(BASF)的)、炭黑或铝等绝热材料填充。绝热填料的良好性能以及从而整体热绝缘允许膨胀物品的密度或者膨胀物品的厚度显著减小,而不会降低整体热阻值。
EP 620,246A描述了一种用于制备包含在表面上分布或可选地并入在颗粒本身内部的绝热材料例如炭黑的可膨胀聚苯乙烯的颗粒的方法。
长期以来人们已经熟知使用炭黑作为填料或颜料或其它作为成核剂(例如参见化学摘要(Chem Abstr.),1987年,“包含聚苯乙烯珠的炭黑(Carbon Black Containing Polystyrene Beads)”)的使用。炭黑的各种类型之中,最重要的是来自石油燃烧的炭黑(“石油炭黑”)/来自气体燃烧的炭黑、来自乙炔的炭黑、灯黑、槽法炭黑、热炭黑和导电的炭黑。WO1997/45477描述了基于包含苯乙烯聚合物的可膨胀聚苯乙烯的并且由0.05%-25%的灯黑型炭黑制成的组合物。
根据制造过程,这些炭黑的直径范围是约10nm-约1000nm并且比表面积(从10到2000m2/g)非常不同。这些差异导致红外线的堵塞能力不同。WO 2006/61571描述了基于包含苯乙烯聚合物的可膨胀聚苯乙烯的从0.05%-小于1%、表面面积范围在550-1600m2/g炭黑制成的组合物。
众所周知,石墨也能够有效地用作黑体(例如如JP63-183941、WO04/022636、WO 96/34039中所述)。然而,最近它在聚合物泡沫中用作红外辐射的衰减试剂。专利申请JP 63-183941首先提出一些添加剂在积极阻挡波长范围在6μm-14μm内的红外线中的用途,因此获得能够永久维持低导热率的热绝缘热塑性树脂。在全部添加剂中,优选石墨。
DE 9305431U描述了一种用于生产密度小于20kg/m3并且导热率降低的膨胀模制产品的方法。该结果通过将诸如石墨以及炭黑等绝热材料并入刚性聚苯乙烯泡沫中实现。国际专利申请WO 98/51735描述了包含在聚苯乙烯基体中均质分布的0.05-25重量%的合成石墨颗粒或者天然石墨颗粒的可膨胀聚苯乙烯微粒。石墨优选地具有范围在1-50μm内的平均直径,范围在100-500g/l的表观密度和范围在5-20m2/g的表面积。
WO 2011/042800涉及一种包括包含厚度不大于150nm、平均尺寸(长度、宽度或者直径)不大于10μm和表面积>50m2/g的纳米级石墨烯板的绝热填料的可膨胀热塑性纳米复合聚合物组合物,优选聚苯乙烯组合物。
存在对具有低空间需求从而允许多领域使用的高效热绝缘材料的不断需求。本发明解决的问题是找到辐射热传导率非常低的可与常规材料结合使用以提高热绝缘的颗粒状材料。更特别地,寻求一种在聚合物泡沫和真空绝热板中使用的绝热填料材料。
发明内容
现在我们已经发现包含盘形状的碳颗粒(“碳盘”)和中空敞开锥(“碳锥”)的颗粒状碳材料可用于热绝缘。
使用术语“碳锥”和“碳盘”来指定处于微区或者更小(纳米区)的特定类型的碳结构。这些结构可被大概地描述为具有平坦或者锥形结构的成堆的石墨板。敞开碳锥通常是中空锥,每个中空锥除了它们的敞开的边缘之外由连续的石墨板制成。所有锥在顶端闭合并且仅与五个不同开度角共存。仅由六边形构成的石墨板不能形成连续的锥帽,但是形成平板或者盘。必须添加五边形以形成弯曲的尖端。敞开的碳锥可被模制成包裹的石墨板。为了实现无应变、无缝包裹,必须从板中切出扇形,之后必须连接边缘。考虑石墨板的对称性,扇形应该具有TD=N x 60°的角度(=总向错(disclination)TD),其中N=0、1、2、3、4或5并且对应于产生特定总向错(曲率)所需的五边形的有效数量。因此,根据等式α=2arcsin(1-N/6),锥的开度角α仅具有特定离散值。0°(N=0)的总向错对应于平板,即碳盘可被描述为具有纯六边形石墨结构的平坦圆形石墨板。从国际申请WO 98/42621得到的图1示意性地示出各种可能的碳锥的投影角(开度角和顶角)。
参照出现在自然(Nature)(1997年)7月31日出版的文章“石墨锥和弯曲的碳表面的晶核形成(Graphitic Cones and the Nucleation of CurvedCarbon Surfaces)”更好地理解如应用于碳锥和碳盘的向错和投影角的概念。如图1所示,用于每个可能的锥的投影角是19.2°、38.9°、60°、83.6°和112.9°,其分别对应于300°(N=5)、240°(N=4)、180°(N=3)、120°(N=2)和60°(N=1)的总向错。另外,平板石墨板具有180°的投影角和0°的总向错。颗粒状碳材料的电子显微照片确认具有上述可能的开度角中至少一个的盘和锥的存在。还未观察到具有不同于上述开度角的开度角的碳锥。
碳锥和碳盘的特征尺寸或最长尺寸通常小于5μm,优选小于4μm,更优选不大于2μm,例如1μm-2μm或小于1μm或小于800nm,中空敞开的碳锥的被测量为壁厚的厚度或者盘的厚度通常是小于100nm,优选小于80nm,更优选小于50nm,例如20nm-30nm。典型的纵横比的范围在1-50内,其明显地区分由纵横比的范围在100-1000内的碳纳米管制成的那些微区结构。
碳盘和碳锥是在本颗粒状碳材料中占有很大优势的碳微区(micro-domain)结构。通常地,颗粒状碳材料包括大于90重量%的碳微区结构和上达约10重量%的普通炭黑。颗粒状材料的微区部分通常包括至少10重量%的碳锥,优选约80重量%的碳盘和约20重量%的碳锥。进一步地,也可存在诸如纳米管和富勒烯(fullerene)但是仅微量的微区或者纳米区结构。
本颗粒状碳材料由在WO 98/42621中完整描述的所谓的克瓦纳炭黑和氢方法(Kvaerner Carbon Black&Hydrogen Process),等离子喷枪工艺(plasma torch process)生产。生产方法可被概括为两阶段热解工艺,其中碳氢化合物原料首先被引入等离子区,借此进行第一温和热解步骤,在该步骤中碳氢化合物仅部***解或分解以形成多环芳香族碳氢化合物(PAH),在PAH进入第二足够强等离子区之前完成碳氢化合物向元素碳和氢的分解。
US 6,476,154涉及为了提高橡胶组合物的机械性能,本颗粒状微区碳材料在二烯基合成橡胶中的用途。橡胶混合物的应用包括轮胎、带和软管。颗粒状碳材料的热辐射导热率未被提到并且与US 6,476,154中提到的预期应用也没有任何关联。
WO 2006/052142涉及包含通过将其加载有由通过克瓦纳炭黑和氢工艺(Kvaerner Carbon Black&Hydrogen Process)制备的本颗粒状碳材料组成的导电填料已经使其导电的本性上是非导电材料的导电复合材料。WO 2006/052142还描述了填料和因此导热复合材料,但是没有提供证据。
根据WO 2006/052142的教导,将颗粒状碳材料添加到非导电材料以增强导热率,相当意外的是,颗粒状碳材料可用于热绝缘。本发明人的功绩在于已经发现,颗粒状微结构碳材料对红外辐射具有格外高的消光系数,这对于热绝缘应用是理想的。
在波长Λ=1.4μm-35μm的范围内的光谱有效比消光系数e*Λ为传输材料的热辐射的衰减而测量。消光包括材料内的吸收过程和散射过程。各向异性散射对辐射传输的影响可被包含在缩放至所谓的有效量中,用星号标记(s*Λ,e*Λ和ω*0,Λ)。光谱有效比消光系数e*Λ由光谱有效比散射系数s*Λ和光谱吸收系数αΛ的总和给出。
e Λ * = s Λ * + α Λ [ m 2 / k g ] - - - ( 1 )
光谱有效消光系数e*Λ和密度ρ的乘积的倒数是介质中热辐射的平均自由行程LΛ,即,散射或者吸收发生之前的行程:
L Λ = 1 e Λ * · ρ [ m ] - - - ( 2 )
光谱有效漫反射率ω*0,Λ是光谱有效比散射系数s*Λ与光谱有效比消光系数e*Λ的商。
反射率ω*0的值可在0和1之间找到(在仅吸收的情况下为0,在仅散射的情况下为1)。
红外光学特性的完整描述通过消光系数和反射率或散射和吸收系数给出。这四个值通过等式(1)和等式(3)联系。
为了描述通过散射和吸收介质的总辐射热传送,作为温度的函数的总有效比消光系数e*(T)通过利用罗瑟兰权函数(Rosseland weightfunction)(fR(Λ,T))将光谱有效比消光系数e*Λ对范围在Λ=1.4μm-35μm内的波长Λ积分获得。
1 e * = ∫ 0 ∞ 1 e Λ * · f R ( Λ , T ) · d λ ∫ 0 ∞ f R ( Λ , T ) · d λ [ m 2 / k g ] - - - ( 4 )
其中罗瑟兰函数是在给定的波长Λ和温度T时由黑体发出光谱强度iΒ(Λ,Τ)相对于相同温度下的总强度iB(T)的偏导数:
f R ( Λ , T ) = ∂ i B ( Λ , T ) ∂ i B ( T ) [ 1 / m ] - - - ( 5 )
如果已知总有效比消光系数,则辐射热导率可根据样本厚度计算:
λ r a d ( T ) = 16 3 · σ · T 3 4 3 · d + e * ( T ) · ρ [ W / m · K ] - - - ( 6 )
其中T为平均样本温度,并且斯忒藩-玻耳兹曼常数(Stefan-Boltzmann constant)σ=5.67·10-8Wm-2K-4
对于光学厚样本(即,e*·ρ·d>>1),等式(6)简化为:
λ r a d , ∞ ( T ) = 16 3 · σ · T 3 e * ( T ) · ρ [ W / m · K ] - - - ( 7 )
λrad,∝不取决于样本厚度。
通常,本颗粒状碳材料在300K时Λ=1.4μm-35μm的红外辐射下的总有效比消光系数e*在1200-1700m2/kg的范围内,典型地在1290-1640m2/kg的范围内。用于计算颗粒状碳材料的总有效消光系数e*的参数如示例中所述而获得。
本颗粒状微结构碳材料的红外线消光实际上比迄今用作绝热填料的熟知炭黑和石墨的红外线消光高很多。本发明的进一步基本优点在于,特定颗粒状碳材料可以与普通炭黑近似相同的大小和生产费用进行工业生产。
由于它的独特的IR消光特征,本颗粒状碳材料单独或优选与任何其它材料组合用于热绝缘的任何应用中。这些材料通常是热绝缘的并且包括有机和无机热绝缘材料两者。将本颗粒状碳材料添加至热绝缘材料通过合成物显著地降低导热率,因此提高热绝缘效果。可与本颗粒状碳材料组合使用的示例性热绝缘材料是热塑性聚合材料或热固性聚合材料;诸如木丝和软木等木纤维材料;诸如***、亚麻、羊毛等植物纤维或动物纤维;矿石和玻璃棉、板式泡沫玻璃;硅酸钙板和石膏板;煅制氧化硅,和这些材料中至少两种的混合物。聚合材料的示例包括乙烯基聚合物,优选诸如聚苯乙烯等乙烯基芳族聚合物、苯乙烯与至少一个可共聚单体的共聚物和聚丙烯;以及聚氨酯。还可使用各种聚合物的混合物。包括上述的热绝缘聚合材料通常以开孔泡沫或闭孔泡沫的形式存在。与本颗粒状碳材料一起使用的聚合物泡沫包括例如膨胀聚苯乙烯(EPS)、苯乙烯和至少一个可共聚单体的膨胀共聚物、膨胀聚丙烯、膨胀聚苯乙烯(XPS)和聚氨酯泡沫。在一些实施例中,聚合物泡沫包含1重量%-10重量%,优选1.5重量%-8重量%,更优选2重量%-6重量%的本颗粒状碳材料,每种基于聚合材料的重量。
通常,本颗粒状碳材料用作包括/并入优选为如上所述的聚合物泡沫的基体材料中的绝热填料。在一些实施例中,颗粒状碳材料连同可以是热绝缘的或者不是热绝缘的至少一种另外的填料材料一起用作绝热填料(例如在优选为如上所述的聚合物泡沫的基体材料中)。与本颗粒状碳材料一起使用的填料材料的示例包括煅制氧化硅,例如硅胶R812(利用六甲基二硅氮烷后处理并且购自德国的赢创工业AG(EvonikIndustries AG)的疏水性煅制氧化硅)。本领域的技术人员熟知如何将绝热填料并入聚合物泡沫中并且文献描述了各种方法,例如WO2011/042800公开用于制备载有绝热填料的热塑性聚合物优选聚苯乙烯的膨胀和膨胀挤出板的一些方法。
此外,本颗粒状碳材料可用于真空绝缘板(VIP)中以进一步降低导热率。它可被添加至用作支撑芯的材料中,优选地它被并入至多孔芯材料。可与本颗粒状碳材料结合用于芯的材料包括诸如聚氨酯泡沫等开孔聚合物泡沫、微纤维材料、煅制二氧化硅和珍珠岩。
其中可单独使用或与另一种热绝缘材料组合使用的本颗粒状碳材料的另一应用是作为用于高温炉的绝缘的填料。
示例
现在将在下述示例中详细地描述本发明的一些实施例。
材料:
所有炭黑粉末购自德国哈瑙(Hanau)的Orion工程碳股份有限公司(Orion Engineered Carbons GmbH)。
*比较例
1由如WO98/42621中所述的克瓦纳炭黑和氢工艺(KvaernerCarbon Black&Hydrogen Process)制备
2基于聚苯乙烯的重量的重量百分比
3购自加拿大的加拿大碳公司(Canada Carbon)
研究粉末样本(本发明示例)和2种泡沫(本发明示例2和3)以获得在环境温度(300K)时的总有效比消光系数e*。
测量方法:
利用布鲁克(Bruker)傅里叶变换红外线(FTIR)分光计Vertex70v在1.4μm-35μm的波长范围内测量样本,其中上述波长范围对于环境温度下的辐射热传输是决定性的。为了测量光谱半球方向透射率和反射率,粉末样本的薄膜被展开至在红外波长范围内是透明的支撑PE层上。薄的粉末层利用真空计喷射至PE层上。均匀的薄膜的制备利用商用粉末分散***GALAI PD 10执行。流入真空室的强空气将粉末转换成不结成块的、部分带电的灰尘,其缓慢地沉积到支撑箔上并且形成相当稳定的样本。图2描绘真空粉末分散***GALAI PD 10;被放置在真空容器的顶部处的孔内粉末晶粒被吸入开口中并且沉积到PE箔上。可通过改变粉末的数量获得厚度在30μm-500μm之间的粉末层。
为了测量泡沫的光谱半球方向透射率和反射率,一些每个泡沫样本层从泡沫板中模压出来。层的直径是16mm。
然后,样本被放置在与分光计联接的积分球的开口中。图3示出用于确定在环境温度下表面的法线方向上的半球方向透射率Tdh(左边)和反射率Rdh(右边)的积分球的配置。在表面的法线方向上照射样本并且被反射至前侧半球或者被透射至后侧半球的辐射分别被测量用于透射谱或反射谱。测量具有不同厚度的一些样本,以便考虑样本的最终不均匀性并且保证足够好的平均测定值。为了计算光谱有效比消光系数e*Λ,还确定每个样本的单位面积质量m"。
根据光谱半球方向透射率和反射率,利用辐射传输等式的特定解,即所谓的三通量解(three-flux solution)计算每个样本的光谱有效比消光系数e*Λ和光谱有效反射率ω*Λ。三通量解允许通过散射和吸收介质的辐射传输定量化以及确定所研究的样本的光谱散射系数和吸收系数。
附图说明
图4示出根据1.4-35μm的波长Λ的包含盘和锥的颗粒状碳材料(IE1)的光谱比吸收系数αΛ
图5示出根据1.4-35μm的波长Λ包含盘和锥的颗粒状碳材料(IE1)的光谱有效比散射系数s*Λ
图6示出根据1.4-35μm的波长Λ的包含盘和锥的颗粒状碳材料(IE1)的光谱有效比消光系数e*Λ
图7示出根据1.4-35μm的波长Λ的IE2(包含3重量%的IE1的膨胀聚苯乙烯泡沫)和IE3(包含5重量%的IE1的膨胀聚苯乙烯泡沫)的光谱比吸收系数αΛ
图8示出根据1.4-35μm的波长Λ的IE2(包含3重量%的IE1的膨胀聚苯乙烯泡沫)和IE3(包含5重量%的IE1的膨胀聚苯乙烯泡沫)的光谱有效比散射系数s*Λ
图9示出根据1.4-35μm的波长Λ的IE2(包含3重量%的IE1的膨胀聚苯乙烯泡沫)和IE3(包含5重量%的IE1的膨胀聚苯乙烯泡沫)的光谱有效比消光系数e*Λ
具体实施方式
根据波长在1.4μm-35μm之间的光谱有效比消光系数e*Λ,根据本申请的说明书中的等式计算在环境温度下的总有效比消光系数。
结果:
表1报告在300K的温度下研究的样本的总有效比消光系数e*。可确定由等式(4)计算的总有效比消光系数e*的准确度是约10%-15%。
表1:总有效比消光系数e*
示例编号 简短说明 T=300K下的e*/m 2 /kg
IE1 碳盘和锥 1466±176
IE2 3%IE1的EPS泡沫 116±14
IE3 5%IE1的EPS泡沫 152±18
CE4* 天然石墨粉末 292±35
表2示出根据等式(7)计算的总有效比消光系数e*和辐射传导率λrad,∝和在温度T=300K下研究的泡沫IE2和IE3的泡沫密度ρ。
表2:泡沫样本的性质
表1中所示的结果表明,包含碳盘和碳锥的颗粒状微区碳材料(IE1)的总有效比消光系数e*显著高于迄今以来用作绝热填料的石墨的总有效比消光系数。进一步非常关注的是,从表2看出,加载有本颗粒状碳材料的EPS泡沫具有真空绝热板通常达到的范围的异常低的导热率。这是特别明显的,因为在约16kg/m3的相对低密度的EPS泡沫中获得这些低传导率。用于绝缘目的的未加载的EPS泡沫必须具有至少30kg/m3的密度,因为更低的密度使得导热率急剧增大。

Claims (15)

1.一种包含盘状碳颗粒和中空敞开的锥的用于热绝缘的颗粒状碳材料的用途。
2.根据权利要求1所述的用途,其中,中空碳锥具有下述开度角中的一个或几个:19.2°、38.9°、60°、83.6°和112°。
3.根据权利要求1或2所述的用途,其中,所述碳盘的厚度和所述中空敞开的碳锥的壁的厚度小于100nm。
4.根据权利要求1至3中任一项所述的用途,其中,所述碳盘和所述中空敞开的碳锥的最长尺寸小于5μm。
5.根据权利要求1至4中任一项所述的用途,其中,所述颗粒状碳材料具有在300K时Λ=1.4μm-35μm的情况下1200-1700m2/kg的范围内用于IR辐射的总有效比消光系数e*。
6.根据权利要求1至5中任一项所述的颗粒状碳材料在热绝缘应用中的用途。
7.根据权利要求1至6中任一项所述的用途,其中,所述颗粒状碳材料与至少一种另一种材料优选为热绝缘材料结合使用。
8.根据权利要求7所述的用途,其中,所述颗粒状碳材料用作绝热填料。
9.根据权利要求8所述的用途,其中,所述颗粒状碳材料被并入真空绝热板(VIP)中。
10.根据权利要求8所述的用途,其中,所述颗粒状碳材料被并入包含至少一种另一种热绝缘材料优选为聚合材料的基体中。
11.根据权利要求10所述的用途,其中,所述热绝缘材料包括选自乙烯基聚合物特别为乙烯基芳族聚合物和聚氨酯中的至少一种聚合物。
12.根据权利要求10或11所述的用途,其中,所述热绝缘材料包括聚合物泡沫。
13.根据权利要求12所述的用途,其中,所述聚合物泡沫包括热塑性或者热固性聚合物。
14.根据权利要求13所述的用途,其中,所述聚合物泡沫包含下述中至少一种:发泡聚苯乙烯、苯乙烯和至少一个可共聚单体的膨胀共聚物、膨胀聚丙烯、挤压聚苯乙烯和聚氨酯泡沫。
15.根据权利要求10至14中任一项所述的用途,其中,所述颗粒状碳材料与诸如煅制氧化硅的至少一种另一种填料材料一起使用。
CN201380080885.4A 2013-10-04 2013-10-04 用于热绝缘的微区碳材料 Active CN105874259B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/070659 WO2015049008A1 (en) 2013-10-04 2013-10-04 Micro-domain carbon material for thermal insulation

Publications (2)

Publication Number Publication Date
CN105874259A true CN105874259A (zh) 2016-08-17
CN105874259B CN105874259B (zh) 2018-06-29

Family

ID=49301507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380080885.4A Active CN105874259B (zh) 2013-10-04 2013-10-04 用于热绝缘的微区碳材料

Country Status (9)

Country Link
US (1) US10107443B2 (zh)
EP (1) EP3052851B9 (zh)
JP (1) JP6285038B2 (zh)
KR (1) KR102201798B1 (zh)
CN (1) CN105874259B (zh)
BR (1) BR112016007331B1 (zh)
ES (1) ES2642363T3 (zh)
PL (1) PL3052851T3 (zh)
WO (1) WO2015049008A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109129810A (zh) * 2018-09-05 2019-01-04 福建农林大学 一种环保真空绝热芯板及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
CA2937909C (en) 2014-01-31 2023-09-19 Monolith Materials, Inc. Plasma torch design
CN107709474A (zh) 2015-02-03 2018-02-16 巨石材料公司 炭黑生成***
PL3253904T3 (pl) 2015-02-03 2021-01-11 Monolith Materials, Inc. Urządzenia i sposób chłodzenia regeneracyjnego
CN111601447A (zh) 2015-07-29 2020-08-28 巨石材料公司 Dc等离子体焰炬电力设计方法和设备
US20170066923A1 (en) * 2015-09-09 2017-03-09 Monolith Materials, Inc. Circular few layer graphene
CA3034212C (en) 2015-09-14 2023-08-01 Monolith Materials, Inc. Carbon black from natural gas
MX2018013161A (es) 2016-04-29 2019-06-24 Monolith Mat Inc Metodo y aparato para inyector de antorcha.
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
EP3592810A4 (en) 2017-03-08 2021-01-27 Monolith Materials, Inc. SYSTEMS AND METHODS FOR THE PRODUCTION OF CARBON PARTICLES WITH HEAT TRANSFER GAS
CN115746586A (zh) 2017-04-20 2023-03-07 巨石材料公司 颗粒***和方法
EP3700980A4 (en) 2017-10-24 2021-04-21 Monolith Materials, Inc. PARTICULAR SYSTEMS AND PROCEDURES
JP7310128B2 (ja) * 2018-03-19 2023-07-19 株式会社リコー 接触部材、印刷装置、及び印刷方法
CN110610028B (zh) * 2019-08-15 2022-12-20 复旦大学 一种针对热辐射的热隐身斗篷
CN115895238A (zh) * 2022-12-10 2023-04-04 昆山红苹果塑胶新材料有限公司 一种耐高温的tpu薄膜及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9305431U1 (de) * 1993-04-13 1994-08-11 Algostat Gmbh & Co Kg Formkörper aus Polystyrol-Hartschaum
CN1257459A (zh) * 1997-03-25 2000-06-21 克瓦纳尔技术研究公司 微晶畴石墨材料及其生产方法
US6476154B1 (en) * 2000-09-28 2002-11-05 The Goodyear Tire & Rubber Company Use of carbon black in curable rubber compounds
CN101061554A (zh) * 2004-11-03 2007-10-24 碳锥体公司 导电和导热复合材料
CN102666686A (zh) * 2009-10-07 2012-09-12 波利玛利欧洲股份公司 具有改进的绝热能力的可膨胀热塑性纳米复合聚合物组合物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183941A (ja) 1987-01-27 1988-07-29 Asahi Chem Ind Co Ltd 断熱用熱可塑性樹脂発泡体
US5679718A (en) * 1995-04-27 1997-10-21 The Dow Chemical Company Microcellular foams containing an infrared attenuating agent and a method of using
AU2960897A (en) 1996-05-28 1998-01-05 Basf Aktiengesellschaft Expandable styrene polymers containing carbon black
EP0981574B1 (de) 1997-05-14 2000-09-06 Basf Aktiengesellschaft Graphitpartikel enthaltende expandierbare styrolpolymerisate
NO307986B1 (no) * 1998-02-06 2000-07-03 Inst Energiteknik FremgangsmÕte ved lagring av hydrogen i et karbonmateriale
IN2001CN00559A (zh) * 1998-09-25 2010-03-19 Kvaerner Technology & Res Ltd
US6132837A (en) * 1998-09-30 2000-10-17 Cabot Corporation Vacuum insulation panel and method of preparing the same
DE10241298A1 (de) 2002-09-04 2004-03-18 Basf Ag Verfahren zur Herstellung von Polystyrolschaumpartikeln mit niedriger Schüttdichte
WO2006061571A1 (en) 2004-12-06 2006-06-15 Ineos Europe Limited Expandable polystyrene composition
IT1396918B1 (it) * 2009-11-03 2012-12-20 Polimeri Europa Spa Procedimento per la preparazione di nanopiastrine grafeniche ad elevata disperdibilita' in matrici polimeriche a bassa polarita' e relative composizioni polimeriche
DE102011083017A1 (de) * 2011-09-20 2013-03-21 Evonik Industries Ag Verbundwerkstoffe umfassend eine offenzellige Polymermatrix und darin eingebettete Granulate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9305431U1 (de) * 1993-04-13 1994-08-11 Algostat Gmbh & Co Kg Formkörper aus Polystyrol-Hartschaum
CN1257459A (zh) * 1997-03-25 2000-06-21 克瓦纳尔技术研究公司 微晶畴石墨材料及其生产方法
US6476154B1 (en) * 2000-09-28 2002-11-05 The Goodyear Tire & Rubber Company Use of carbon black in curable rubber compounds
CN101061554A (zh) * 2004-11-03 2007-10-24 碳锥体公司 导电和导热复合材料
CN102666686A (zh) * 2009-10-07 2012-09-12 波利玛利欧洲股份公司 具有改进的绝热能力的可膨胀热塑性纳米复合聚合物组合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109129810A (zh) * 2018-09-05 2019-01-04 福建农林大学 一种环保真空绝热芯板及其制备方法

Also Published As

Publication number Publication date
EP3052851B9 (en) 2017-11-22
EP3052851A1 (en) 2016-08-10
US20160238187A1 (en) 2016-08-18
WO2015049008A1 (en) 2015-04-09
JP2016538232A (ja) 2016-12-08
JP6285038B2 (ja) 2018-02-28
EP3052851B1 (en) 2017-08-23
US10107443B2 (en) 2018-10-23
BR112016007331B1 (pt) 2021-01-12
PL3052851T3 (pl) 2018-01-31
ES2642363T3 (es) 2017-11-16
BR112016007331A2 (pt) 2017-08-01
KR102201798B1 (ko) 2021-01-13
KR20160078346A (ko) 2016-07-04
CN105874259B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN105874259A (zh) 用于热绝缘的微区碳材料
Xie et al. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications
Gong et al. Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams
Chen et al. Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material
CN104745976A (zh) 碳纳米管增强泡沫铝基复合材料的制备方法
KR101028523B1 (ko) 고단열성 발포성 폴리스티렌 입자 및 그 제조방법
CN102341446A (zh) 成型陶瓷/泡沫体的微波辅助固化
Li et al. Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel
CN101426844A (zh) 发泡绝缘材料
Koebel et al. Aerogels for superinsulation: a synoptic view
CN105008441B (zh) 含具有多模态颗粒尺寸分布的石墨颗粒的能膨胀的乙烯基芳族聚合物
JP2013525538A (ja) 断熱用発泡成形品
KR101782702B1 (ko) 경성 발포 폴리스티렌
Mahesh et al. Thermal conductivity variations with composition of gelatin-silica aerogel-sodium dodecyl sulfate with functionalized multi-walled carbon nanotube doping in their composites
Jiang et al. Polyetherimide nanocomposite foams as an ablative for thermal protection applications
Xie et al. Robust and self-healing polydimethylsiloxane/carbon nanotube foams for electromagnetic interference shielding and thermal insulation
Zheng et al. Fiber templated epitaxially grown composite membranes: from thermal insulation to infrared stealth
CN103524143B (zh) 发泡玄武岩保温材料的制作方法
Adegun et al. Anisotropic thermally superinsulating boron nitride composite aerogel for building thermal management
Yang et al. Progress in the Foaming of Polymer‐based Electromagnetic Interference Shielding Composites by Supercritical CO2
KR20130071268A (ko) 단열성 및 난연성이 우수한 발포성 폴리스티렌, 그 제조방법 및 그로부터 형성된 발포체
Lamm et al. Tailorable thermoplastic insulation foam composites enabled by porous-shell hollow glass spheres and expandable thermoplastic microspheres
JP6612634B2 (ja) スチレン系樹脂発泡性粒子、発泡粒子及び発泡成形体
CN107140936A (zh) 一种适合工业化批量生产的中空玻璃微球基保温材料的制备方法
KR102265547B1 (ko) 반전도성 폴리프로필렌 수지 발포 입자의 제조방법 및 발포 성형체

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant