CN105868942A - 电动汽车的有序充电调度方法 - Google Patents

电动汽车的有序充电调度方法 Download PDF

Info

Publication number
CN105868942A
CN105868942A CN201610399530.7A CN201610399530A CN105868942A CN 105868942 A CN105868942 A CN 105868942A CN 201610399530 A CN201610399530 A CN 201610399530A CN 105868942 A CN105868942 A CN 105868942A
Authority
CN
China
Prior art keywords
electric automobile
charging
described electric
current
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610399530.7A
Other languages
English (en)
Other versions
CN105868942B (zh
Inventor
苏粟
刘紫琦
姜久春
李�浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201610399530.7A priority Critical patent/CN105868942B/zh
Publication of CN105868942A publication Critical patent/CN105868942A/zh
Application granted granted Critical
Publication of CN105868942B publication Critical patent/CN105868942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提出了一种电动汽车有序充电调度方法,该方法包括:根据预先建立的电动汽车续驶里程预测模型计算出电动汽车当前工况的能耗,根据电动汽车当前工况的能耗和当前的SOC计算出电动汽车的续驶里程;当电动汽车的续驶里程与电动汽车下次充电前的预计行驶里程之间的比例小于设定阈值,则根据预先建立的电动汽车动力电池寿命模型计算出电动汽车的充电量;根据电动汽车的充电量、离开时间和配电网当前的负荷状况,以局域配电网峰谷差最小为优化目标,对电动汽车的充电过程进行调度。本发明的方法以满足驾驶员的驾驶行为特性为基础,通过合理引导电动汽车充放电来延长电动汽车动力电池的使用寿命,可以减小电网负荷的峰谷差,保证电网的稳定运行。

Description

电动汽车的有序充电调度方法
技术领域
本发明涉及电动汽车充电技术领域,尤其涉及一种电动汽车的有序充电调度方法。
背景技术
保障能源的可持续供应,是国家能源安全战略的不可忽视的一个环节,制定符合我国可持续发展的能源安全战略已经到了刻不容缓的地步。一方面,改善能源环境,降低碳排放是能源可持续发展的重要共识。另一方面,化石能源作为全球能源的重要形式,容易受到政治、经济、恐怖袭击等各方面的影响。节能减排和可持续发展使得以内燃机作为动力源的传统机动车面临着被淘汰的命运,而使用清洁能源的电动汽车必然会成为未来机动车行业发展的新方向。电动汽车作为一种新型电力负荷,其充电具有随机性、间歇性的特征,规模化电动汽车充电将会改变电网当前的负荷状况,加大电网一天内的最大负荷与最小负荷之差(峰谷差),影响配电网稳定运行。因此如何解决因电动汽车充电给电网带来的较大峰谷差,是本发明的主要方面。
为减轻电动汽车大规模接入对配电网的影响,提高电网运行的可靠性和经济性,需要尽量减少电动汽车的随机充电(无序充电),对电动汽车充电进行引导,即有序充电。由于目前电动汽车还处于初级发展阶段,电动汽车的普及率并不高,因此针对电动汽车有序充电的研究并不太多且多以改善配电网负荷状况或以降低配电网网损为目标,却忽略了用户的充电意愿,造成这些研究在实际中很难得到应用。
为了提高电动汽车使用者的响应率,除了电网安全运行目标以外,还需要关注使用者的根本需求和利益。根据汽车工业研究调查结果表明:用户在购买和使用电动汽车过程中,除了车辆的性价比之外,最为关心的是驾驶的便利性(单次电池续驶里程,驾驶舒适度等)、动力电池寿命、充电的便利性。若能根据用户驾驶行为特性和用户需求合理引导其充放电来延长车辆的电池使用寿命,同时减少电网的峰谷差,电动汽车的用户充电响应率将有一个质的飞跃。然而,目前的现有技术中,鲜有研究考虑电池寿命及用户驾驶行为特性和充电意愿对于充电调度策略的重要性。
发明内容
本发明的实施例提供了一种电动汽车的有序充电调度方法,以实现考虑用户驾驶行为特性的电动汽车的有序充电调度策略。
为了实现上述目的,本发明采取了如下技术方案。
一种电动汽车有序充电调度方法,包括:
根据预先建立的电动汽车续驶里程预测模型计算出电动汽车当前工况的能耗,根据所述电动汽车当前工况的能耗和当前的荷电状态SOC计算出所述电动汽车的续驶里程;
当所述电动汽车的续驶里程与所述电动汽车下次充电前的预计行驶里程之间的比例小于设定阈值,根据所述电动汽车的充电量、离开时间和配电网当前的负荷状况,利用预先建立的电动汽车动力电池寿命模型计算出所述电动汽车的充电量,以局域配电网峰谷差最小为优化目标,对所述电动汽车的充电过程进行调度。
进一步地,所述的根据预先建立的电动汽车续驶里程预测模型计算出电动汽车当前工况的能耗,包括:
预先建立电动汽车续驶里程预测模型,该电动汽车续驶里程预测模型包括:定义电动汽车每行驶设定距离为一个片段,给每个片段设定参数信息,该参数信息包括平均速度、最大速度、速度的平方和、加速比例、减速比例、匀速比例、怠速比例、室外温度和空调功率,选取设定数量个片段以及每个片段的参数信息,通过主成分分析法和模糊聚类算法对所述设定数量个片段进行计算,得到多个聚类中心,每个聚类中心对应一种工况,每个聚类中心的参数信息包括:平均速度、加速比例、减速比例、匀速比例、空调功率、环境温度和能耗参数;
根据所述电动汽车当前的片段的参数信息和所述每个聚类中心除能耗参数外的参数信息,分别计算出所述电动汽车当前的片段与各个聚类中心之间的距离值,将各个距离值进行比较,将距离值最短的聚类中心对应的工况作为所述电动汽车的当前工况,将所述距离值最短的聚类中心的能耗参数作为所述电动汽车当前工况的能耗。
进一步地,所述的分别计算出所述电动汽车当前的片段与各个聚类中心之间的距离值,包括:
设聚类中心的数量为c,所述电动汽车当前的片段与各个聚类中心之间的距离值di的计算公式为:
di=||x-ci||,i=1,2,3,…,c
式中:x为所述电动汽车当前的片段的参数,ci为聚类中心i的聚类中心参数,ci=(ci1,ci2,…,ci6)。
进一步地,所述的根据所述电动汽车当前工况的能耗和当前的荷电状态SOC计算出所述电动汽车的续驶里程L1,包括:
读取所述电动汽车当前的荷电状态SOC,电动汽车的电池容量为Q,聚类中心的数量为c。根据所述电动汽车的驾驶者长期的驾驶行为特性确定各工况类的比例,各工况类的比例为x1:x2:…:xi:…:xc-1:xc,(1≤i≤c)),每种工况的能耗分别为p1,p2,…,pi,…,pc-1,pc,(1≤i≤c)),根据当前车辆的SOC,计算续驶里程L1,计算公式为:
L 1 = Q × S O C × Σ i = 1 c x i Σ j = 1 c ( p j × x j ) .
进一步地,所述的所述电动汽车的续驶里程与所述电动汽车下次充电前的预计行驶里程之间的比例小于设定阈值,包括:
设所述电动汽车下次充电前的预计行驶里程为L,利用电动汽车续驶里程预测模型计算出的所述电动汽车的续驶里程为L1,如果
L1<(1+10%)L
则确定所述电动汽车的续驶里程与所述电动汽车下次充电前的预计行驶里程之间的比例小于设定阈值。
进一步地,所述的方法还包括:
根据影响电动汽车动力电池寿命的环境温度、充电电流、放电电流、放电深度及循环次数建立电动汽车动力电池寿命模型,该电动汽车动力电池寿命模型中包括:在低放电深度下和高放电深度下,电动汽车动力电池的容量衰退量与循环次数的关系式,所述电动汽车动力电池寿命模型表明在低放电深度下使用电动汽车动力电池能够延长所述电动汽车的动力电池的使用寿命。
进一步地,所述的根据所述电动汽车的充电量、离开时间和配电网当前的负荷状况,利用预先建立的电动汽车动力电池寿命模型计算出所述电动汽车的充电量,以局域配电网峰谷差最小为优化目标,对所述电动汽车的充电过程进行调度,包括:
根据配电网的历史负荷数据预测得到配电网当日负荷曲线,将一天分为N个时段,第i个时段内配电网原始负荷大小为Pi(i=1,2,3,…,N),设满足所述电动汽车出行的充电量为SE,电动汽车的充电过程为恒功率充电,其充电功率为ΔP,电动汽车电池容量为Q,电动汽车充电起始SOC为SS,到达充电地点的时间为TS,离开时间为t,起始充电时间为Tc,则所述电动汽车该次充电所需的充电电量SSOC计算方法如下:
S S O C = ( 1 + 10 % ) S E - S S , ( 1 + 10 % ) S E < Q Q - S S , ( 1 + 10 % ) S E &GreaterEqual; Q
电动汽车的停留时间Tstay
Tstay=t-TS
设第i个时段内正在充电的电动汽车负荷为pi,共有n辆电动汽车进行充电,则
p i = &Sigma; k = 1 n &Delta; P
第i个时段内配电网的总负荷Psumi是电动汽车充电负荷pi与原始负荷Pi的叠加:
Psumi=pi+Pi
在所述电动汽车停车的时间(TS,t)内,以所述电动汽车的起始充电时间Tc最早以及配电网的峰谷差最小作为充电控制的目标函数,该目标函数即:
min var ( P s u m i ) min T c
其中,var(Psumi)为Psumi的方差函数。Pmax为局域配电网的最大负荷,则Psumi应满足约束条件:
Psumi≤Pmax
此外,所述电动汽车的起始充电时间Tc还应满足约束条件:
TS≤Tc≤t
(t-Tc)ΔP≥SSOC
通过循环过程求解所述目标函数和所有的约束条件,得到所述电动汽车的起始充电时间Tc
由上述本发明的实施例提供的技术方案可以看出,本发明提出了以满足驾驶员的驾驶行为特性和充电意愿为基础的电动汽车有序充电调度方法,通过合理引导电动汽车充放电来延长电动汽车动力电池的使用寿命,同时可以减小电网负荷的峰谷差,可以极大提高驾驶员对于充电调度方法的积极性,同时保证电网的稳定运行,具有十分现实的意义。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的提高用户响应率的电动汽车的有序充电调度方法的处理流程图;
图2为电动汽车的动力电池的容量衰退量与循环次数的关系式示意图;
图3为一天内电动汽车无序充电和有序充电时的充电负荷效果图;
图4为一天内电动汽车无序充电和有序充电时的配电网负荷效果图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
为便于对本发明实施例的理解,下面将结合附图以几个具体实施例为例做进一步的解释说明,且各个实施例并不构成对本发明实施例的限定。
本发明针对电动汽车无序充电对配电网的负面影响,以延长电动汽车动力电池的使用寿命出发,提出了满足电动汽车驾驶员驾驶行为特性和充电意愿的有序充电调度方法。
本发明采用延长电动汽车动力电池寿命的方法来提高用户对于有序充电调度方法的响应率,首先建立了电动汽车续驶里程预测模型A1和电动汽车动力电池寿命模型A2,读取电动汽车的充电信息,将其输入模型A1和A2,计算该次充电的充电量,然后采用算法B(即遗传算法)计算得出电动汽车有序充电调度方法,达到配电网和用户两方面的最优。
本发明实施例提出的提高用户响应率的电动汽车有序充电调度方法的处理流程图如图1所示。主要步骤如下:
步骤1:建立电动汽车续驶里程预测模型A1。平均速度、最大速度、加速比例、减速比例、匀速比例、怠速比例、室外温度、空调使用功率等都会影响电动汽车的续驶里程,本发明从电动汽车行驶工况的角度,采用算法C(即主成分分析和模糊聚类法相结合的算法),对电动汽车的行驶工况进行识别,研究电动汽车的能耗,预测电动汽车的续驶里程。以丰田公司的PriusPHEV为例,对其在纯电动模式下的续驶里程进行预测。定义电动汽车本次充电后到下次充电前的行驶过程为一个循环,每个循环中,定义电动汽车每行驶1km为一个片段。为准确描述每个片段,确保不会出现行驶信息的丢失和失真,选择并计算9个参数用于描述每个片段,该9个参数分别为平均速度、最大速度、速度的平方和、加速比例、减速比例、匀速比例、怠速比例、室外温度和空调功率,各参数的单位分别为km/h、km/h、(km/h)2、1、1、1、1、℃和kW。其中,参数中使用的各个与加速度有关的参数(加速比例、减速比例、匀速比例和怠速比例)通过对速度计算一阶导数得到。按照这种方法,选取3368个片段进行之后的主成分分析。
下述表1为前5个片段的各参数值。
表1:电动汽车前5个片段的各参数值
主成分分析就是用较少的几个综合变量来代替原来较多的参数,而这些较少的综合变量能尽可能多地反映原来参数的有用信息,且相互之间又是无关的,这些综合变量就称为主成分。若前e(e=1,2,…,9)个主成分的累积贡献率达到80%或85%时,这e个主成分可代表原始变量进行分析。本发明中用到了主成分分析法,并通过MATLAB来实现其功能。由于MATLAB的数字处理能力较强,比较适合本发明的内容,故此选用其作为实现工具。利用MATLAB软件对3368个片段中的各参数进行主成分分析,得到9个主成分。每个主成分的特征值和贡献率如下述表2所示。
表2各主成分的特征值和贡献率
主成分 特征值 贡献率/%
Y1 2.3992 34.27
Y2 1.4624 20.89
Y3 1.0571 15.10
Y4 0.7321 10.46
Y5 0.4382 6.69
Y6 0.4148 6.35
Y7 0.2962 4.23
Y8 0.1568 1.54
Y9 0.0432 0.47
按主成分分析原理选取前4个主成分,并进行特征参数与主成分间的相关性分析,从前4个主成分中选取具有代表性的平均车速、怠速比例、匀速比例、减速比例、室外温度和空调功率6个参数用于聚类计算。
聚类的目的是将被分类事物按照一定的规则分成若干类,分类规则是根据对象的特征确定的,处于同一类的事物之间存在一定的相似性。但很多时候把每个待分类对象严格的划分为某一类必然有其不合理性,因此,结合模糊集合理论处理聚类问题可以使聚类的应用更合理可靠。本发明中使用模糊C-均值聚类算法。模糊C均值聚类是一种基于目标函数的聚类方法,每一个对象是以一定的隶属度隶属于每个聚类中心的。本发明的研究对象是包含3368个片段和6个参数的数据,其观测矩阵可以按如下矩阵表示
矩阵中,每一行为一个片段,每一列为片段的参数。模糊聚类就是将样品划分为c类(2≤c≤3368)。定义V={v1,v2,…,vc}记为c类的聚类中心,其中vi={vi1,vi2,…,vi6}。定义uik表示第k个片段属于第i类的隶属度,其中0≤uik≤1,dik=||xk-vi||,表示第k个变量到第i个中心的距离。
定义目标函数为:
J ( U , V ) = &Sigma; k = 1 3368 &Sigma; i = 1 c u i k m d i k
其中U=(Uik)c×3368为隶属度矩阵。J(U,V)表示了各类中样品到聚类中心的加权平方距离之和,权重是样品xk属于第i类的隶属度的m次方。
模糊C-均值聚类就是求U和V,使得J(U,V)取到最小值。具体步骤如下:
首先,确定类的个数c,幂指数m>1和初始隶属度矩阵本文中取[0,1]上的均匀分布随机数来确定初始隶属度矩阵。l=1表示第一步迭代。
其次,计算第l步的聚类中心V(0)
v i ( l ) = &Sigma; k = 1 3368 ( u i k l - 1 ) m x k / &Sigma; k = 1 3368 ( u i k l - 1 ) m , i = ( 1 , 2 , ... c )
再次,修正隶属度矩阵U(l),计算第l步目标函数J(l)
u i k ( l ) = 1 / &Sigma; j = 1 c ( d i k ( l ) / d j k ( l ) ) 2 m - 1 , i = 1 , 2 , ... , c ; k = 1 , 2 , ... , 3368
J ( l ) ( U ( l ) , V ( l ) ) = &Sigma; k = 1 3368 &Sigma; i = 1 c ( u i k ( l ) ) m ( d i k ( l ) ) 2
最后,对给定的隶属度终止容限ωu>0,当时,停止迭代。
经过以上步骤,即可求得最终的隶属度矩阵和聚类中心,使得目标函数J(U,V)的值达到最小,根据最终的隶属度矩阵U可以确定所有样品的归属。
根据上述的过程,对电动汽车各片段的参数进行聚类分析,对聚类个数c分别进行尝试,最后发现在c=12时,各聚类中心能最好反应出电动汽车的行驶工况,每个聚类中心对应一种工况。
各聚类中心的参数如下述表3所示。表中除上述平均车速、怠速比例、匀速比例、减速比例、室外温度和空调功率6个参数外,还包括了每个工况下的能耗参数,其单位为kWh。
表3各聚类中心的参数
表中各列参数各依次表示平均速度,加速比例,减速比例,匀速比例,空调功率,环境温度以及能耗参数的聚类中心。从温度上来看,各聚类中心基本成低温,常温,高温三种分布,分别代表冬季,春秋两季和夏季,说明温度对电动汽车能耗的影响比较明显。从平均速度来看,各聚类中心可基本分为低速,中低速,中速,高速四类,这表明速度对能耗的影响也很明显。而加速、减速、匀速比例和空调功率等则主要反映了电动汽车驾驶员的驾驶行为特性。根据各聚类中心,利用工况识别的方法,建立电动汽车的续驶里程预测模型A1。按照距离最小原则,确定电动汽车每一个片段的类别,可以将行驶片段按照工况划分为12类。其中,距离计算公式为:
di=||x-ci||,i=1,2,3,…,12
式中:x为某片段的参数,x=(x1,x2,…,x6);ci为类i的聚类中心参数,ci=(ci1,ci2,…,ci6)
将距离值di最短的聚类中心对应的工况作为所述电动汽车的当前工况,将所述距离值最短的聚类中心的能耗参数作为所述电动汽车当前工况的能耗。
读取车辆当前的SOC(State of Charge,荷电状态),电动汽车的电池容量为Q,。根据所述电动汽车的驾驶者长期的驾驶行为特性确定各工况类的比例,各工况类的比例为x1:x2:…:xi:…:xc-1:xc(1≤i≤c),c=12),每种工况的能耗分别为p1,p2,…,pi,…,pc-1,pc,(1≤i≤c),c=12),根据当前车辆的SOC,计算续驶里程L1,计算公式为
L 1 = Q &times; S O C &times; &Sigma; i = 1 12 x i &Sigma; j = 1 12 ( p j &times; x j )
步骤2:建立电动汽车动力电池寿命模型A2。
建立电动汽车动力电池寿命模型A2时,选取环境温度、充电电流、放电电流、放电深度及循环次数作为影响电动汽车动力电池寿命的主要因素。环境温度选择时,按照混合四季的温度值进行模拟,依次为10℃→25℃→40℃→25℃→10℃。充电倍率对于电动汽车的动力电池通常比较固定,选取C/3(其中C为充电倍率,计算方法为电动汽车动力电池的充电电流除以电动汽车动力电池的额定容量)。实际运行条件下,电动汽车动力电池的放电电流变化较大,因此选用平均放电倍率,其值约为C/2。一般来说,当电动汽车动力电池的容量为其标称容量的70%—80%时,电动汽车动力电池即不能再使用。称电动汽车动力电池从充满电后放电到指定放电深度下对应的SOC,再充满电的过程为电动汽车动力电池的一次循环。分别研究低放电深度下(50%放电深度)和高放电深度(80%放电深度)下电动汽车动力电池的容量衰退量随循环次数的关系,得到如附图2所示的结果。其中,在低放电深度下和高放电深度下,电动汽车动力电池的容量衰退量与循环次数的关系式如附图2所示。从附图2看出,在同等循环次数下,电动汽车动力电池在低放电深度下的容量衰退量明显低于其在高放电深度下的容量衰退量。在低放电深度下使用电动汽车动力电池可以有效延长其使用寿命。根据所述电动汽车的当前的循环次数查询所述关系式,得到所述动力汽车动力电池的当前的容量衰退量。在确定充电量时,在所述电动汽车的续驶里程满足所述电动汽车下次充电前的预计行驶里程的前提下,保持电动汽车动力电池在低放电深度下使用。
步骤3:提出电动汽车有序充电调度方法
步骤1和步骤2中,分别提出了电动汽车续驶里程预测的方法及动力电池寿命预测方法,建立了电动汽车续驶里程预测模型A1和电动汽车动力电池寿命模型A2。步骤3中,结合驾驶员的充电意愿及停留时间,根据当前配电网的负荷状况,提出了满足驾驶员充电意愿的电动汽车有序充电调度方法。该调度方法使用双层模型,上层模型为用户侧,充电开始前,由电动汽车驾驶员输入电动汽车当前的SOC、离开时间t及下次充电前的预计行驶里程L,根据模型A1预测电动汽车在当前SOC下的续驶里程L1,若
L1≥(1+10%)L
表明当前电动汽车电量充足,由电动汽车驾驶员决定是否为电动汽车进行充电;式中,10%为车辆的电量余量,若当前续驶里程不满足上式或驾驶员仍要进行充电,则该次仍进行充电此时仍由驾驶员决定是否愿意接受充电调度,若不愿意,则当前为电动汽车开始充电并充满;若驾驶员愿意接受调度,则进入下层模型即电网侧,根据模型A2计算满足车辆出行的充电量SE,并根据驾驶员输入的离开时间及配电网当前的负荷状况,以局域配电网峰谷差最小为优化目标,提出相应的调度方法。
配电网当日负荷曲线由其历史负荷预测得到。本发明中将一天分为96个时段,时间间隔为15分钟,因此第i个时段内配电网原始负荷大小为Pi(i=1,2,3,…,96)。此外,本发明中假设电动汽车的充电过程为恒功率充电,其充电功率为ΔP。设电动汽车电池容量为Q,电动汽车充电起始SOC为SS,驾驶员到达充电地点的时间为TS,离开时间为t,起始充电时间为Tc,则电动汽车该次充电所需的充电电量SSOC计算方法如下:
S S O C = ( 1 + 10 % ) S E - S S , ( 1 + 10 % ) S E < Q Q - S S , ( 1 + 10 % ) S E &GreaterEqual; Q
电动汽车的停留时间Tstay
Tstay=t-TS
设第i个时段内正在充电的电动汽车负荷为pi,共有n辆电动汽车进行充电,则
p i = &Sigma; k = 1 n &Delta; P
第i个时段内配电网的总负荷Psumi是电动汽车充电负荷pi与原始负荷Pi的叠加:
Psumi=pi+Pi
在驾驶员停车的时间(TS,t)内,以用户起始充电时间最早以及配电网的峰谷差最小作为充电控制的目标函数,即
min var ( P s u m i ) min T c
其中,var(Psumi)为Psumi的方差函数。
Pmax为局域配电网的最大负荷,则Psumi应满足约束条件:
Psumi≤Pmax
此外,起始充电时间Tc还应满足约束条件:
TS≤Tc≤t
(t-Tc)ΔP≥SSOC
上述即为该有序充电调度问题,采用算法B求解该问题。选取每个时段的充电功率作为染色体个体,进行二进制编码,执行交叉与变异操作,并根据约束条件计算目标函数,对优秀染色体进行保留与重***,通过循环过程求解所述目标函数和所有的约束条件,得到所述电动汽车的起始充电时间Tc
步骤4:设配电网区域内共有100辆电动汽车。以一天为一个阶段,将全天更新后的充电负荷及配电网负荷显示在效果图中,同时将无序充电下的配电网负荷与有序充电下的配电网负荷显示在效果图中,以验证该有序充电调度方法的有效性。附图3为一天内电动汽车分别为无序充电和有序充电时的充电负荷效果图,附图4为一天内电动汽车分别为无序充电和有序充电时的配电网负荷效果图。
综上所述,传统的有序充电调度方法多以改善配电网负荷状况或以降低配电网网损为目标,而忽略了用户的驾驶行为特性和充电意愿,导致有序充电调度在实际中很难得到应用。本发明实施例为解决这个问题,提出了以满足驾驶员的驾驶行为特性和充电意愿为基础的电动汽车有序充电调度方法,通过合理引导电动汽车充放电来延长电动汽车动力电池的使用寿命,同时可以减小电网负荷的峰谷差,可以极大提高驾驶员对于充电调度方法的积极性,同时保证电网的稳定运行,具有十分现实的意义。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置或***实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置及***实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

1.一种电动汽车有序充电调度方法,其特征在于,包括:
根据预先建立的电动汽车续驶里程预测模型计算出电动汽车当前工况的能耗,根据所述电动汽车当前工况的能耗和当前的荷电状态SOC计算出所述电动汽车的续驶里程;
当所述电动汽车的续驶里程与所述电动汽车下次充电前的预计行驶里程之间的比例小于设定阈值,根据所述电动汽车的充电量、离开时间和配电网当前的负荷状况,利用预先建立的电动汽车动力电池寿命模型计算出所述电动汽车的充电量,以局域配电网峰谷差最小为优化目标,对所述电动汽车的充电过程进行调度。
2.根据权利要求1所述的方法,其特征在于,所述的根据预先建立的电动汽车续驶里程预测模型计算出电动汽车当前工况的能耗,包括:
预先建立电动汽车续驶里程预测模型,该电动汽车续驶里程预测模型包括:定义电动汽车每行驶设定距离为一个片段,给每个片段设定参数信息,该参数信息包括平均速度、最大速度、速度的平方和、加速比例、减速比例、匀速比例、怠速比例、室外温度和空调功率,选取设定数量个片段以及每个片段的参数信息,通过主成分分析法和模糊聚类算法对所述设定数量个片段进行计算,得到多个聚类中心,每个聚类中心对应一种工况,每个聚类中心的参数信息包括:平均速度、加速比例、减速比例、匀速比例、空调功率、环境温度和能耗参数;
根据所述电动汽车当前的片段的参数信息和所述每个聚类中心除能耗参数外的参数信息,分别计算出所述电动汽车当前的片段与各个聚类中心之间的距离值,将各个距离值进行比较,将距离值最短的聚类中心对应的工况作为所述电动汽车的当前工况,将所述距离值最短的聚类中心的能耗参数作为所述电动汽车当前工况的能耗。
3.根据权利要求2所述的方法,其特征在于,所述的分别计算出所述电动汽车当前的片段与各个聚类中心之间的距离值,包括:
设聚类中心的数量为c,所述电动汽车当前的片段与各个聚类中心之间的距离值di的计算公式为:
di=||x-ci||,i=1,2,3,…,c
式中:x为所述电动汽车当前的片段的参数,ci为聚类中心i的聚类中心参数,ci=(ci1,ci2,…,ci6)。
4.根据权利要求1所述的方法,其特征在于,所述的根据所述电动汽车当前工况的能耗和当前的荷电状态SOC计算出所述电动汽车的续驶里程L1,包括:
读取所述电动汽车当前的荷电状态SOC,电动汽车的电池容量为Q,聚类中心的数量为c。根据所述电动汽车的驾驶者长期的驾驶行为特性确定各工况类的比例,各工况类的比例为x1:x2:…:xi:…:xc-1:xc(1≤i≤c),每种工况的能耗分别为p1,p2,…,pi,…,pc-1,pc,(1≤i≤c),根据当前车辆的SOC,计算续驶里程L1,计算公式为:
L 1 = Q &times; S O C &times; &Sigma; i = 1 c x i &Sigma; j = 1 c ( p j &times; x j ) .
5.根据权利要求1至4任一项所述的方法,其特征在于,所述的所述电动汽车的续驶里程与所述电动汽车下次充电前的预计行驶里程之间的比例小于设定阈值,包括:
设所述电动汽车下次充电前的预计行驶里程为L,利用电动汽车续驶里程预测模型计算出的所述电动汽车的续驶里程为L1,如果
L1<(1+10%)L
则确定所述电动汽车的续驶里程与所述电动汽车下次充电前的预计行驶里程之间的比例小于设定阈值。
6.根据权利要求5所述的方法,其特征在于,所述的方法还包括:
根据影响电动汽车动力电池寿命的环境温度、充电电流、放电电流、放电深度及循环次数建立电动汽车动力电池寿命模型,该电动汽车动力电池寿命模型中包括:在低放电深度下和高放电深度下,电动汽车动力电池的容量衰退量与循环次数的关系式,所述电动汽车动力电池寿命模型表明在低放电深度下使用电动汽车动力电池能够延长所述电动汽车的动力电池的使用寿命。
7.根据权利要求6所述的方法,其特征在于,所述的根据所述电动汽车的充电量、离开时间和配电网当前的负荷状况,利用预先建立的电动汽车动力电池寿命模型计算出所述电动汽车的充电量,以局域配电网峰谷差最小为优化目标,对所述电动汽车的充电过程进行调度,包括:
根据配电网的历史负荷数据预测得到配电网当日负荷曲线,将一天分为N个时段,第i个时段内配电网原始负荷大小为Pi(i=1,2,3,…,N),设满足所述电动汽车出行的充电量为SE,电动汽车的充电过程为恒功率充电,其充电功率为ΔP,电动汽车电池容量为Q,电动汽车充电起始SOC为SS,到达充电地点的时间为TS,离开时间为t,起始充电时间为Tc,则所述电动汽车该次充电所需的充电电量SSOC计算方法如下:
S S O C = ( 1 + 10 % ) S E - S S , ( 1 + 10 % ) S E < Q Q - S S , ( 1 + 10 % ) S E &GreaterEqual; Q
电动汽车的停留时间Tstay
Tstay=t-TS
设第i个时段内正在充电的电动汽车负荷为pi,共有n辆电动汽车进行充电,则
p i = &Sigma; k = 1 n &Delta; P
第i个时段内配电网的总负荷Psumi是电动汽车充电负荷pi与原始负荷Pi的叠加:
Psumi=pi+Pi
在所述电动汽车停车的时间(TS,t)内,以所述电动汽车的起始充电时间Tc最早以及配电网的峰谷差最小作为充电控制的目标函数,该目标函数即:
min var ( P s u m i ) min T c
其中,var(Psumi)为Psumi的方差函数。Pmax为局域配电网的最大负荷,则Psumi应满足约束条件:
Psumi≤Pmax
此外,所述电动汽车的起始充电时间Tc还应满足约束条件:
TS≤Tc≤t
(t-Tc)ΔP≥SSOC
通过循环过程求解所述目标函数和所有的约束条件,得到所述电动汽车的起始充电时间Tc
CN201610399530.7A 2016-06-07 2016-06-07 电动汽车的有序充电调度方法 Active CN105868942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610399530.7A CN105868942B (zh) 2016-06-07 2016-06-07 电动汽车的有序充电调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610399530.7A CN105868942B (zh) 2016-06-07 2016-06-07 电动汽车的有序充电调度方法

Publications (2)

Publication Number Publication Date
CN105868942A true CN105868942A (zh) 2016-08-17
CN105868942B CN105868942B (zh) 2019-07-09

Family

ID=56676007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610399530.7A Active CN105868942B (zh) 2016-06-07 2016-06-07 电动汽车的有序充电调度方法

Country Status (1)

Country Link
CN (1) CN105868942B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655232A (zh) * 2017-01-13 2017-05-10 东北电力大学 一种计及三相负荷平衡的电动汽车分布式充放电调度策略
CN107067136A (zh) * 2016-12-22 2017-08-18 国家电网公司 电动汽车充电分配方法及装置
CN108226795A (zh) * 2017-12-18 2018-06-29 合肥国轩高科动力能源有限公司 一种提升电池使用循环寿命的实验方法
CN108596667A (zh) * 2018-04-25 2018-09-28 国网天津市电力公司电力科学研究院 一种基于车联网的电动汽车实时充电电价计算方法
CN108773279A (zh) * 2018-04-27 2018-11-09 北京交通大学 一种电动汽车充电路径规划方法及装置
CN110829474A (zh) * 2019-11-21 2020-02-21 国电南瑞南京控制***有限公司 用大数据智能储能支撑电网动态安全的方法与***
CN110957752A (zh) * 2019-12-09 2020-04-03 重庆邮电大学 一种基于边缘物联的区域智能变电站调度***及其方法
CN111325483A (zh) * 2020-03-17 2020-06-23 郑州天迈科技股份有限公司 一种基于电池容量预测的电动公交车辆排班方法
CN111391692A (zh) * 2019-12-09 2020-07-10 重庆邮电大学 基于车舱温度差异控制的电动汽车有序充放电***及方法
CN111404168A (zh) * 2019-12-09 2020-07-10 重庆邮电大学 基于柔性空调负荷的平抑变电站过载的调度***及其方法
CN111738518A (zh) * 2020-06-24 2020-10-02 国家电网公司西南分部 一种基于计及平均放电率的电动汽车充放电调度方法
CN112124135A (zh) * 2020-08-19 2020-12-25 国电南瑞科技股份有限公司 一种电动汽车共享充电需求分析方法及装置
CN113033872A (zh) * 2021-02-26 2021-06-25 重庆电子工程职业学院 一种新能源汽车充电调度方法
US20210239764A1 (en) * 2018-04-20 2021-08-05 Cps Technology Holdings Llc System and method for battery selection
CN113762612A (zh) * 2021-08-31 2021-12-07 北京交通大学 一种电动汽车充电站的分时运维成本测算方法及装置
CN114204582A (zh) * 2021-12-14 2022-03-18 广东电网有限责任公司 基于电动汽车出行特征的充电桩集群应急调度控制方法
CN114742118A (zh) * 2020-12-23 2022-07-12 中国科学院广州能源研究所 电动汽车集群充放电负荷组合预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104442825A (zh) * 2014-11-28 2015-03-25 上海交通大学 一种电动汽车剩余行驶里程的预测方法和***
CN104600729A (zh) * 2014-08-19 2015-05-06 浙江工业大学 基于v2g技术的电动汽车参与经济调度优化控制方法
CN105068419A (zh) * 2015-08-04 2015-11-18 西南交通大学 居民小区电动汽车充放电控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600729A (zh) * 2014-08-19 2015-05-06 浙江工业大学 基于v2g技术的电动汽车参与经济调度优化控制方法
CN104442825A (zh) * 2014-11-28 2015-03-25 上海交通大学 一种电动汽车剩余行驶里程的预测方法和***
CN105068419A (zh) * 2015-08-04 2015-11-18 西南交通大学 居民小区电动汽车充放电控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨玉青 等: "改善配电网负荷特性的充电站有序充电优化策略", 《电力***保护与控制》 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107067136A (zh) * 2016-12-22 2017-08-18 国家电网公司 电动汽车充电分配方法及装置
CN106655232A (zh) * 2017-01-13 2017-05-10 东北电力大学 一种计及三相负荷平衡的电动汽车分布式充放电调度策略
CN108226795A (zh) * 2017-12-18 2018-06-29 合肥国轩高科动力能源有限公司 一种提升电池使用循环寿命的实验方法
US20210239764A1 (en) * 2018-04-20 2021-08-05 Cps Technology Holdings Llc System and method for battery selection
CN108596667A (zh) * 2018-04-25 2018-09-28 国网天津市电力公司电力科学研究院 一种基于车联网的电动汽车实时充电电价计算方法
CN108596667B (zh) * 2018-04-25 2022-02-22 国网天津市电力公司电力科学研究院 一种基于车联网的电动汽车实时充电电价计算方法
CN108773279A (zh) * 2018-04-27 2018-11-09 北京交通大学 一种电动汽车充电路径规划方法及装置
CN110829474A (zh) * 2019-11-21 2020-02-21 国电南瑞南京控制***有限公司 用大数据智能储能支撑电网动态安全的方法与***
CN111391692A (zh) * 2019-12-09 2020-07-10 重庆邮电大学 基于车舱温度差异控制的电动汽车有序充放电***及方法
CN111404168A (zh) * 2019-12-09 2020-07-10 重庆邮电大学 基于柔性空调负荷的平抑变电站过载的调度***及其方法
CN111404168B (zh) * 2019-12-09 2023-06-16 重庆邮电大学 基于柔性空调负荷的平抑变电站过载的调度***及其方法
CN110957752A (zh) * 2019-12-09 2020-04-03 重庆邮电大学 一种基于边缘物联的区域智能变电站调度***及其方法
CN110957752B (zh) * 2019-12-09 2023-06-09 重庆邮电大学 一种基于边缘物联的区域智能变电站调度***及其方法
CN111325483B (zh) * 2020-03-17 2024-01-26 郑州天迈科技股份有限公司 一种基于电池容量预测的电动公交车辆排班方法
CN111325483A (zh) * 2020-03-17 2020-06-23 郑州天迈科技股份有限公司 一种基于电池容量预测的电动公交车辆排班方法
CN111738518A (zh) * 2020-06-24 2020-10-02 国家电网公司西南分部 一种基于计及平均放电率的电动汽车充放电调度方法
CN111738518B (zh) * 2020-06-24 2022-02-11 国家电网公司西南分部 一种基于计及平均放电率的电动汽车充放电调度方法
CN112124135A (zh) * 2020-08-19 2020-12-25 国电南瑞科技股份有限公司 一种电动汽车共享充电需求分析方法及装置
CN114742118A (zh) * 2020-12-23 2022-07-12 中国科学院广州能源研究所 电动汽车集群充放电负荷组合预测方法
CN114742118B (zh) * 2020-12-23 2023-10-27 中国科学院广州能源研究所 电动汽车集群充放电负荷组合预测方法
CN113033872A (zh) * 2021-02-26 2021-06-25 重庆电子工程职业学院 一种新能源汽车充电调度方法
CN113762612A (zh) * 2021-08-31 2021-12-07 北京交通大学 一种电动汽车充电站的分时运维成本测算方法及装置
CN114204582A (zh) * 2021-12-14 2022-03-18 广东电网有限责任公司 基于电动汽车出行特征的充电桩集群应急调度控制方法
CN114204582B (zh) * 2021-12-14 2023-06-13 广东电网有限责任公司 基于电动汽车出行特征的充电桩集群应急调度控制方法

Also Published As

Publication number Publication date
CN105868942B (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN105868942A (zh) 电动汽车的有序充电调度方法
Zhou et al. Model prediction and rule based energy management strategy for a plug-in hybrid electric vehicle with hybrid energy storage system
Li et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin's Minimal Principle
Khayyam et al. Adaptive intelligent energy management system of plug-in hybrid electric vehicle
Wu et al. Fuzzy energy management strategy for a hybrid electric vehicle based on driving cycle recognition
Montazeri-Gh et al. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles
Zhai et al. A novel predictive energy management strategy for electric vehicles based on velocity prediction
Li et al. Application-oriented stochastic energy management for plug-in hybrid electric bus with AMT
Herrera et al. Optimal energy management of a hybrid electric bus with a battery-supercapacitor storage system using genetic algorithm
CN113554337B (zh) 融合交通信息的插电式混动汽车能量管理策略构建方法
CN106055830A (zh) 基于动态规划的phev控制门限参数优化方法
Kamal et al. Hierarchical and adaptive neuro-fuzzy control for intelligent energy management in hybrid electric vehicles
CN113815437B (zh) 燃料电池混合动力汽车的预测性能量管理方法
Li et al. Real‐time energy management for commute HEVs using modified A‐ECMS with traffic information recognition
Peng et al. Ecological Driving Framework of Hybrid Electric Vehicle Based on Heterogeneous Multi-Agent Deep Reinforcement Learning
Balch et al. The affect of battery pack technology and size choices on hybrid electric vehicle performance and fuel economy
CN114122466A (zh) 燃料电池车电池优化管理方法、***、设备及介质
Wang et al. An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle
Ali et al. Intelligent real-time power management of multi-source HEVs based on driving state recognition and offline optimization
Palani et al. Component sizing based on multi-objective optimization for a fuel cell hybrid vehicle
Janulin et al. Energy minimization in city electric vehicle using optimized multi-speed transmission
Song et al. Study on the fuel economy of fuel cell electric vehicle based on rule-based energy management strategies
Dasi et al. The State-of-the-art Energy Management Strategy in Hybrid Electric Vehicles for Real-time Optimization
Arani et al. Energy management of dual-source propelled electric vehicle using fuzzy controller optimized via genetic algorithm
Wu et al. Recurrent neural network-based predictive energy management for hybrid energy storage system of electric vehicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant