CN105839165B - 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法 - Google Patents

一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法 Download PDF

Info

Publication number
CN105839165B
CN105839165B CN201610245925.1A CN201610245925A CN105839165B CN 105839165 B CN105839165 B CN 105839165B CN 201610245925 A CN201610245925 A CN 201610245925A CN 105839165 B CN105839165 B CN 105839165B
Authority
CN
China
Prior art keywords
stainless steel
layer
processing method
austenitic stainless
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610245925.1A
Other languages
English (en)
Other versions
CN105839165A (zh
Inventor
孙耀明
陈寿
彭晓华
周祎
张玲
李明雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN 863 NEW MATERIAL TECHNOLOGY Co.,Ltd.
Shenzhen TONGCHAN Lixing Technology Group Co.,Ltd.
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
SHENZHEN 863 PROGRAM RESEARCH AND DEVELOPMENT CENTER
Shenzhen Graduate School Harbin Institute of Technology
Shenzhen Beauty Star Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN 863 PROGRAM RESEARCH AND DEVELOPMENT CENTER, Shenzhen Graduate School Harbin Institute of Technology, Shenzhen Beauty Star Co Ltd filed Critical SHENZHEN 863 PROGRAM RESEARCH AND DEVELOPMENT CENTER
Priority to CN201610245925.1A priority Critical patent/CN105839165B/zh
Publication of CN105839165A publication Critical patent/CN105839165A/zh
Application granted granted Critical
Publication of CN105839165B publication Critical patent/CN105839165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/44Carburising
    • C23C8/46Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明公开一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法,处理方法,包括步骤:A、对奥氏体不锈钢工件进行渗氮、渗碳或氮碳共渗处理形成渗层;B、在电解液中对奥氏体不锈钢工件进行等离子体电化学处理,对渗层进行抛光的同时形成致密氧化层;C、然后对奥氏体不锈钢工件进行清洗和烘干。本发明采用等离子体电化学工艺对奥氏体不锈钢表面的渗层进行后处理,去除表面易腐蚀层的同时在渗层表面形成一层抗腐蚀的致密氧化层,从而同时提高了工件的硬度和耐蚀性,并且本发明的工艺具有处理速度快,工艺简单的特点,适合于大规模推广使用。

Description

一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法
技术领域
本发明涉及金属表面处理技术领域,尤其涉及一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法。
背景技术
奥氏体不锈钢耐蚀性(即耐腐蚀性)优异,被广泛用于众多工业领域,但硬度和耐磨性不佳,故限制了其应用。渗氮/碳处理是将氮/碳等元素渗入钢材,形成强化固溶体,能显著增强表面硬度和耐磨性,是常用的表面改性技术。常规高温渗处理温度较高(大于550℃),用于处理奥氏体不锈钢时,虽然可提高工件硬度,但会造成氮化铬或碳化铬析出,腐蚀性显著降低。低温渗处理将温度降低,可以生成高硬度、耐腐蚀的S相,但如果处理时间短则硬度提高有限;处理时间长,生成的S相在后期处理中分解出氮化铬或碳化铬,造成耐腐蚀性下降。
中国专利公告号 1060503(硬质奥氏体不锈钢螺钉及其制备方法),公开了通过酸洗去除外硬层,可以显著提高渗层的耐蚀性,但硬度从1400HV降低到650HV;其他方法如中国专利公告号CN 101896632A在渗氮/碳后通过2次氧化和一次抛光工艺,将渗层表面氧化,使得耐蚀性大幅度提升,但在渗氮后又经历3次工艺,工艺繁琐,处理周期长。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法,旨在解决现有的处理方法难以同时提高硬度和耐蚀性以及处理工艺复杂等问题。
本发明的技术方案如下:
一种提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,包括步骤:
A、对奥氏体不锈钢工件进行渗氮、渗碳或氮碳共渗处理形成渗层;
B、在电解液中对奥氏体不锈钢工件进行等离子体电化学处理,对渗层进行抛光的同时形成致密氧化层;
C、然后对奥氏体不锈钢工件进行清洗和烘干。
所述的提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,所述步骤A中,渗氮、渗碳和氮碳共渗处理均为离子渗、气体渗或液体渗中的一种。
所述的提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,所述步骤A中,采用氮碳共渗处理方式,且其为离子渗。
所述的提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,等离子体电化学处理的电解液中,按质量百分比计,包括:六氟铝酸钠5-10%,六偏磷酸钠5-20%,乙二胺四乙酸二钠0.5-2%,十二烷基苯磺酸钠0.5-2%,氢氧化钠1-5%,余量为去离子水。
所述的提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,等离子体电化学处理中,电源为双极性脉冲电源,奥氏体不锈钢工件为阳极,石墨为阴极,正向电压为600-800V,负向电压为50-200V,电流密度为5-20A/dm2,正向频率为500-800赫兹,负向频率为200-300赫兹,正向占空比为15%-40%,负向占空比为8%-20%,处理时间为0.5-5分钟。
所述的提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,所述步骤A中,渗层的厚度大于或等于10微米。
所述的提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,所述步骤A中,渗层的表面硬度大于1200HV。
所述的提高奥氏体不锈刚硬度和耐蚀性的处理方法,其中,所述步骤B中,致密氧化层的厚度为0.05-1微米。
一种奥氏体不锈钢,其中,采用如上所述的方法处理得到。
有益效果:本发明先在奥氏体不锈钢表面形成渗层,再采用等离子体电化学工艺对奥氏体不锈钢表面的渗层进行后处理,去除表面易腐蚀层的同时在渗层表面形成一层抗腐蚀的致密氧化层(即复合氧化膜),从而同时提高了工件的硬度和耐蚀性,并且本发明的工艺具有处理速度快,工艺简单的特点,适合于大规模推广使用。
附图说明
图1为本发明一种提高奥氏体不锈刚硬度和耐蚀性的处理方法较佳实施例的流程图。
图2为本发明的处理方法得到的奥氏体不锈刚的结构示意图。
具体实施方式
本发明提供一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为本发明一种提高奥氏体不锈刚硬度和耐蚀性的处理方法较佳实施例的流程图,如图所示,其包括步骤:
S1、对奥氏体不锈钢工件进行渗氮、渗碳或氮碳共渗处理形成渗层;
S2、在电解液中对奥氏体不锈钢工件进行等离子体电化学处理,对渗层进行抛光的同时形成致密氧化层;
S3、然后对奥氏体不锈钢工件进行清洗和烘干。
本发明克服了奥氏体不锈钢处理后硬度低和耐蚀性差的缺点,使用等离子体电化学处理,对奥氏体不锈钢渗层同时进行抛光和氧化处理,在渗层表面形成一层致密的复合氧化层(即致密氧化层),大幅度提高渗层的耐蚀性,使工件具有高硬度和高耐蚀性的特点,并且本发明的方法处理速度快,工艺简单。
如图2所示,本发明中,先利用渗氮、渗碳或氮碳共渗处理,在奥氏体不锈钢工件10表面形成渗层20,通过渗层20增强工件表面硬度和耐磨性,然后再进行等离子体电化学处理,从而去除渗层20表面的易腐蚀层(抛光),同时还能生成抗腐蚀的致密氧化层30,最后经过清洗和烘干处理,得到的工件其不仅具有了较高的耐蚀性,同时还能兼具较高的硬度。
进一步,所述步骤S1中,渗氮、渗碳和氮碳共渗处理均为离子渗、气体渗或液体渗中的一种。也就是说,本发明中,可采用渗氮处理的方式生成渗层20,而渗氮处理具体又可采用离子渗、气体渗或液体渗中的一种;也可采用渗碳处理的方式生成渗层20,而渗碳处理具体又可采用离子渗、气体渗或液体渗中的一种;又或者采用氮碳共渗处理的方式生成渗层20,而氮碳共渗处理具体又可采用离子渗、气体渗或液体渗中的一种。
本发明中,优选的处理方式是采用氮碳共渗处理方式,且其为离子渗,采用氮碳共渗处理方式,可使工件表面的渗层20具有更高的硬度和耐磨性,这是因为氮和碳能够同时渗入到钢材中,最终形成的强化固溶体,具有硬度高和耐磨性强的特点。另外形成的渗层20,其厚度大于或等于10微米,以确保工件表面具有足够的硬度,优选的是,渗层的表面硬度大于1200HV,从而使工件品质得到保证。
进一步,等离子体电化学处理的电解液中,按质量百分比计,包括:六氟铝酸钠5-10%,六偏磷酸钠5-20%,乙二胺四乙酸二钠0.5-2%,十二烷基苯磺酸钠0.5-2%,氢氧化钠1-5%,余量为去离子水。在该电解液的条件下,奥氏体不锈钢工件不会发生变形,可处理各种异型工件,降低了对工件形状的要求,同时生成的致密氧化层具有较高的耐蚀性,抗腐蚀性强。
进一步,等离子体电化学处理中,电源为双极性脉冲电源,奥氏体不锈钢工件为阳极,石墨为阴极,正向电压为600-800V,负向电压为50-200V,电流密度为5-20A/dm2,正向频率为500-800赫兹,负向频率为200-300赫兹,正向占空比为15%-40%,负向占空比为8%-20%,处理时间为0.5-5分钟。上述处理条件,可提高处理效率和处理速度,且生成的致密氧化层其厚度适中。
另外,致密氧化层的厚度为0.05-1微米。所述的致密氧化层厚度过薄,则达不到抗腐蚀的效果,如果厚度过厚,则会延长处理时间,提高成本,可能会影响不锈钢硬度,更优选的是0.3~0.8微米。
本发明还提供一种奥氏体不锈钢,其采用如上所述的方法处理得到。
实施例1
一种奥氏体不锈钢高硬度高耐蚀性处理方法,包含如下步骤
(1)对奥氏体不锈钢进行离子渗氮,渗层厚度10微米,表面硬度1200HV;
(2)在电解液中对工件进行等离子体电化学后处理,电解液各组分及质量百分比为:六氟铝酸钠5%,六偏磷酸钠5%,乙二胺四乙酸二钠0.5%,十二烷基苯磺酸钠0.5%,氢氧化钠1%,余量为去离子水;采用双极性脉冲电源,工件为阳极,石墨为阴极,正向电压为600V,负向电压为50V,电流密度为5A/dm2,正向频率为500赫兹,负向频率为200赫兹,正向占空比为15%,负向占空比为8%,处理时间为0.5分钟。致密氧化层厚度为0.05微米;
(3)清洗烘干。
处理后的工件,表面硬度1200HV,中性盐雾时间大于200h。
实施例2:
一种奥氏体不锈钢高硬度高耐蚀性处理方法,包含如下步骤:
(1)对奥氏体不锈钢进行气体渗碳,渗层厚度20微米,表面硬度1200HV;
(2)在电解液中对工件进行等离子体电化学后处理,电解液各组分及质量百分比为:六氟铝酸钠7%,六偏磷酸钠10%,乙二胺四乙酸二钠1%,十二烷基苯磺酸钠1%,氢氧化钠2%,余量为去离子水;采用双极性脉冲电源,工件为阳极,石墨为阴极,正向电压为700V,负向电压为100V,电流密度为10A/dm2,正向频率为600赫兹,负向频率为250赫兹,正向占空比为25%,负向占空比为15%,处理时间为2分钟。致密氧化层厚度为0.5微米;
(3)清洗烘干。
处理后的工件,表面硬度1200HV,中性盐雾时间大于300h。
实施例3:
一种奥氏体不锈钢高硬度高耐蚀性处理方法,包含如下步骤:
(1)对奥氏体不锈钢进行液体氮碳共渗,渗层厚度30微米,表面硬度1300HV;
(2)在电解液中对工件进行等离子体电化学后处理,电解液各组分及质量百分比为:六氟铝酸钠10%,六偏磷酸钠20%,乙二胺四乙酸二钠2%,十二烷基苯磺酸钠2%,氢氧化钠5%,余量为去离子水;采用双极性脉冲电源,工件为阳极,石墨为阴极,正向电压为800V,负向电压为200V,电流密度为20A/dm2,正向频率为800赫兹,负向频率为300赫兹,正向占空比为40%,负向占空比为20%,处理时间为5分钟。致密氧化层厚度为1微米;
(3)清洗烘干。
处理后的工件,表面硬度1300HV,中性盐雾时间大于400h。
实施例4:
一种奥氏体不锈钢高硬度高耐蚀性处理方法,包含如下步骤:
(1)对奥氏体不锈钢进行离子氮碳共渗,渗层厚度40微米,表面硬度1400HV;
(2)在电解液中对工件进行等离子体电化学后处理,电解液各组分及质量百分比为:六氟铝酸钠10%,六偏磷酸钠20%,乙二胺四乙酸二钠2%,十二烷基苯磺酸钠2%,氢氧化钠5%,余量为去离子水;采用双极性脉冲电源,工件为阳极,石墨为阴极,正向电压为800V,负向电压为200V,电流密度为20A/dm2,正向频率为800赫兹,负向频率为300赫兹,正向占空比为40%,负向占空比为20%,处理时间为5分钟。致密氧化层厚度为1微米;
(3)清洗烘干。
处理后的工件,表面硬度1400HV,中性盐雾时间大于400h。
综上所述,本发明先在奥氏体不锈钢表面形成渗层,再采用等离子体电化学工艺对奥氏体不锈钢表面的渗层进行后处理,去除表面易腐蚀层的同时在渗层表面形成一层抗腐蚀的致密氧化层,从而同时提高了工件的硬度和耐蚀性,并且本发明的工艺具有处理速度快,工艺简单的特点,适合于大规模推广使用。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (6)

1.一种提高奥氏体不锈钢 硬度和耐蚀性的处理方法,其特征在于,包括步骤:
A、对奥氏体不锈钢工件进行渗氮、渗碳或氮碳共渗处理形成渗层;
B、在电解液中对奥氏体不锈钢工件进行等离子体电化学处理,对渗层进行抛光的同时形成致密氧化层;
C、然后对奥氏体不锈钢工件进行清洗和烘干;
所述步骤A中,渗氮、渗碳和氮碳共渗处理均为离子渗、气体渗或液体渗中的一种;渗层的厚度大于或等于10微米;
所述步骤B中,致密氧化层的厚度为0.05-1微米。
2.根据权利要求1所述的提高奥氏体不锈钢 硬度和耐蚀性的处理方法,其特征在于,所述步骤A中,采用氮碳共渗处理方式,且其为离子渗。
3.根据权利要求1所述的提高奥氏体不锈钢 硬度和耐蚀性的处理方法,其特征在于,等离子体电化学处理的电解液中,按质量百分比计,包括:六氟铝酸钠5-10%,六偏磷酸钠5-20%,乙二胺四乙酸二钠0.5-2%,十二烷基苯磺酸钠0.5-2%,氢氧化钠1-5%,余量为去离子水。
4.根据权利要求1所述的提高奥氏体不锈钢 硬度和耐蚀性的处理方法,其特征在于,等离子体电化学处理中,电源为双极性脉冲电源,奥氏体不锈钢工件为阳极,石墨为阴极,正向电压为600-800V,负向电压为50-200V,电流密度为5-20A/dm2,正向频率为500-800赫兹,负向频率为200-300赫兹,正向占空比为15%-40%,负向占空比为8%-20%,处理时间为0.5-5分钟。
5.根据权利要求1所述的提高奥氏体不锈钢 硬度和耐蚀性的处理方法,其特征在于,所述步骤A中,渗层的表面硬度大于1200HV。
6.一种奥氏体不锈钢,其特征在于,采用如权利要求1~5任一项所述的方法处理得到。
CN201610245925.1A 2016-04-20 2016-04-20 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法 Active CN105839165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610245925.1A CN105839165B (zh) 2016-04-20 2016-04-20 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610245925.1A CN105839165B (zh) 2016-04-20 2016-04-20 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法

Publications (2)

Publication Number Publication Date
CN105839165A CN105839165A (zh) 2016-08-10
CN105839165B true CN105839165B (zh) 2017-12-12

Family

ID=56588642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610245925.1A Active CN105839165B (zh) 2016-04-20 2016-04-20 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法

Country Status (1)

Country Link
CN (1) CN105839165B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756762B (zh) * 2016-12-22 2019-01-15 青岛农业大学 一种果汁机304奥氏体不锈钢旋片刀片的制备方法
CN106637065A (zh) * 2017-03-14 2017-05-10 蚌埠奥特压缩机有限公司 一种防止氨气压缩机零部件腐蚀的方法
CN107502939B (zh) * 2017-06-26 2020-12-01 阜阳市鼎铭汽车配件制造有限公司 一种耐磨轴承滚动体
KR101864101B1 (ko) * 2018-02-05 2018-06-04 주식회사 유니락 유체이송용 메탈블럭
CN109022730A (zh) * 2018-10-26 2018-12-18 重庆工业职业技术学院 奥氏体不锈钢表面s相及耐腐蚀层获取方法
CN109763092B (zh) * 2018-12-24 2020-04-24 钢铁研究总院 一种增强油气压裂车泵体耐蚀耐磨性的表面处理方法
CN109536880B (zh) * 2019-01-29 2020-04-07 东北大学 一种熔盐电化学法对不锈钢表面渗氮或碳氮共渗的方法
CN109913794B (zh) * 2019-04-12 2020-10-09 兰州理工大学温州泵阀工程研究院 一种奥氏体不锈钢耐蚀强化的方法
CN110055490A (zh) * 2019-05-05 2019-07-26 兰州理工大学温州泵阀工程研究院 一种奥氏体不锈钢表层的复合处理方法
CN111910146A (zh) * 2019-11-30 2020-11-10 华南理工大学 一种不降低防锈性能的奥氏体不锈钢硬化方法
CN111118443A (zh) * 2019-12-17 2020-05-08 武汉铭高新材料有限公司 在奥氏体不锈钢表面制备金属陶瓷涂层的方法
CN113455913A (zh) * 2021-06-18 2021-10-01 浙江巴赫厨具有限公司 一种具有物理不粘性的渗层组织
CN113584426A (zh) * 2021-07-27 2021-11-02 张艳芳 一种耐腐蚀不锈钢材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633076B2 (ja) * 1990-10-04 1997-07-23 大同ほくさん株式会社 硬質オーステナイト系ステンレスねじおよびその製法
JP2000063936A (ja) * 1998-08-17 2000-02-29 Toshiba Mach Co Ltd プラスチック加工機用部品およびその製造方法
KR20080110991A (ko) * 2006-02-15 2008-12-22 스와겔로크 컴패니 저온 침탄 오스테나이트 스테인리스강의 개선된 착색 방법
DE102007060085B4 (de) * 2007-12-13 2012-03-15 Durferrit Gmbh Verfahren zur Erzeugung von korrosionsbeständigen Oberflächen nitrierter oder nitrocarburierter Bauteile aus Stahl sowie nitrocarburierte oder nitrierte Bauteile aus Stahl mit oxidierten Oberflächen
CN101289735B (zh) * 2008-06-14 2010-08-18 深圳八六三计划材料表面技术研发中心 奥氏体不锈钢精密硬化方法及设备
JP5625288B2 (ja) * 2009-08-24 2014-11-19 株式会社豊田中央研究所 耐食耐摩耗部材およびその製造方法
CN102321906A (zh) * 2011-06-23 2012-01-18 兰州理工大学 一种镁合金表面复合膜层的制备方法及其溶液配方
CN102330135A (zh) * 2011-06-23 2012-01-25 兰州理工大学 一种铝合金表面复合膜层的制备方法及其溶液配方
CN102321907A (zh) * 2011-06-23 2012-01-18 兰州理工大学 一种钢铁表面复合膜层的制备方法及其溶液配方
CN102321902A (zh) * 2011-06-23 2012-01-18 兰州理工大学 一种钛合金表面复合膜层的制备方法及其溶液配方
CN102321903A (zh) * 2011-06-23 2012-01-18 兰州理工大学 一种金属材料表面复合膜层的制备方法及其溶液组成

Also Published As

Publication number Publication date
CN105839165A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105839165B (zh) 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法
CN104831332B (zh) 一种钢铁表面直接生成黑色耐蚀微弧氧化膜层的方法
CN110983415B (zh) 一种镁锂合金表面复合氧化处理方法
JP5152574B2 (ja) アルミニウム部材の陽極酸化処理方法
CN104846412B (zh) 一种铝/钛复合板表面微弧氧化膜及其制备方法
CN106757260A (zh) 一种用于制备铝合金表面微弧氧化膜的复合纳米电解液其应用
CN107904641A (zh) 一种压铸铝合金表面处理工艺
CN109183126A (zh) 一种镁合金表面疏水膜层的制备方法
CN104831333B (zh) 一种钢铁表面磁性微弧氧化膜层的制备方法
CN106637339A (zh) 一种具有高粘接强度阳极氧化膜的铝合金的制备工艺
CN101845653A (zh) 一种磁场作用下微弧氧化膜层的制备方法
CN103266343B (zh) 金属材料的表面糙化方法
CN107119296A (zh) 一种阳极活化钛合金电镀铜的方法
MX2022011840A (es) Metodo para el tratamiento de un sustrato metalico para la preparacion de electrodos.
CN106011852A (zh) 一种奥氏体不锈钢表面高熵合金涂层的制备方法
CN102400140A (zh) 农用犁表面微弧氧化处理方法
CN105755428B (zh) 扩渗剂及应用该扩渗剂的粉末热扩渗镁合金表面改性方法
CN104388891A (zh) 一种钛及钛合金液压缸缸筒内表面的硬化方法
CN108914192B (zh) 一种不锈钢亚光处理工艺
CN111254476A (zh) 一种纯铜表面耐蚀黑色微弧氧化膜的制备方法
CN101195926A (zh) 铝合金表面获得TiAl/Al2O3复合材料陶瓷膜层的方法
JPH01118489A (ja) 印刷版用アルミニウム支持体の製造方法
CN114164475B (zh) 镁或镁合金表面电化学处理的方法
CN104671363B (zh) 一种掺杂Gd的钛基Sb-SnO2催化极板及其制备方法
CN201915159U (zh) Za43高铝锌基合金微弧氧化装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 518116 Guangdong Province, Shenzhen city Longgang Ping beauty Star Industrial Park 2 Building 1 floor 863 detection

Co-patentee after: Shenzhen Beauty Star Co., Ltd.

Patentee after: Shenzhen 863 New Material Technology Co., Ltd.

Co-patentee after: Harbin Institute of Technology Shenzhen Graduate School

Address before: 518116 Guangdong Province, Shenzhen city Longgang Ping beauty Star Industrial Park 2 Building 1 floor 863 detection

Co-patentee before: Shenzhen Beauty Star Co., Ltd.

Patentee before: Shenzhen 863 Program Research and Development Center

Co-patentee before: Harbin Institute of Technology Shenzhen Graduate School

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 518116 863 inspection of 1 buildings, 2 buildings of Lixing Industrial Park, Longgang, Shenzhen, Guangdong

Patentee after: SHENZHEN 863 NEW MATERIAL TECHNOLOGY Co.,Ltd.

Patentee after: Shenzhen Lihe Technology Innovation Co.,Ltd.

Patentee after: HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

Address before: 518116 863 inspection of 1 buildings, 2 buildings of Lixing Industrial Park, Longgang, Shenzhen, Guangdong

Patentee before: SHENZHEN 863 NEW MATERIAL TECHNOLOGY Co.,Ltd.

Patentee before: SHENZHEN BEAUTY STAR Co.,Ltd.

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210909

Address after: 518116 TONGCHAN Lixing science and Technology Industrial Park workshop I B201 Workshop II 101, 201, 301, 304, 305, 306, 401, workshop VII 101, No. 1001, Longgang Avenue (Pingxi community), Pingdi street, Longgang District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN 863 NEW MATERIAL TECHNOLOGY Co.,Ltd.

Patentee after: Shenzhen TONGCHAN Lixing Technology Group Co.,Ltd.

Patentee after: HARBIN INSTITUTE OF TECHNOLOGY (SHENZHEN)

Address before: 518116 863 inspection of 1 buildings, 2 buildings of Lixing Industrial Park, Longgang, Shenzhen, Guangdong

Patentee before: SHENZHEN 863 NEW MATERIAL TECHNOLOGY Co.,Ltd.

Patentee before: Shenzhen Lihe Technology Innovation Co.,Ltd.

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY SHENZHEN GRADUATE SCHOOL