CN105832699B - 一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用 - Google Patents

一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用 Download PDF

Info

Publication number
CN105832699B
CN105832699B CN201610155881.3A CN201610155881A CN105832699B CN 105832699 B CN105832699 B CN 105832699B CN 201610155881 A CN201610155881 A CN 201610155881A CN 105832699 B CN105832699 B CN 105832699B
Authority
CN
China
Prior art keywords
sio
complex microsphere
yolk
structure hollow
eggshell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610155881.3A
Other languages
English (en)
Other versions
CN105832699A (zh
Inventor
王永强
程琳
郑海红
虞勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201610155881.3A priority Critical patent/CN105832699B/zh
Publication of CN105832699A publication Critical patent/CN105832699A/zh
Application granted granted Critical
Publication of CN105832699B publication Critical patent/CN105832699B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明首先采用溶剂热法制备Fe2O3纳米粒子,结合模板法和水热法,在不加入任何表面活性剂的条件下,以TEOS为硅源,在温和的条件下制备出形貌可控的Fe3O4@SiO2蛋黄‑蛋壳结构中空复合微球,用浓度的盐酸腐蚀Fe2O3@SiO2复合微球得到Fe2O3@SiO2蛋黄‑蛋壳结构中空复合微球,再经还原后制得具有超顺磁性Fe3O4@SiO2蛋黄‑蛋壳结构中空复合微球。所制得的Fe3O4@SiO2蛋黄‑蛋壳结构中空复合微球比表面积为173m2/g,载药量为139mg/g,以盐酸阿霉素为药物模型,在pH为7.4的PBS缓冲溶液中72h内药物的释放率最高达到68.4%,表现出良好的药物缓释性能。

Description

一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及 应用
技术领域
本发明属于生物医学材料领域,尤其涉及一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用。
背景技术
近年来,随着医药技术的不断发展,药物缓控释制剂逐渐成为了制剂学研究的重点,而药物缓控释技术的关键是药物载体的选择。到目前为止,应用较为广泛的载体材料包括高分子载体、嵌状聚合物胶束载体、树状大分子载体、脂质体载体和无机物载体。无机纳米材料,如介孔材料、纳米管、中空微球等由于具有化学稳定性好、粒子形态和大小可控、表面及孔道易于修饰,还有其独特的光学、磁学和电学等性能而逐渐成为药物缓控释领域研究的研究热点。
中空微球是一种具有特殊结构的核壳材料,它内部的空腔可容纳大量的药物分子,多孔壳层可作为药物释放的通道,因而被认为是药物缓控释领域最具有应用潜力的材料。它最大的优点是比表面积大,可通过调节壳层厚度、孔径、孔形貌和表面改性等手段来改善药物的负载率及缓释性能。包埋了具有磁学、光学性质材料的中空微球更是在靶向治疗、磁控释放领域引起了高度重视。
磁性纳米材料具有超顺磁性和较高的磁饱和强度,因此在磁共振成像、靶向药物和磁靶向热疗等生物医学领域都表现出很大的应用前景。目前,磁性载体粒子研究最多的是磁性微球,但微球的粒径和承载能力是影响其实际应用的两大主要问题。众所周知,载体粒径只有达到纳米级才能有效地避免巨噬细胞的吞噬,维持在体内的长循环。另一方面由于磁性微粒本身具有磁性,易于团聚,不利于磁性粒子在体内的分布。现在,减少团聚的普遍做法是加入表面活性剂,但这种做法不仅改变了粒子的表面性质,影响其承载能力,而且由于表面活性剂的存在使其生物相容性降低。
二氧化硅对磁性纳米材料进行表面修饰时,不仅可以保护磁性核不被氧化或者腐蚀,而且也将内核磁性纳米粒子与表面修饰的其它功能化分子隔开,避免了功能修饰层与磁性纳米粒子之间的相互影响。另外,可以屏蔽磁性纳米粒子之间的偶极相互作用,阻止粒子发生团聚,提高核壳粒子在水中的悬浮特性和生物相容性。Stober法和溶胶凝胶法是二氧化硅修饰Fe3O4纳米粒子的常用方法,壳层厚度可以用TEOS和H2O的比例调节,为制备高质量的磁性微球提供了保证,这又为磁性微球的表面生物修饰和硅球在生物医学中的应用提供了重要保障。
因此,设计一种形貌可控、稳定性高、生物相容性好,承载能力高,缓释性能显著且具有靶向运输作用的载体材料在***等重大疾病领域上将具有非常重要的意义。
发明内容
本发明的目的在提供一种稳定性高、生物相容性好,承载能力高,缓释性能显著且具有靶向运输作用的Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用。
为实现上述目的,本发明采用的技术方案是,一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法,包括以下步骤:①将FeCl3•6H2O、尿素、柠檬酸三钠加入到水中搅拌溶解,之后加入聚丙烯酸钠(分子量为20000~2000000,室温下凝胶状),搅拌均匀后转移到反应釜中,在170~200℃条件下水热反应3~6h,冷却至室温后,所得橙黄色固体用乙醇洗涤,再用水洗,然后在55~65℃干燥,得Fe2O3纳米微球;②将步骤①制备的Fe2O3纳米微球按固液比1g:200ml~1g:350ml分散到10-90vol%的乙醇中,加入TEOS(正硅酸乙酯)的乙醇溶液, 20~30℃下超声处理2~4h,随后加入氨水,搅拌均匀,室温下反应1~3h,所得固体用乙醇洗涤,再用水洗,然后在55~65℃下干燥即制得Fe2O3@ SiO2复合微球;③将步骤②得到的Fe2O3@ SiO2复合微球分散到盐酸中,搅拌反应6~12h,所得固体离心分离后用乙醇和水洗涤,55~65℃下干燥即制得Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球;④将步骤③得到的Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球在管式炉350~500℃下、氢气和氮气体积比为1:8~1:3的混合气下保持60~120min,然后冷却至室温,乙醇洗涤,再用水洗,磁分离,干燥后即得Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球。
步骤①中FeCl3•6H2O和尿素的质量比为1:1~5:1,FeCl3•6H2O和柠檬酸三钠的质量比为1:2~1:5,FeCl3•6H2O和水的质量比为1:60~1:30,水和聚丙烯酸钠的质量比为0.75:1~3:1。
步骤②中TEOS的乙醇溶液中TEOS的体积分数为0.5~5%;10-90vol%的乙醇和TEOS的乙醇溶液的体积比为3:1~5:1;10-90vol%的乙醇和氨水的体积比为5:1~9:1;氨水的浓度为6~14.5 mol/L。
所述步骤③中盐酸的浓度为4~12mol/L, Fe2O3@ SiO2复合微球与盐酸的固液比为1g:300ml~1g:500ml。
所述的 Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球作为药物载体的应用:将盐酸阿霉素溶解在pH=7.4的磷酸缓冲溶液中,然后加入Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球,室温下搅拌24h,磁分离即得负载盐酸阿霉素的Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球。
本发明产生的有益效果是:本发明首先采用溶剂热法制备Fe2O3纳米粒子,粒径在200nm左右,经过柠檬酸钠改性后在水溶液中具有良好的单分散性;结合模板法和水热法,在不加入任何表面活性剂的条件下,以TEOS为硅源,在温和的条件下制备出形貌可控的Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球,该过程采用超声辅助合成,保障了复合微球的高度分散性;用一定浓度的盐酸腐蚀Fe2O3@SiO2复合微球得到Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球,再经氢气还原后制得具有超顺磁性Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球。以盐酸阿霉素为药物模型,实现对其载药释药的性能研究。所制得的Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球比表面积为173m2/g,载药量为139mg/g,在pH为7.4的PBS缓冲溶液中72h内药物的释放率最高达到68.4%,表现出良好的药物缓释性能。
附图说明
图1为实施例1制备得到的Fe2O3纳米微球的透射电子显微镜照片;
图2为实施例1制备得到的Fe2O3@ SiO2复合微球透射电子显微镜照片;
图3为实施例1制备得到的Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球透射电子显微镜照片;
图4为实施例1制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球透射电子显微镜照片;
图5为实施例1制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球的XRD图;
图6为实施例1制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球的IR图;
图7为实施例1制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球在pH为7.4的PBS缓冲溶液中72h内药物的释放曲线图;
图8为实施例2制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球透射电子显微镜照片;
图9为实施例3制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球透射电子显微镜照片。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
实施例1
一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法,包括以下步骤:①将FeCl3•6H2O、尿素、柠檬酸三钠加入到水中搅拌溶解,之后加入聚丙烯酸钠,搅拌均匀后转移到反应釜中,在190℃条件下水热反应3.5h,冷却至室温后,所得橙黄色固体用乙醇洗涤,再用水洗,然后在60℃干燥,得Fe2O3纳米微球;②将步骤①制备的Fe2O3纳米微球按固液比1:250分散到60vol%的乙醇中,加入TEOS(正硅酸乙酯)的乙醇溶液,25℃下超声处理3h,随后加入氨水,搅拌3min,室温下反应2h,所得固体用乙醇洗涤,再用水洗,然后在60℃下干燥即制得Fe2O3@ SiO2复合微球;③将步骤②得到的Fe2O3@ SiO2复合微球分散到盐酸中,搅拌反应8h,所得固体离心分离后用乙醇和水洗涤后60℃下干燥即制得Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球;④将步骤③得到的Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球在管式炉500℃下、氢气和氮气体积比为1:7的混合气下保持120min,然后冷却至室温,乙醇洗涤,再用水洗,磁分离,干燥后即得Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球。
步骤①中FeCl3•6H2O和尿素的质量比为5:1,FeCl3•6H2O和柠檬酸三钠的质量比为1:5,FeCl3•6H2O和水的质量比为1:30,水和聚丙烯酸钠的质量比为0.75:1。
步骤②中TEOS的乙醇溶液中TEOS的体积分数为0.5%;60vol%的乙醇和TEOS的乙醇溶液的体积比为3:1;60vol%的乙醇和氨水的体积比为6:1;氨水的浓度为10.5 mol/L。
所述步骤③中盐酸的浓度为6mol/L, Fe2O3@ SiO2复合微球与盐酸的固液比为1g:300ml。
实施例1制备的Fe2O3纳米微球的透射电子显微镜照片如图1所示,从图1可以看出,Fe2O3纳米微球排列规整,尺寸在200nm左右,具有很好的单分散性;实施例1制备得到的Fe2O3@ SiO2复合微球透射电子显微镜照片如图2所示,从图2可以看出,SiO2成功的包覆在Fe2O3纳米微球表面,尺寸约为50nm,且包覆过SiO2壳层后仍保持良好的单分散性;实施例1制备得到的Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球的透射电子显微镜照片如图3所示,从图3可以看出,Fe2O3@ SiO2复合微球经过6mol/L盐酸的腐蚀,Fe2O3核被部分腐蚀,形成蛋黄-蛋壳结构中空Fe2O3@ SiO2复合微球,SiO2壳层后仍保持其完整性;实施例1制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球透射电子显微镜照片如图4所示,从图4可以看出,经管式炉煅烧处理,Fe2O3@ SiO2蛋黄-蛋壳结构中空复合成为具有超顺磁性的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球,对比可知,微球核经煅烧之后变小,空腔变大。
药物缓控释性能测试:
(1)药物载入
以pH=7.4的磷酸缓冲溶液(PBS)为溶剂,将盐酸阿霉素(DOX)溶解在PBS中,配成一定浓度的溶液(0.2mg/mL),记为DOX-PBS。称取5mg的实施例1制备的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球,加入10mL DOX-PBS溶液,超声使其溶解,然后将容器密封,室温下搅拌24h,使样品充分吸附药物。最后将样品磁分离,用紫外分光光度计检测上清液在480nm处的吸光度,用差减法计算单位质量中空微球的载药量,样品60℃干燥,制得的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球比表面积为173m2/g,载药量为139mg/g。载药量Qe = 载上的 DOX的质量/载体样品的质量,可按下面公式计算:
式中C0—药物起始浓度(mg/mL);
Ce—反应完成时的浓度(mg/mL);
V —药物溶液的体积(mL);
M —载体质量(g)。
(2)药物释放
用pH=7.4的磷酸盐缓冲溶液(PBS)来模拟人体体液进行药物体外释放的研究。将载有DOX药物的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球分散到10mL的PBS溶液中,密封后放到37℃的恒温振荡器中缓慢震荡,每隔2h对溶液进行离心分离,直到释放72h,用紫外分光光度计检测离心上清液在480nm处的吸光度,然后在反应器中重新补充10mLpH=7.4的磷酸盐缓冲溶液继续释放。根据标定好的标准曲线计算每段时间间隔释放的药物的质量,进而得到累积的药物释放率。计算公式如下:,Mt是t时间缓冲溶液中所释放出的盐酸阿霉素的质量,M0是Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球中所含盐酸阿霉素的质量。由图7可知,在pH为7.4的PBS缓冲溶液中72h内药物的释放率达到68.4%,表现出良好的药物缓释性能。
实施例2
一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法,包括以下步骤:①将FeCl3•6H2O、尿素、柠檬酸三钠加入到水中搅拌溶解,之后加入聚丙烯酸钠,搅拌均匀后转移到反应釜中,在170℃条件下水热反应3h,冷却至室温后,所得橙黄色固体用乙醇洗涤,再用水洗,然后在55℃干燥,得Fe2O3纳米微球;②将步骤①制备的Fe2O3纳米微球按固液比1g:200ml分散到90vol%的乙醇中,加入TEOS(正硅酸乙酯)的乙醇溶液,20℃下超声处理4h,随后加入氨水,搅拌1min,室温下反应3h,所得固体用乙醇洗涤,再用水洗,然后在65℃下干燥即制得Fe2O3@ SiO2复合微球;③将步骤②得到的Fe2O3@ SiO2复合微球分散到盐酸中,搅拌反应6h,所得固体离心分离后用乙醇和水洗涤,55℃下干燥即制得Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球;④将步骤③得到的Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球在管式炉450℃下、氢气和氮气体积比为1:8的混合气下保持100min,然后冷却至室温,乙醇洗涤,再用水洗,磁分离,干燥后即得Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球。
步骤①中FeCl3•6H2O和尿素的质量比为3:1,FeCl3•6H2O和柠檬酸三钠的质量比为1:2,FeCl3•6H2O和水的质量比为1:60,水和聚丙烯酸钠的质量比为3:1。
步骤②中TEOS的乙醇溶液中TEOS的体积分数为5%;90vol%的乙醇和TEOS的乙醇溶液的体积比为4:1;90vol%的乙醇和氨水的体积比为9:1;氨水的浓度为14.5 mol/L。
所述步骤③中盐酸的浓度为4mol/L,Fe2O3@ SiO2复合微球与盐酸的固液比为1g:500ml。
实施例3
一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法,包括以下步骤:①将FeCl3•6H2O、尿素、柠檬酸三钠加入到水中搅拌溶解,之后加入聚丙烯酸钠,搅拌均匀后转移到反应釜中,在200℃条件下水热反应6h,冷却至室温后,所得橙黄色固体用乙醇洗涤,再用水洗,然后在65℃干燥,得Fe2O3纳米微球;②将步骤①制备的Fe2O3纳米微球按固液比1g:350ml分散到10vol%的乙醇中,加入TEOS(正硅酸乙酯)的乙醇溶液,30℃下超声处理2h,随后加入氨水,搅拌5min,室温下反应1h,所得固体用乙醇洗涤,再用水洗,然后在55℃下干燥即制得Fe2O3@ SiO2复合微球;③将步骤②得到的Fe2O3@ SiO2复合微球分散到盐酸中,搅拌反应12h,所得固体离心分离后用乙醇和水洗涤,65℃下干燥即制得Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球;④将步骤③得到的Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球在管式炉350℃下、氢气和氮气体积比为1:3的混合气下保持60min,然后冷却至室温,乙醇洗涤,再用水洗,磁分离,干燥后即得Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球。
步骤①中FeCl3•6H2O和尿素的质量比为1:1,FeCl3•6H2O和柠檬酸三钠的质量比为1:3,FeCl3•6H2O和水的质量比为1:45,水和聚丙烯酸钠的质量比为2:1。
步骤②中TEOS的乙醇溶液中TEOS的体积分数为2.5%;10vol%的乙醇水溶液和TEOS的乙醇溶液的体积比为5:1;10vol%的乙醇和氨水的体积比为5:1;氨水的浓度为6 mol/L。
所述步骤③中盐酸的浓度为12mol/L, Fe2O3@ SiO2复合微球与盐酸的固液比为1g:400ml。
图8为实施例2制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球透射电子显微镜照片,图9为实施例3制备得到的Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球透射电子显微镜照片,本发明可以通过控制TEOS的量来控制复合微球的壳层厚度,调控盐酸的浓度,影响Fe2O3@ SiO2复合微球的腐蚀程度,从而控制Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球的结构和形貌。

Claims (1)

1.一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法,其特征在于,包括以下步骤:①将FeCl3•6H2O、尿素、柠檬酸三钠加入到水中搅拌溶解,之后加入聚丙烯酸钠,搅拌均匀后转移到反应釜中,在170~200℃条件下水热反应3~6h,冷却至室温后,所得橙黄色固体用乙醇洗涤,再用水洗,然后在55~65℃干燥,得Fe2O3纳米微球;②将步骤①制备的Fe2O3纳米微球按固液比1g:200ml~1g:350ml分散到10-90vol%的乙醇中,加入TEOS的乙醇溶液, 20~30℃下超声处理2~4h,随后加入氨水,搅拌均匀,室温下反应1~3h,所得固体用乙醇洗涤,再用水洗,然后在55~65℃下干燥即制得Fe2O3@ SiO2复合微球;③将步骤②得到的Fe2O3@SiO2复合微球分散到盐酸中,搅拌反应6~12h,所得固体离心分离后用乙醇和水洗涤后55~65℃下干燥即制得Fe2O3@ SiO2蛋黄-蛋壳结构中空复合微球;④将步骤③得到的Fe2O3@SiO2蛋黄-蛋壳结构中空复合微球在350~500℃下、氢气和氮气体积比为1:8~1:3的混合气下保持60~120min,然后冷却至室温,乙醇洗涤,再用水洗,磁分离,干燥后即得Fe3O4@ SiO2蛋黄-蛋壳结构中空复合微球;步骤①中FeCl3•6H2O和尿素的质量比为1:1~5:1,FeCl3•6H2O和柠檬酸三钠的质量比为1:2~1:5,FeCl3•6H2O和水的质量比为1:60~1:30,水和聚丙烯酸钠的质量比为0.75:1~3:1;步骤 ②中TEOS的乙醇溶液中TEOS的体积分数为0.5~5%;10-90vol%的乙醇和TEOS的乙醇溶液的体积比为3:1~5:1;10-90vol%的乙醇和氨水的体积比为5:1~9:1;氨水的浓度为6~14.5 mol/L;所述步骤 ③中盐酸的浓度为4~12mol/L, Fe2O3@SiO2复合微球与盐酸的固液比为1g:300ml~1g:500ml。
CN201610155881.3A 2016-03-18 2016-03-18 一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用 Expired - Fee Related CN105832699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610155881.3A CN105832699B (zh) 2016-03-18 2016-03-18 一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610155881.3A CN105832699B (zh) 2016-03-18 2016-03-18 一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用

Publications (2)

Publication Number Publication Date
CN105832699A CN105832699A (zh) 2016-08-10
CN105832699B true CN105832699B (zh) 2018-10-23

Family

ID=56588326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610155881.3A Expired - Fee Related CN105832699B (zh) 2016-03-18 2016-03-18 一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用

Country Status (1)

Country Link
CN (1) CN105832699B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847452B (zh) * 2016-11-16 2018-10-19 合众(佛山)化工有限公司 一种核壳结构的空心磁性微球及其制备方法
CN107321295B (zh) * 2017-08-02 2020-04-07 浙江理工大学 一种铃铛型结构Fe@SiO2复合微球、制备方法及其应用
CN107892827B (zh) * 2017-12-13 2019-11-22 宁波康曼丝涂料有限公司 一种反射隔热砂壁状涂料及其制备方法
CN108714420A (zh) * 2018-05-08 2018-10-30 宁波工程学院 光磁响应性中空微球的制备方法
CN108807905B (zh) * 2018-06-12 2021-03-12 河南师范大学 一种可调空腔结构的氧化铁@氧化钛复合负极材料的制备方法
CN109513405B (zh) * 2018-12-05 2020-10-27 湘潭大学 一种Yolk/shell胶囊及其制备方法和用途
CN111484769B (zh) * 2019-05-14 2022-11-15 广东聚华印刷显示技术有限公司 复合材料及其制备方法、包含其的墨水,以及成膜方法
CN110251482B (zh) * 2019-07-24 2020-07-31 河南大学 一种单分散空心普鲁士蓝纳米微球、其制备方法及应用
CN112516956A (zh) * 2020-11-12 2021-03-19 蚌埠学院 一种磁性复合纳米材料的制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"多功能Fe3O4@SiO2蛋黄-蛋壳纳米胶囊的制备及在药物输送和荧光成像中的应用";张凌宇 等;《中国化学会第十三届胶体与界面化学会议论文摘要集》;20110720;第409页 *
An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates;Zhu Y. F.,et al.;《Chemistry of Materials》;20091231;第21卷(第12期);第2547-2553页 *
Fe3O4/SiO2核壳复合磁性微球的制备和表征;熊珊 等;《硅酸盐学报》;20150731;第43卷(第7期);第946-951页 *
正交试验优化核壳型Fe3O4@SiO2磁性复合微球的制备工艺;吴文兵 等;《广州化工》;20150531;第40卷(第9期);第126-128页 *

Also Published As

Publication number Publication date
CN105832699A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105832699B (zh) 一种Fe3O4@SiO2蛋黄-蛋壳结构中空复合微球的制备方法及应用
Liu et al. Magnetic nanocomposites with mesoporous structures: synthesis and applications
Amiri et al. Synthesis and in vitro evaluation of a novel magnetic drug delivery system; proecological method for the preparation of CoFe2O4 nanostructures
CN107412195B (zh) 一种pH响应的抗肿瘤药物载体材料及其制备和应用
Deng et al. Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy
Pon-On et al. Investigation of magnetic silica with thermoresponsive chitosan coating for drug controlled release and magnetic hyperthermia application
Du et al. Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release
Lu et al. Synthesis and application in drug delivery of hollow-core-double-shell magnetic iron oxide/silica/calcium silicate nanocomposites
Wang et al. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-modal Optical Imaging, Switchable Drug Release and Synergistic Therapy
Xu et al. Bleomycin loaded magnetite nanoparticles functionalized by polyacrylic acid as a new antitumoral drug delivery system
Espinoza et al. In vitro studies of Pluronic F127 coated magnetic silica nanocarriers for drug delivery system targeting liver cancer
Liu et al. A dual-targeting Fe3O4@ C/ZnO-DOX-FA nanoplatform with pH-responsive drug release and synergetic chemo-photothermal antitumor in vitro and in vivo
CN105769812B (zh) 一种Fe3O4@C核壳结构复合微球的制备方法及应用
Liu et al. pH-sensitive polymer-gated multifunctional upconversion NaYF4: Yb/Er@ mSiO2 nanocomposite for oral drug delivery
Sha et al. The opportunities and challenges of silica nanomaterial for atherosclerosis
Zhu et al. Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy
CN107281494B (zh) 一种氧化石墨烯-鱼精蛋白/海藻酸钠复合物的制备方法及应用
Jia et al. Magnetic silica nanosystems with NIR-responsive and redox reaction capacity for drug delivery and tumor therapy
CN105084424A (zh) 一种核壳球状磁性介孔二氧化硅纳米复合材料的快速制备方法和应用
Feng et al. Efficient delivery of fucoxanthin using metal–polyphenol network-coated magnetic mesoporous silica
Kang et al. Flexible human serum albumin nanocapsules to enhance drug delivery and cellular uptake for photodynamic/chemo cancer therapy
Xu et al. A dual-responsive drug delivery system based on mesoporous silica nanoparticles covered with zipper-type peptide for intracellular transport/release
Qi et al. Investigation of hollow mesoporous NiFe2O4 nanospheres fabricated via a template-free solvothermal route as pH-responsive drug delivery system for potential anticancer application
Wang et al. Polyetherimide‐and folic acid‐modified Fe3O4 nanospheres for enhanced magnetic hyperthermia performance
Zeng et al. Preparation of functionalized redox response type TiO2&mSiO2 nanomaterials and research on anti-tumor performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181023

Termination date: 20190318

CF01 Termination of patent right due to non-payment of annual fee