CN105789592B - Surface is loaded with three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three and its preparation method and application - Google Patents

Surface is loaded with three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three and its preparation method and application Download PDF

Info

Publication number
CN105789592B
CN105789592B CN201610248533.0A CN201610248533A CN105789592B CN 105789592 B CN105789592 B CN 105789592B CN 201610248533 A CN201610248533 A CN 201610248533A CN 105789592 B CN105789592 B CN 105789592B
Authority
CN
China
Prior art keywords
flower
nickel
curing
combination electrode
dimensional grapheme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610248533.0A
Other languages
Chinese (zh)
Other versions
CN105789592A (en
Inventor
谢健
夏雪珂
曹高劭
赵新兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Han Xing Technology Co., Ltd.
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610248533.0A priority Critical patent/CN105789592B/en
Publication of CN105789592A publication Critical patent/CN105789592A/en
Application granted granted Critical
Publication of CN105789592B publication Critical patent/CN105789592B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses a kind of three-dimensional grapheme combination electrode, using three-dimensional porous foams nickel as matrix, direct growth graphene on matrix, direct growth flower-shape Ni on described graphene3S2.The invention also discloses the preparation method and application of described three-dimensional grapheme combination electrode.Described preparation method, have technique is simple, cost is low, the cycle is short, low power consumption and other advantages, be adapted to large-scale industrial production;The three-dimensional grapheme based combined electrode being prepared is free of any conductive agent and binding agent, due to special three-dimensional porous structure and flower-shape Ni3S2With the conduction and fixation of graphene, when described combination electrode is used for sodium-ion battery, higher capacity and preferable cyclical stability are shown.

Description

Surface is loaded with three-dimensional grapheme combination electrode and its preparation side of the flower-shaped nickel of curing three Method and application
Technical field
The present invention relates to sodium-ion battery combination electrode field, and in particular to a kind of three-dimensional grapheme combination electrode and its Preparation method and application.
Background technology
Lithium ion battery is widely used as mobile electronic device, such as smart mobile phone, notebook computer, and in electricity now Net energy storage, electric automobile field have huge market.But with the popularization of lithium ion battery, particularly in electric automobile Upper large-scale use, the consumption of lithium resource is also huge.And the reserves of lithium resource are limited, and at present to discarded lithium from The recovery of elemental lithium lacks effective, economic technology in sub- battery.By contrast, the reserves of sodium element on earth are much high In elemental lithium, price is also far below lithium.Therefore, in recent years, sodium-ion battery is paid attention to extensively.It is generally believed that sodium ion is electric Pond has tempting prospect in power network energy storage field.
Traditional lithium ion battery uses graphite as negative pole, but because the radius of sodium ion is much larger than lithium ion, sodium from Son is difficult to be embedded between graphite linings.Therefore, the storage sodium capacity of graphite is far below lithium storage content, generally below 300mAh/g.Mirror In this, exploitation novel high-capacity stores up the key factor that sodium negative material is researched and developed into sodium-ion battery.It is embedded in relative to sodium ion Reversible conversion reaction can occur for the graphite type material of mechanism, some sulfide and sodium, the corresponding higher storage sodium of the storage sodium mechanism Capacity.As following reaction can occur for NiS and Na:The theoretical storage sodium capacity of the reaction is up to 590mAh/g。
Although sulfide has higher storage sodium activity, because sulfide electrical conductivity is relatively low, influences it and store up sodium activity Play, it is necessary to add conductive carbon to improve the conductance of electrode.In addition, for traditional coating processes, generally require to polymerize Thing binding agent fixes active particle.
By the way that active material is directly grown on conducting base, electrical conductivity on the one hand can be improved, the opposing party can avoid Use polymeric binder.Graphene is non-convention because its high electrical conductivity, high mechanical strength, big specific surface area agent The matrix material thought.Conductive and fixation can be met simultaneously using graphene as matrix, in sodium-ion battery electrode design It is upper that there is good prospect, but there is presently no the document report of this respect.
The content of the invention
The invention provides a kind of three-dimensional grapheme combination electrode for sodium-ion battery and its preparation method and application. Preparation technology is simple, and energy consumption is low, cost is low, is suitable for large-scale industrial production;The three-dimensional grapheme compound electric being prepared Have high power capacity and high circulation stability, be applied in sodium-ion battery electrode, can be used to improve sodium-ion battery Chemical property, particularly improve capacity and cyclical stability.
The preparation method of the three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three is loaded with the invention discloses a kind of surface, Comprise the following steps:
1) using three-dimensional porous foams nickel as matrix, by chemical vapour deposition technique, graphene is directly grown on matrix, is remembered For Ni/G;
2) thiocarbamide and anhydrous sodium sulfate are dissolved in deionized water, are uniformly mixing to obtain mixed solution, in the mixed solution SO4 2–Concentration is 0.01~0.05mol/L;
The mol ratio of the thiocarbamide and anhydrous sodium sulfate is 0.2~1.0;
3) mixed solution for obtaining the Ni/G immersions step 2) that step 1) obtains, through 100~150 DEG C of hydro-thermal reactions 1~ Surface must be arrived after 5h, then scrubbed, drying and is loaded with the Ni/G for being loaded with the nickel of curing three, be designated as Ni/G/Ni3S2
The present invention directly prepares graphene, described stone by CVD using three-dimensional porous foams nickel as matrix on matrix Black alkene replicates the three-dimensional porous structure of nickel foam;Again by hydro-thermal method in three-dimensional grapheme surface direct growth flower-shape Ni3S2。 Graphene serves double action, not only Ni3S2Electric action is provided, and flower-shape Ni can be fixed3S2, so as to improve its appearance Amount and cyclical stability.
Described direct growth refers to:First by CVD, directly graphene is prepared on the skeleton of nickel foam;Then Under hydrothermal conditions, flower-shape Ni3S2It is directly grown on graphene;In contrast, indirect growth refers to pre-synthesis graphene And flower-shape Ni3S2, then two kinds of raw materials and binding agent are well mixed in organic solvent, stir into slurry, then it is coated in bubble On foam Ni substrate.
Preferably, in step 1), chemical vapor deposition concretely comprises the following steps:
Three-dimensional porous foams nickel is placed in reactor, is warming up to 800~1200 DEG C, after insulation under an ar atmosphere, then draw Enter methane, room temperature is cooled to after reaction.
Preferably, three-dimensional porous foams nickel is put into tube furnace, 1000 DEG C, after insulation are warming up under an ar atmosphere, Methane is introduced in quartz ampoule with Ar air-flows again, reacts 3~10min;Finally, room temperature is cooled under an ar atmosphere, is grown Three-dimensional grapheme on nickel foam substrate;It is designated as Ni/G.
Preferably, in step 3), described hydrothermal temperature is 110~130 DEG C.
The temperature of described cooling does not have strict restriction, based on adequate operation, can typically be cooled to 15~30 DEG C Environment temperature.
The invention also discloses the three-dimensional grapheme that the flower-shaped nickel of curing three is loaded with according to the surface of above-mentioned method preparation Combination electrode, described three-dimensional grapheme combination electrode material is using three-dimensional porous foams nickel as matrix, direct growth stone on matrix Black alkene, the flower-shaped nickel of curing three of direct growth on described graphene, is designated as Ni/G/Ni3S2
Ni in the present invention3S2Come from metallic nickel, therefore the nickel of flower-shaped curing three is necessarily connected with metallic nickel matrix.Separately Outside, due in Ni3S2Graphene, Ni are grown before growth in advance3S2Nanometer sheet necessarily runs through graphene sheet layer, therefore flower-shaped Ni3S2Graphene sheet layer can be run through and by UNICOM of graphene sheet layer institute.Therefore, the performance and machine that the combination electrode has necessarily had Tool performance.
Flower-shape Ni3S2With less size and higher specific surface area, be advantageous to by electrolyte wetting and material activity Improve.Preferably, the flower-shape Ni3S2By circular Ni3S2Thin slice forms, monolithic Ni3S2A diameter of 2~3 μm, monolithic Ni3S2 Thickness be only 100~200nm.Relatively thin monolithic Ni3S2Be advantageous to the diffusion of sodium ion, so as to improve the activity of material.
Preferably, in described three-dimensional grapheme combination electrode material the bearing capacity of the flower-shaped nickel of curing three for 0.8~ 1.5mg/cm2.Flower-shape Ni3S2Bearing capacity it is very few, the capacity of electrode is with regard to relatively low;Bearing capacity is excessive, and material is not easy to be moistened by electrolyte Wet, graphene can weaken to it conduction and fixation.
Preferably, the bearing capacity of graphene is 0.3~0.6mg/cm2, graphene plays conductive and fixed in the electrodes Effect, the mechanical stability of the too low raising and electrode for being unfavorable for electric conductivity of graphene content, and too high content is to conduction The effect unobvious of the raising of performance and mechanical performance.Therefore, it is the content control of graphene is more reasonable within the above range.
The invention also discloses the surface to be loaded with the three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three in sodium ion electricity Application in pond.
Compared with prior art, the invention has the advantages that:
1st, graphene and flower-shape Ni in three-dimensional grapheme combination electrode prepared by the present invention3S2It is Ni-based to be directly grown in foam On body, without other conductive agents and binding agent, with technique is simple, cost is low, the cycle is short, energy consumption is low and suitable industrialized production The advantages that;
2nd, graphene while conduction and fixation are played in the three-dimensional grapheme combination electrode for preparing of the present invention, can improved The electro-chemical activity and mechanical stability of electrode, so as to improve the capacity of electrode and cyclical stability;
3rd, compared with traditional electrode slurry coating process, this preparation method can keep the original three-dimensional porous knot of nickel foam Structure, be advantageous to the wetting of electrode and the buffering of stress, so as to improve the cyclical stability of sodium-ion battery.
Brief description of the drawings
Fig. 1 is the X ray diffracting spectrum of three-dimensional grapheme combination electrode surface mass prepared by embodiment 1;
Fig. 2 is Ni/G prepared by embodiment 1 Raman (Raman) spectrogram;
Fig. 3 is the low power stereoscan photograph of three-dimensional grapheme combination electrode prepared by embodiment 1;
Fig. 4 is the high power stereoscan photograph of three-dimensional grapheme combination electrode prepared by embodiment 1;
Fig. 5 be respectively using embodiment 1 prepare three-dimensional grapheme combination electrode as positive pole, metallic sodium be negative pole assembling sodium The cyclical stability (a) of ion battery, and using comparative example 1 prepare electrode as positive pole, metallic sodium be negative pole assembling sodium ion The cyclical stability (b) of battery.
Embodiment
Embodiment 1
Nickel foam is put into tube furnace, with 100 DEG C/min of programming rate liter under Ar (500s.c.c.m.) atmosphere Temperature is to 1000 DEG C;After insulation 5 minutes, methane is introduced in quartz ampoule with Ar (250s.c.c.m.) air-flows, reacted 5 minutes;Most Afterwards, room temperature is cooled to 100 DEG C/min of cooling rate under an ar atmosphere, obtains being grown in the three-dimensional stone on nickel foam substrate Black alkene (Ni/G), wherein the bearing capacity 0.485mg/cm of graphene2;By thiocarbamide 0.4 times of anhydrous sodium sulfate (mole be) and Anhydrous sodium sulfate is dissolved in deionized water, stirs, and prepares with SO4 2–Count the solution that concentration is 0.03mol/L;Using Ni/G as Matrix, immerse above-mentioned solution, retransfer in reactor, 3 hours are incubated in 120 DEG C of baking oven after closed, then spend from Sub- water and absolute alcohol rinse for several times, must be loaded with and be carried on Ni/G to surface after 60 DEG C of baking ovens are dried in vacuo 12 hours Ni3S2(Ni/G/Ni3S2), wherein Ni3S2Bearing capacity be 1.03mg/cm2
Fig. 1 is Ni/G/Ni prepared by this implementation3S2The X-ray diffraction spectrum of electrode, the material can be attributed to Ni3S2And graphite Alkene.
Fig. 2 is the Ni/G prepared Raman spectrum, and stronger 2D peaks show that graphene is a small number of Rotating fields.
Fig. 3 and Fig. 4 is respectively the G/Ni manufactured in the present embodiment being carried in nickel foam3S2The low power and high power of electrode are swept Electronic Speculum is retouched, it was found from photo, Ni3S2Flower-like structure, flower-shape Ni is presented3S2By circular Ni3S2Thin slice forms, and monolithic thin slice is a diameter of 2 microns~3 microns, thickness is 100~200nm, and uniform load is on three-dimensional grapheme.
With the G/Ni manufactured in the present embodiment being carried in nickel foam3S2As positive pole, using metallic sodium as negative pole, glass fibers Dimension (trade mark Whatman GF/D) is barrier film, NaPF6Ethylene carbonate (EC)/diethyl carbonate (DEC) solution be electrolyte, Battery is assembled in the glove box full of argon gas, carries out charge-discharge test, cycle life curve is as shown such as curve (a) in Fig. 5.
Constant current charge-discharge tests (current density 50mA/g, wherein voltage range 0.005V~3V, capacity and current density It is based on the weight of the nickel of curing three) show, circulation volume is 453mAh/g first, and by 60 circulations, capacity is maintained at 267mAh/g。
Comparative example 1
Ni3S2Preparation technology it is same as Example 1, difference Ni3S2It is directly grown on Ni substrate, Ni substrate Upper growth graphene no in advance.Concrete technology is as follows, by thiocarbamide (mole is 0.4 times of anhydrous sodium sulfate) and anhydrous slufuric acid Sodium is dissolved in deionized water, stirs, and prepares with SO4 2–Count the solution that concentration is 0.03mol/L;By foam nickel sheet (no graphite Alkene) matrix is used as, above-mentioned solution is immersed, is retransferred in reactor, is incubated 3 hours in 120 DEG C of baking oven after closed, then Rinsed for several times with deionized water and absolute alcohol, must arrive surface after 60 DEG C of baking ovens are dried in vacuo 12 hours and be loaded with and be carried on Ni On Ni3S2(Ni/Ni3S2), wherein Ni3S2Bearing capacity be 1.02mg/cm2.X-ray diffraction spectrum shows that gained material is Ni3S2.Stereoscan photograph shows, Ni3S2Flower-like structure, flower-shape Ni is presented3S2By circular Ni3S2Thin slice forms, and monolithic thin slice is straight Footpath is 2 microns~3 microns, and thickness is 200~300nm, and uniform load is on three-dimensional grapheme.
With the Ni manufactured in the present embodiment being carried in nickel foam3S2As positive pole, using metallic sodium as negative pole, glass fibre (trade mark Whatman GF/D) is barrier film, NaPF6Ethylene carbonate (EC)/diethyl carbonate (DEC) solution be electrolyte, Battery is assembled in glove box full of argon gas, charge-discharge test is carried out, sees curve (b) in Fig. 5.
Constant current charge-discharge tests (current density 50mA/g, wherein voltage range 0.005V~3V, capacity and current density It is based on the weight of the nickel of curing three) show, circulation volume is 368mAh/g first, and by 60 circulations, capacity is reduced to 164mAh/g。
Embodiment 2
Nickel foam is put into tube furnace, with 100 DEG C/min of programming rate liter under Ar (500s.c.c.m.) atmosphere Temperature is to 1000 DEG C;After insulation 5 minutes, methane is introduced in quartz ampoule with Ar (250s.c.c.m.) air-flows, reacted 8 minutes;Most Afterwards, room temperature is cooled to 100 DEG C/min of cooling rate under an ar atmosphere, obtains being grown in the three-dimensional stone on nickel foam substrate Black alkene (Ni/G), wherein the bearing capacity 0.51mg/cm of graphene2;By thiocarbamide (the 0.2 of mole anhydrous sodium sulfate) and anhydrous sulphur Sour sodium is dissolved in deionized water, stirs, and prepares with SO4 2–Count the solution that concentration is 0.05mol/L;Using Ni/G as matrix, leaching Enter above-mentioned solution, retransfer in reactor, 4 hours are incubated in 110 DEG C of baking oven after closed, then with deionized water and nothing Water-alcohol rinses for several times, must be loaded with the Ni being carried on Ni/G to surface after 60 DEG C of baking ovens are dried in vacuo 12 hours3S2(Ni/ G/Ni3S2), wherein Ni3S2Bearing capacity be 0.93mg/cm2.X-ray diffraction spectrum shows that gained material is Ni3S2And graphene. Ni/G Raman spectrum show that graphene is a small number of Rotating fields.Stereoscan photograph shows, Ni3S2Flower-like structure is presented, it is flower-shaped Ni3S2By circular Ni3S2Thin slice forms, and a diameter of 2 microns~3 microns of monolithic thin slice, thickness is 100~200nm, and It is even to be carried on three-dimensional grapheme.
With the G/Ni manufactured in the present embodiment being carried in nickel foam3S2As positive pole, using metallic sodium as negative pole, glass fibers Dimension (trade mark Whatman GF/D) is barrier film, NaPF6Ethylene carbonate (EC)/diethyl carbonate (DEC) solution be electrolyte, Battery is assembled in the glove box full of argon gas, carries out charge-discharge test.
Constant current charge-discharge tests (current density 50mA/g, wherein voltage range 0.005V~3V, capacity and current density It is based on the weight of the nickel of curing three) show, circulation volume is 461mAh/g first, and by 60 circulations, capacity is maintained at 272mAh/g。
Embodiment 3
Nickel foam is put into tube furnace, with 100 DEG C/min of programming rate liter under Ar (500s.c.c.m.) atmosphere Temperature is to 1000 DEG C;After insulation 5 minutes, ethanol is introduced in quartz ampoule with Ar (250s.c.c.m.) air-flows, reacted 3 minutes;Most Afterwards, room temperature is cooled to 100 DEG C/min of cooling rate under an ar atmosphere, obtains being grown in the three-dimensional stone on nickel foam substrate Black alkene (Ni/G), wherein the bearing capacity 0.32mg/cm of graphene2;By thiocarbamide (the 0.6 of mole anhydrous sodium sulfate) and anhydrous sulphur Sour sodium is dissolved in deionized water, stirs, and prepares with SO4 2–Count the solution that concentration is 0.02mol/L;Using Ni/G as matrix, leaching Enter above-mentioned solution, retransfer in reactor, 2 hours are incubated in 130 DEG C of baking oven after closed, then with deionized water and nothing Water-alcohol rinses for several times, must be loaded with the Ni being carried on Ni/G to surface after 60 DEG C of baking ovens are dried in vacuo 12 hours3S2(Ni/ G/Ni3S2), wherein Ni3S2Bearing capacity be 1.01mg/cm2.X-ray diffraction spectrum shows that gained material is Ni3S2And graphene. Ni/G Raman spectrum show that graphene is a small number of Rotating fields.Stereoscan photograph shows, Ni3S2Flower-like structure is presented, it is flower-shaped Ni3S2By circular Ni3S2Thin slice forms, and a diameter of 2 microns~3 microns of monolithic thin slice, thickness is 100~200nm, and It is even to be carried on three-dimensional grapheme.
With the G/Ni manufactured in the present embodiment being carried in nickel foam3S2As positive pole, using metallic sodium as negative pole, glass fibers Dimension (trade mark Whatman GF/D) is barrier film, NaPF6Ethylene carbonate (EC)/diethyl carbonate (DEC) solution be electrolyte, Battery is assembled in the glove box full of argon gas, carries out charge-discharge test.
Constant current charge-discharge tests (current density 50mA/g, wherein voltage range 0.005V~3V, capacity and current density It is based on the weight of the nickel of curing three) show, circulation volume 445 is mAh/g first, and by 60 circulations, capacity is maintained at 254mAh/g。
Embodiment 4
Nickel foam is put into tube furnace, with 100 DEG C/min of programming rate liter under Ar (500s.c.c.m.) atmosphere Temperature is to 1000 DEG C;After insulation 5 minutes, ethanol is introduced in quartz ampoule with Ar (250s.c.c.m.) air-flows, reacted 10 minutes;Most Afterwards, room temperature is cooled to 100 DEG C/min of cooling rate under an ar atmosphere, obtains being grown in the three-dimensional stone on nickel foam substrate Black alkene (Ni/G), wherein the bearing capacity 0.55mg/cm of graphene2;By thiocarbamide (the 0.8 of mole anhydrous sodium sulfate) and anhydrous sulphur Sour sodium is dissolved in deionized water, stirs, and prepares with SO4 2–Count the solution that concentration is 0.02mol/L;Using Ni/G as matrix, leaching Enter above-mentioned solution, retransfer in reactor, 4 hours are incubated in 120 DEG C of baking oven after closed, then with deionized water and nothing Water-alcohol rinses for several times, must be loaded with the Ni being carried on Ni/G to surface after 60 DEG C of baking ovens are dried in vacuo 12 hours3S2(Ni/ G/Ni3S2), wherein Ni3S2Bearing capacity be 1.13mg/cm2.X-ray diffraction spectrum shows that gained material is Ni3S2And graphene. Ni/G Raman spectrum show that graphene is a small number of Rotating fields.Stereoscan photograph shows, Ni3S2Flower-like structure is presented, it is flower-shaped Ni3S2By circular Ni3S2Thin slice forms, and a diameter of 2 microns~3 microns of monolithic thin slice, thickness is 100~200nm, and It is even to be carried on three-dimensional grapheme.
With the G/Ni manufactured in the present embodiment being carried in nickel foam3S2As positive pole, using metallic sodium as negative pole, glass fibers Dimension (trade mark Whatman GF/D) is barrier film, NaPF6Ethylene carbonate (EC)/diethyl carbonate (DEC) solution be electrolyte, Battery is assembled in the glove box full of argon gas, carries out charge-discharge test.
Constant current charge-discharge tests (current density 50mA/g, wherein voltage range 0.005V~3V, capacity and current density It is based on the weight of the nickel of curing three) show, circulation volume is 464mAh/g first, and by 60 circulations, capacity is maintained at 277mAh/g。

Claims (4)

1. a kind of surface applied to sodium-ion battery is loaded with the three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three, its feature It is, described three-dimensional grapheme combination electrode is using three-dimensional porous foams nickel as matrix, and direct growth graphene, described on matrix Graphene on the flower-shaped nickel of curing three of direct growth;The nickel of flower-shaped curing three is connected with metal Ni substrate, and flower-shaped two Vulcanize three nickel through graphene sheet layer and by UNICOM of graphene sheet layer institute;The described nickel of flower-shaped curing three is by circular Ni3S2It is thin Piece forms, and a diameter of 2~3 μm of monolithic thin slice, thickness is 100~200nm;
The surface is loaded with the preparation method of the three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three, comprises the following steps:
1) using three-dimensional porous foams nickel as matrix, by chemical vapour deposition technique, stone is directly grown on matrix under an ar atmosphere Black alkene, is designated as Ni/G;
2) thiocarbamide and anhydrous sodium sulfate are dissolved in deionized water, are uniformly mixing to obtain mixed solution, SO in the mixed solution4 2– Concentration is 0.01~0.05mol/L;
The mol ratio of the thiocarbamide and anhydrous sodium sulfate is 0.2~1.0;
3) mixed solution for obtaining the Ni/G immersions step 2) that step 1) obtains, through 100~150 DEG C of 1~5h of hydro-thermal reaction, then The three-dimensional grapheme combination electrode that surface is loaded with the flower-shaped nickel of curing three must be arrived after scrubbed, dry, is designated as Ni/G/Ni3S2
2. the surface according to claim 1 applied to sodium-ion battery is loaded with the three-dimensional grapheme of the flower-shaped nickel of curing three Combination electrode, it is characterised in that in step 1), chemical vapor deposition concretely comprises the following steps:
Three-dimensional porous foams nickel is placed in reactor, 800~1200 DEG C, after insulation is warming up under an ar atmosphere, is re-introduced into first Alkane, room temperature is cooled to after reaction.
3. the surface according to claim 1 applied to sodium-ion battery is loaded with the three-dimensional grapheme of the flower-shaped nickel of curing three Combination electrode, it is characterised in that in step 3), described hydrothermal temperature is 110~130 DEG C.
4. the surface according to claim 1 applied to sodium-ion battery is loaded with the three-dimensional grapheme of the flower-shaped nickel of curing three Combination electrode, it is characterised in that in described three-dimensional grapheme combination electrode the bearing capacity of the flower-shaped nickel of curing three be 0.8~ 1.5mg/cm2, the bearing capacity of graphene is 0.3~0.6mg/cm2
CN201610248533.0A 2016-04-20 2016-04-20 Surface is loaded with three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three and its preparation method and application Active CN105789592B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610248533.0A CN105789592B (en) 2016-04-20 2016-04-20 Surface is loaded with three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three and its preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610248533.0A CN105789592B (en) 2016-04-20 2016-04-20 Surface is loaded with three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three and its preparation method and application

Publications (2)

Publication Number Publication Date
CN105789592A CN105789592A (en) 2016-07-20
CN105789592B true CN105789592B (en) 2018-02-23

Family

ID=56398004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610248533.0A Active CN105789592B (en) 2016-04-20 2016-04-20 Surface is loaded with three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three and its preparation method and application

Country Status (1)

Country Link
CN (1) CN105789592B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449172B (en) * 2016-10-19 2018-07-24 安徽师范大学 CdS@Ni3S2Nucleocapsid heterojunction structure composite material and preparation method and application
CN106784719B (en) * 2017-01-05 2019-07-26 山东理工大学 A kind of preparation method of the flower-shaped nickel sulfide/foam nickel material of graphene coated 3D
CN107086132B (en) * 2017-04-26 2019-07-19 安徽师范大学 Flower-shaped three nickel nano film of vanadic anhydride/curing and its preparation method and application
CN108123141A (en) * 2017-12-07 2018-06-05 北京理工大学 A kind of three-dimensional porous foams grapheme material and its application
CN109524245B (en) * 2018-11-20 2020-09-18 东南大学 Preparation method of high-performance nickel-cobalt selenide/three-dimensional graphene/foamed nickel binder-free electrode material
CN111233055B (en) * 2020-01-14 2022-07-08 东南大学 Preparation method of trinickel disulfide-three-dimensional graphene composite electrode material
CN112614992B (en) * 2020-12-10 2022-08-16 三峡大学 Nickel composite positive electrode material of water-based zinc-nickel battery and preparation method of nickel composite positive electrode material
CN113511670B (en) * 2021-07-26 2022-05-03 湖北工程学院 Three-dimensional flower bunch-shaped structure nano material compounded with zinc sulfide on graphene oxide, application and preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201380A (en) * 2014-08-19 2014-12-10 北京科技大学 Preparation method of nano Ni3S2 material with lamellar structure
CN105244176A (en) * 2015-10-12 2016-01-13 上海应用技术学院 Flower type Ni<3>S<2>/graphene three-dimensional composite electrode material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201380A (en) * 2014-08-19 2014-12-10 北京科技大学 Preparation method of nano Ni3S2 material with lamellar structure
CN105244176A (en) * 2015-10-12 2016-01-13 上海应用技术学院 Flower type Ni<3>S<2>/graphene three-dimensional composite electrode material and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A Ni3S2-PEDOT monolithic electrode for sodium batteries";Chaoqun Shang等;《Electrochemistry Communications》;20141110;第50卷;第24-27页 *
"Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode";Mingxing Wang等;《Ceramics International》;20160311;第42卷;第9858-9865页 *

Also Published As

Publication number Publication date
CN105789592A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105789592B (en) Surface is loaded with three-dimensional grapheme combination electrode of the flower-shaped nickel of curing three and its preparation method and application
CN107316979B (en) Molybdenum disulfide/carbon fiber network flexible electrode and preparation method and application thereof
CN105789593B (en) Surface is loaded with the three-dimensional grapheme combination electrode of the nano nickel particles of curing three, preparation method and application
He et al. Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery
CN105098143B (en) A kind of lithium-sulfur cell flexibility high-sulfur load selfreparing anode structure and preparation method thereof
CN105895861B (en) Three nickel of array type curing-carbon nano-tube combination electrode and its preparation method and application
CN105006570B (en) A kind of sodium-ion battery selenizing molybdenio anode material and preparation method thereof
CN105914374B (en) Composite material of nitrogen-doped carbon cladding selenizing molybdenum/graphene nucleocapsid array interlayer structure and its preparation method and application
CN105789624B (en) Three Ni-based combination electrode of array type curing and its preparation method and application
CN109698326B (en) Organic tin phosphide/graphite oxide composite material for negative electrode of sodium-ion battery
CN105720236A (en) Foamed nickel self-supported flake-shaped Ni3P/C composite material for sodium ion battery negative electrode and preparation method for composite material
CN105185599A (en) Super-capacitor carbon composite material, preparation method therefor, and application of super-capacitor carbon composite material
CN109273679A (en) A kind of carbon coating molybdenum sulfide/water hyacinth biomass carbon composite material and preparation method and purposes
CN108461729B (en) Tellurium-sulfur composite carbon material and preparation method and application thereof
JP6663019B2 (en) Electrode material for sodium ion battery and method for producing the same
CN109286011A (en) A kind of preparation method of stannic disulfide/vertical graphene nanometer sheet array electrode
CN109713279A (en) The preparation method of the lithium ion battery negative material of foam copper oxide-base
CN112038626A (en) Tin-carbon composite material for lithium ion battery cathode and preparation method thereof
CN105185989B (en) A kind of sodium-ion battery conducting polymer/SnSexNano flower anode material and preparation method thereof
CN104617283A (en) Lithium-sulfur battery carbon fiber reinforced three-dimensional graphene-sulfur positive electrode material, preparation method of material and preparation method of positive electrode
CN107204450A (en) The preparation method and applications of nickel oxide nanoparticle/carbon nanometer helmet composite (NiO/CNHs)
CN108492996A (en) A kind of preparation method of fluorine, nitrogen co-doped class graphene film layer material
CN111354929A (en) Preparation of carbon fiber-tin disulfide electrode material with multilayer core-shell structure
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
Wang et al. Li-Ca alloy composite anode with ant-nest-like lithiophilic channels in carbon cloth enabling high-performance Li metal batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190621

Address after: Room 101, 4th floor, No. 2-24, Lane 7508, Shanghai South Highway, Xinchang Town, Pudong New Area, Shanghai, 201314

Patentee after: Shanghai Han Xing Technology Co., Ltd.

Address before: 310027 No. 38, Zhejiang Road, Hangzhou, Zhejiang, Xihu District

Patentee before: Zhejiang University