CN105761943A - 镍锡合金纳米孔阵列及其制备方法 - Google Patents

镍锡合金纳米孔阵列及其制备方法 Download PDF

Info

Publication number
CN105761943A
CN105761943A CN201610230558.8A CN201610230558A CN105761943A CN 105761943 A CN105761943 A CN 105761943A CN 201610230558 A CN201610230558 A CN 201610230558A CN 105761943 A CN105761943 A CN 105761943A
Authority
CN
China
Prior art keywords
polymer
aluminium foil
nickeltin
array
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610230558.8A
Other languages
English (en)
Other versions
CN105761943B (zh
Inventor
付群
王欣
赵华平
明杰
张成林
雷勇
吴明红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610230558.8A priority Critical patent/CN105761943B/zh
Publication of CN105761943A publication Critical patent/CN105761943A/zh
Application granted granted Critical
Publication of CN105761943B publication Critical patent/CN105761943B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种镍锡合金纳米孔阵列及其制备方法。本发明是基于大孔阳极氧化铝模板的结构特性制备得到大面积有序、可控的镍锡合金纳米孔阵列。所述的纳米孔的直径为200~400nm,长度1~6μm。本发明制备的镍锡合金纳米孔阵列具有大的比表面积,垂直的孔道结构、高的导电性以及结构稳定性。本发明方法,可以根据模板的结构参数调节镍锡合金纳米孔阵列的结构参数,同时还可以实现不同金属纳米孔阵列的制备,具有制备工艺简单,成本低廉,重复性好等优点。

Description

镍锡合金纳米孔阵列及其制备方法
技术领域
本发明涉及一种新型的镍锡合金纳米孔阵列及其制备方法,具体涉及一种基于阳极氧化铝模板的结构特点设计构筑全新的镍锡合金纳米孔阵列的方法。
背景技术
随着全球经济的急速发展,人类对化石能源的过渡依赖和消耗造成了严重的环境问题和能源危机。为实现高效、无污染和可持续发展的能源开发和利用,能量储能和转换装置的研究引起了广泛的关注。同时,为了满足大动力电源、移动通讯、先进武器、空间卫星、水下潜艇等高新技术发展的要求,开发具有高比容量、高功率密度、高电导率的新型储能材料和储能器件具有重要应用价值和科学意义。在许多应用领域,最实际有效的电化学转换与储能技术就是电池、燃料电池以及超级电容器,而纳米结构的电极材料因其在纳米尺度上具有独特的物理和化学性质被广泛研究,同时也极大地推动了这些先进储能技术的蓬勃发展。
在众多的纳米结构电极材料中,镍锡合金因其具有充放电的循环稳定性好,导电性高以及电化学性能优越等优点而成为电池的电极材料之一,具有广泛的应用前景。目前国内外对镍锡合金材料进行了一定的研究报道,近年来大多采用球磨法、水热法、电化学沉积法等方式来制备。其中,电化学沉积法的应用最为广泛。该方法具有制备工艺简单,反应易于控制等优点,已发展成为制备有序纳米结构材料不可缺少的方法。通过电化学沉积法制备的结构主要有纳米颗粒、纳米线以及纳米管,但这些结构在性能的应用方面都有一些缺点和局限性。例如:镍锡纳米颗粒在尺寸上难以调控,结构的稳定性差;而镍锡纳米线和纳米管在制备过程中,由于受到长径比的限制,当其高于5时,就很容易发生团聚现象,降低了有效的比表面积,使电容量降低;另一方面,该团聚会形成一种无序的孔洞结构,进而增加电解质离子传输的阻力。此外,由于镍锡纳米线和纳米管的机械稳定性相对较差,在充放电过程中可能会造成结构的倒塌,降低了循环稳定性。因此为了弥补现有技术中镍锡合金纳米线、纳米管结构的不足和缺陷,急需寻找一种新型的纳米结构来代替。
发明内容
本发明的目的之一在于弥补现有技术中的不足和缺陷,提供了一种新型的镍锡合金纳米孔阵列结构。
本发明的目的之二在于提供一种该镍锡合金纳米孔阵列的制备方法。
为实现上述目的,本发明采用以下技术方案:
一种镍锡合金纳米孔阵列,其特征在于所述的纳米孔的直径为200~400nm,长度为1~6μm。
一种制备上述的镍锡合金纳米孔阵列的制备方法,其特征在于该方法的具体步骤为:
a.将铝箔进行清洗、电化学抛光后,通过纳米压印技术在铝箔表面留下凹坑,再进行扩孔处理;
b.将步骤a所得铝箔表面进行金膜沉积、聚合物的灌注、模板的去除、电化学沉积、聚合物的溶解,最后得到镍锡合金纳米孔阵列。
上述的步骤a的具体步骤为:先将0.2mm厚99.999%的高纯铝片经过丙酮超声清洗、氮气退火后,放到乙醇和高氯酸的混合液中,750mA恒流条件下进行电化学抛光;通过纳米压印技术在铝箔表面留下凹坑,并将此放入0.3M磷酸溶液中,2~15℃的温度下氧化10~60min;最后放到5wt%H3PO4溶液中扩孔1~2.5h得到孔径为200~400nm、长度为1~6μm的高度有序的大孔氧化铝模板。
上述的金膜的沉积的具体步骤为:将步骤a所得铝箔在真空度为8×10-4Pa,蒸发速率0.3~0.5nm/s条件下,蒸发金膜40~60s。
上述的聚合物的灌注的具体步骤是:将沉积金膜的铝箔表面涂覆一层聚合物,所述的聚合物为PMMA或光刻胶,密封静置6~10h后再自然晾干。
上述的模板的去除的具体步骤是:在灌注了聚合物的铝箔的背面中间,用氧化剂混合液将未氧化的铝片去除后,放入5wt%的磷酸溶液中,去除氧化铝模板,得到聚合物纳米棒阵列;所述的氧化剂混合液为:CuCl2和HCl的混合液或SnCl2和HCl的混合液。
上述的电化学沉积的具体步骤为:将聚合物纳米棒阵列置于含17.82gL?1NiCl2·6H2O,39.4gL?1SnCl2·2H2O,165.15gL?1K4P2O7,9.38gL?1甘氨酸的电解液中,以Ag/AgCl作为参比电极,铂电极为辅助电极,带有金层的聚合物纳米棒阵列作为工作电极;采用恒电流模式,沉积电位为-1~-6mA,沉积1~5h,制备得到镍锡合金材料。
上述的聚合物溶解的具体步骤为:将沉积所得含镍锡材料的铝箔依次放入DMSO、丙酮中至聚合物全部溶解之后,即得排列有序、结构形貌均一的镍锡合金纳米孔阵列。
本发明的镍锡合金纳米孔阵列是基于阳极氧化铝(AnodicAluminumOxide,AAO)模板有序、可控的结构特点来设计构筑形成的全新纳米结构。该结构具有大面积有序、可控的特性,同时,还具有大的比表面积,垂直的孔道结构、高的导电性以及结构稳定性等优点。
1.本发明的优点和效果是:本发明与现有的技术相比,具有以下优点:1)本发明制备的新型镍锡合金纳米孔阵列具有大面积有序、可控的特性,同时还具有大的比表面积,高度有序的垂直孔道结构、高的导电性以及结构稳定性。
2)本发明提供的基于阳极氧化铝模板的结构特性制备的镍锡合金纳米孔阵列的方法,可以根据AAO模板的结构参数调节获得不同孔径、不同厚度的镍锡合金纳米孔阵列,且该方法制备工艺简单,成本低廉,重复性好。
3)本发明提供的基于阳极氧化铝模板的结构特性制备的镍锡合金纳米孔阵列的方法,可以通过不同的沉积条件,实现不同金属纳米孔阵列的制备。
附图说明
图1为本发明中实验流程图。
图2为本发明中氧化铝模板SEM正面图。
图3为本发明中氧化铝模板SEM测面图。
图4为本发明中制备的高度有序的镍锡合金纳米孔阵列SEM正面图。
图5为本发明中制备的高度有序的镍锡合金纳米孔阵列SEM侧面图。
图6为本发明中制备的高度有序的镍锡合金纳米孔阵列的EDS图。
具体实施方式
实施例1:本实施例基于大孔阳极氧化铝模板的结构特点,通过两步的结构复制,制备得到了全新的镍锡合金纳米孔阵列。
首先将0.2mm厚99.999%的铝箔丙酮超声清洗30min,氮气保护下450~550℃退火后,在温度0℃的乙醇及高氯酸的混合液(体积比1:8)中,恒流(750mA)条件下电化学抛光,制得备用铝箔。再通过纳米压印技术,在电化学抛光好的铝箔表面形成凹坑印记,并将此纳米压印好的铝箔放入0.3M磷酸溶液中,15℃的温度下氧化30min;用去离子水反复冲洗、烘干后,放到5wt%H3PO4溶液中扩孔1.5h得到孔径为250nm、长度为6μm的高度有序的大孔氧化铝模板(如图2和图3所示)。把该模板置于蒸发镀膜设备中,在真空度为8×10-4Pa、蒸发速率0.3~0.5nm/s条件下,蒸发金膜20nm厚。取出后,放到结晶皿中,表面涂覆一层PMMA的甲苯溶液,密封放置在通风橱中,让PMMA充分浸到AAO纳米孔中,待6~10h之后,打开盖子使甲苯溶剂自然挥发晾干。待PMMA完全干后,将CuCl2和HCl的混合液滴到未氧化的铝片背面中间区域,溶去未氧化的铝片;接下来,放入到5wt%的磷酸溶液中,30℃条件下浸泡4~6h,去除氧化铝模板后,得到带有金膜的PMMA纳米棒阵列。再将其从溶液中取出,放到去离子水中浸泡几分钟后,开始进行电化学沉积。该沉积过程是在电化学工作站的三电极***中通过恒电流沉积模式完成的。实验采用Ag/AgCl为参比电极,铂电极为辅助电极,带有金膜的PMMA纳米棒作为工作电极;电解液为17.82gL?1NiCl2·6H2O,39.4gL? 1SnCl2·2H2O溶液,165.15gL?1K4P2O7,9.38gL?1甘氨酸;恒电流沉积电位为-1~-6mA,沉积1~5h。待沉积结束后,将模板取出,用去离子水冲洗干净。然后放到80℃DMSO溶液中,保温4~8h,取出冷却后放到丙酮溶液中4~8h,最后取出吹干。所制备的镍锡合金纳米孔阵列的孔径约为250nm,同所使用的AAO模板孔径相同,且可以大面积获得有序的结构(如图4所示)。该纳米孔的长度约为6μm,其长径比约为24,且仍保持垂直的孔道结构,高度有序的纳米孔阵列(如图5所示)。同时,我们对该阵列做了EDS表征(如图6所示),从图中看出该含有Ni、Sn元素,正为我们所需的镍锡合金材料。

Claims (8)

1.一种镍锡合金纳米孔阵列,其特征在于所述的纳米孔的直径为200~400nm,长度为1~6μm。
2.一种制备根据权利要求1所述的镍锡合金纳米孔阵列的制备方法,其特征在于该方法的具体步骤为:
a.将铝箔进行清洗、电化学抛光后,通过纳米压印技术在铝箔表面留下凹坑,再进行扩孔处理;
b.将步骤a所得铝箔表面进行金膜沉积、聚合物的灌注、模板的去除、电化学沉积、聚合物的溶解,最后得到镍锡合金纳米孔阵列。
3.根据权利要求2所述的方法,其特征在于所述的步骤a的具体步骤为:先将0.2mm厚99.999%的高纯铝片经过丙酮超声清洗、氮气退火后,放到乙醇和高氯酸的混合液中,750mA恒流条件下进行电化学抛光;通过纳米压印技术在铝箔表面留下凹坑,并将此放入0.3M磷酸溶液中,2~15℃的温度下氧化10~60min;最后放到5wt%H3PO4溶液中扩孔1~2.5h得到孔径为200~400nm、长度为1~6μm的高度有序的大孔氧化铝模板。
4.根据权利要求2所述的方法,其特征在于所述的金膜的沉积的具体步骤为:将步骤a所得铝箔在真空度为8×10-4Pa,蒸发速率0.3~0.5nm/s条件下,蒸发金膜40~60s。
5.根据权利要求2所述的方法,其特征在于所述的聚合物的灌注的具体步骤是:将沉积金膜的铝箔表面涂覆一层聚合物,所述的聚合物为PMMA或光刻胶,密封静置6~10h后再自然晾干。
6.根据权利要求2所述的方法,其特征在于所述的模板的去除的具体步骤是:在灌注了聚合物的铝箔的背面中间,用氧化剂混合液将未氧化的铝片去除后,放入5wt%的磷酸溶液中,去除氧化铝模板,得到聚合物纳米棒阵列;所述的氧化剂混合液为:CuCl2和HCl的混合液或SnCl2和HCl的混合液。
7.根据权利要求2所述的方法,其特征在于所述的电化学沉积的具体步骤为:将聚合物纳米棒阵列置于含17.82gL?1NiCl2·6H2O,39.4gL?1SnCl2·2H2O,165.15gL?1K4P2O7,9.38gL?1甘氨酸的电解液中,以Ag/AgCl作为参比电极,铂电极为辅助电极,带有金层的聚合物纳米棒阵列作为工作电极;采用恒电流模式,沉积电位为-1~-6mA,沉积1~5h,制备得到镍锡合金材料。
8.根据权利要求2所述的方法,其特征在于聚合物溶解的具体步骤为:将沉积所得含镍锡材料的铝箔依次放入DMSO、丙酮中至聚合物全部溶解之后,即得排列有序、结构形貌均一的镍锡合金纳米孔阵列。
CN201610230558.8A 2016-04-14 2016-04-14 镍锡合金纳米孔阵列及其制备方法 Expired - Fee Related CN105761943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610230558.8A CN105761943B (zh) 2016-04-14 2016-04-14 镍锡合金纳米孔阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610230558.8A CN105761943B (zh) 2016-04-14 2016-04-14 镍锡合金纳米孔阵列及其制备方法

Publications (2)

Publication Number Publication Date
CN105761943A true CN105761943A (zh) 2016-07-13
CN105761943B CN105761943B (zh) 2018-07-10

Family

ID=56334992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610230558.8A Expired - Fee Related CN105761943B (zh) 2016-04-14 2016-04-14 镍锡合金纳米孔阵列及其制备方法

Country Status (1)

Country Link
CN (1) CN105761943B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424912A (zh) * 2017-05-05 2017-12-01 合肥工业大学 一种氮化镓基纳米柱阵列的制备方法
CN110042391A (zh) * 2019-05-05 2019-07-23 上海大学 基于阳极氧化铝模板的钒酸铋纳米颗粒包裹的镍阵列方法
CN111575761A (zh) * 2020-05-26 2020-08-25 苏州凌威新能源科技有限公司 氧化铝模板、高度垂直有序锑纳米线阵列及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162459A1 (en) * 2019-02-04 2020-08-13 Murata Manufacturing Co., Ltd. Capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189510A1 (en) * 2010-01-29 2011-08-04 Illuminex Corporation Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
CN103360614A (zh) * 2013-06-27 2013-10-23 清华大学 一种长度可控的聚合物纳米柱阵列的制备方法
CN104479088A (zh) * 2014-12-10 2015-04-01 郑州轻工业学院 模板原位聚合制备热固性聚氨酯丙烯酸酯纳米阵列的方法
CN105540654A (zh) * 2015-12-10 2016-05-04 西安电子科技大学 一种多层次TiO2纳米结构阵列材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110189510A1 (en) * 2010-01-29 2011-08-04 Illuminex Corporation Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
CN103360614A (zh) * 2013-06-27 2013-10-23 清华大学 一种长度可控的聚合物纳米柱阵列的制备方法
CN104479088A (zh) * 2014-12-10 2015-04-01 郑州轻工业学院 模板原位聚合制备热固性聚氨酯丙烯酸酯纳米阵列的方法
CN105540654A (zh) * 2015-12-10 2016-05-04 西安电子科技大学 一种多层次TiO2纳米结构阵列材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姜冬冬: ""用于锂离子电池的锡基纳米结构电极的研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
张立德: "《纳米材料和纳米结构》", 31 March 2005 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424912A (zh) * 2017-05-05 2017-12-01 合肥工业大学 一种氮化镓基纳米柱阵列的制备方法
CN107424912B (zh) * 2017-05-05 2020-10-20 合肥工业大学 一种氮化镓基纳米柱阵列的制备方法
CN110042391A (zh) * 2019-05-05 2019-07-23 上海大学 基于阳极氧化铝模板的钒酸铋纳米颗粒包裹的镍阵列方法
CN110042391B (zh) * 2019-05-05 2021-04-09 上海大学 基于阳极氧化铝模板的钒酸铋纳米颗粒包裹的镍阵列方法
CN111575761A (zh) * 2020-05-26 2020-08-25 苏州凌威新能源科技有限公司 氧化铝模板、高度垂直有序锑纳米线阵列及其制备方法
CN111575761B (zh) * 2020-05-26 2022-04-01 苏州凌威新能源科技有限公司 氧化铝模板、高度垂直有序锑纳米线阵列及其制备方法

Also Published As

Publication number Publication date
CN105761943B (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
Wen et al. Facile synthesis of ultrathin NiCo 2 S 4 nano-petals inspired by blooming buds for high-performance supercapacitors
Tang et al. Synthesis of capsule-like porous hollow nanonickel cobalt sulfides via cation exchange based on the Kirkendall effect for high-performance supercapacitors
Ellis et al. Three‐dimensional self‐supported metal oxides for advanced energy storage
Sarkar et al. High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays
Shinde et al. Nanoflower-like CuO/Cu (OH) 2 hybrid thin films: Synthesis and electrochemical supercapacitive properties
Cao et al. Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application
Shinde et al. Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance
Youssry et al. Synthesis of mesoporous Co (OH) 2 nanostructure film via electrochemical deposition using lyotropic liquid crystal template as improved electrode materials for supercapacitors application
CN105047423B (zh) 一种柔性对称型赝电容超级电容器及其制备方法
Park et al. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries
CN102013330B (zh) 石墨烯/多孔氧化镍复合超级电容器薄膜及其制备方法
Zhang et al. Hierarchical CuCo 2 O 4 nanowire@ NiCo 2 O 4 nanosheet core/shell arrays for high-performance supercapacitors
CN103213933B (zh) 一种硅基三维微电池纳米电极结构
CN105761943B (zh) 镍锡合金纳米孔阵列及其制备方法
CN105390702B (zh) 一种泡沫镍基碳纳米管掺杂Sn/SnO/SnO2层状三维多孔负极材料及其制备方法
Chen et al. Facile synthesis of Cu2O nanorod arrays on Cu foam as a self-supporting anode material for lithium ion batteries
CN105355925B (zh) 一种三维有序镍骨架负载锗基锂电池负极材料的制备方法
Jin et al. MnO2 nanotubes assembled on conductive graphene/polyester composite fabric as a three-dimensional porous textile electrode for flexible electrochemical capacitors
CN109786135A (zh) 一种氧化铜@钼酸镍/泡沫铜复合电极材料及其制备方法
CN103606683B (zh) 一种线团状的锗纳米材料及其制备方法
Lee et al. Direct growth of NiO nanosheets on mesoporous TiN film for energy storage devices
Kure-Chu et al. Controllable fabrication of multi-tiered nanoporous anodic TiO2–TiN composite films as high-performance anode materials for lithium-ion batteries
Gong et al. Light-assisted synthesis of copper/cuprous oxide reinforced nanoporous silicon microspheres with boosted anode performance for lithium-ion batteries
CN104894630A (zh) 一种离子液体电沉积制备三维锗/碳纳米复合薄膜的方法
Zhan et al. Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180710

Termination date: 20210414

CF01 Termination of patent right due to non-payment of annual fee