CN105694074B - 一种柔性抗燃高介电纳米复合膜的制备方法 - Google Patents

一种柔性抗燃高介电纳米复合膜的制备方法 Download PDF

Info

Publication number
CN105694074B
CN105694074B CN201610131209.0A CN201610131209A CN105694074B CN 105694074 B CN105694074 B CN 105694074B CN 201610131209 A CN201610131209 A CN 201610131209A CN 105694074 B CN105694074 B CN 105694074B
Authority
CN
China
Prior art keywords
composite membrane
nano composite
high dielectric
preparation
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610131209.0A
Other languages
English (en)
Other versions
CN105694074A (zh
Inventor
邵自强
王亚龙
罗伟
王明华
刘川渟
王飞俊
王文俊
张仁旭
赵利斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Beifang Shiji Cellulose Techn Development Co Ltd
Beijing Institute of Technology BIT
Original Assignee
Beijing Beifang Shiji Cellulose Techn Development Co Ltd
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Beifang Shiji Cellulose Techn Development Co Ltd, Beijing Institute of Technology BIT filed Critical Beijing Beifang Shiji Cellulose Techn Development Co Ltd
Priority to CN201610131209.0A priority Critical patent/CN105694074B/zh
Publication of CN105694074A publication Critical patent/CN105694074A/zh
Application granted granted Critical
Publication of CN105694074B publication Critical patent/CN105694074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Abstract

本发明公开了一种柔性抗燃高介电纳米复合膜及其制备方法,目的是为了提供一种工艺简单、成本低、具有非常高的工业化生产能力及环境友好性的抗燃高介电纳米复合膜的制备方法。本发明先取纳米纤维素分散于水中形成纳米纤维素悬浮液,加入适量的蒙脱土悬浮液和还原氧化石墨烯湿料,在室温下快速搅拌后超声分散,负压抽滤,将抽滤后的滤膜干燥即得产品。本发明方法工艺简单,以抽滤成膜的方式,改变了传统的流延成膜,在成膜过程中赋予纳米复合膜特殊的层状结构,进而能够赋予复合膜更优异的力学及电学性能;方法环境友好,具有非常高的产业化生产能力,能够有效降低复合膜的生产成本,对纳米柔性抗燃高介电纳米复合膜的应用做出了基础铺垫。

Description

一种柔性抗燃高介电纳米复合膜的制备方法
技术领域
本发明设计制备一种具备阻燃特性、介电性能优良的柔性功能膜材料,具体涉及一种柔性抗燃高介电纳米复合膜的制备方法。
背景技术
介电材料在高储能装置、电容器等电子电器行业具有很大的应用市场及应用前景,陶瓷材料因其具有高介电性、低导电率、低成本等特点,被广泛应用于介电材料领域。但同时,陶瓷材料的加工性能差、破坏强度低以及柔韧性差的缺点则大大阻碍了它的应用和发展。因此,能改善陶瓷材料这些缺点的高分子材料如聚偏氟乙烯、聚酰亚胺、环氧树脂等,成为了该领域的研究热点。但目前高分子材料应用于介电材料领域存在以下问题:高分子材料的介电常数通常很低,难以符合使用要求;在使用过程中,高分子材料的易燃性也会大大阻碍高分子介电材料在一些特殊领域如航空航天的应用;石化材料来源有限、不可再生,会对环境产生极大的威胁,所以需要找到其替代品。
纤维素基材料由于其来源广阔、机械强度高、易分解、环境友好等性能成为石化材料优良的替代品。而其中纳米纤维素纤维(CNFs)具有极高的长径比、较高的弹性模量、较低的密度、较高的结晶度以及较小的热膨胀系数等特点(Isogai,A.,T.Saito,andH.Fukuzumi,TEMPO-oxidized cellulose nanofibers.Nanoscale,2011.3(1):p.71-85)。以纳米纤维素为基体的纳米复合材料可以随着添加剂的不同而被赋予不同的优异性能。石墨烯是一种单层的石墨材料,具有极其优异的机械性能、超高的电导率、极大的比表面积等特殊性能,极具研究价值。本课题组在前期的研究中(Gao,K.,et al.,Cellulosenanofibers/reduced graphene oxide flexible transparent conductivepaper.Carbohydrate Polymers,2013.97(1):p.243-251)利用层层自组装技术可以提升纳米纤维素薄膜的电性能。但目前通过添加石墨烯改性纤维素基的薄膜的电性能存在许多问题,如石墨烯纳米片层在纤维素基体中分散性较差,极大的影响了复合材料电性能以及机械性能,同时分散过程复杂耗时,这也大大限制了纤维素薄膜的实际生产应用。
发明内容
本发明的目的是为了提供一种具有较高的阻燃性、介电常数、机械性能的抗燃高介电纳米复合膜的制备方法,该方法工艺简单,成本较低,具有非常高的工业化生产能力及环境友好性。
本发明是通过如下技术方案来实现的:
一种柔性抗燃高介电纳米复合膜的制备方法,包括步骤:
a.在容器中取纳米纤维素分散于水中形成纳米纤维素悬浮液,依照蒙脱土和还原氧化石墨烯的质量分数,加入适量的蒙脱土悬浮液和还原氧化石墨烯湿料,在室温下快速搅拌至少30分钟;
b.将搅拌均匀的混合液进行超声分散,形成分散均匀稳定的混合分散液;
c.将分散液置于抽滤杯中,所用滤膜为孔径为0.2μm的微滤膜,负压抽滤;
d.将抽滤后的滤膜置于不高于70℃温度干燥,得到均匀的纳米复合膜,即为产品;
蒙脱土是一类由纳米厚度的表面带负电的硅酸盐片层,依靠层间的静电作用而堆积在一起构成的土状矿物,其晶体结构中的晶胞是由两层硅氧四面体中间夹一层铝氧八面体构成。作为常用的阻燃剂,蒙脱土经常应用于高分子的阻燃改性。
上述制备方法中蒙脱土、还原氧化石墨烯和纳米纤维素纤维的的质量百分比配比为:蒙脱土10%~50%,还原氧化石墨烯10%~20%,余下为纳米纤维素纤维。
进一步的,所述步骤a中纳米纤维素悬浮液的固含量为0.027%,溶剂为去离子水。
进一步优选的,所述还原氧化石墨烯的碳氧比为8:1。
进一步的,所述蒙脱土为钠基蒙脱土。
进一步优选的,所述纳米纤维素的直径为6~8nm,长度为1~2μm。
进一步的,所述步骤d中抽滤后的滤膜的厚度为20μm~30μm。该厚度的滤膜待干燥后的力学性能及电学性能最佳。
进一步的,所述纳米纤维素为TEMPO氧化木浆纤维素通过超声粉碎作用剥离而制得。
更进一步的,所述的柔性抗燃高介电纳米复合膜的制备方法,其特征在于:所述步骤d中干燥过程不鼓风。
本发明具有如下有益效果:
1、本发明制备纳米柔性抗燃高介电纳米复合膜的方法工艺简单,以抽滤成膜的方式,改变了传统的流延成膜,在成膜过程中赋予纳米复合膜特殊的层状结构,进而能够赋予复合膜更优异的力学及电学性能。
2、本发明制备的纳米柔性抗燃高介电纳米复合膜的方法环境友好,具有非常高的产业化生产能力,能够有效降低复合膜的生产成本,对纳米柔性抗燃高介电纳米复合膜的应用做出了基础铺垫。
附图说明
图1为按实施例1配方制备的纳米柔性抗燃高介电纳米复合膜的实物图;
图2为按实施例3配方制备的纳米柔性抗燃高介电纳米复合膜的实物图;
图3为按实施例3配方制备的纳米柔性抗燃高介电纳米复合膜的弯曲折叠图。
具体实施方式
下面结合具体实施例对本发明做进一步说明。所述实施例仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1
表1所列的是柔性抗燃高介电纳米复合膜的制备配方实施例,表2是对应表1柔性抗燃高介电纳米复合膜的性能指标。图1、2、3是对应表1柔性抗燃高介电纳米复合膜的照片。
表1中所列的纳米柔性抗燃高介电纳米复合膜的制备方法为:
1、取纳米纤维素悬浮液,依照蒙脱土和还原氧化石墨烯的质量分数分别加入适量的蒙脱土悬浮液和还原氧化石墨烯湿料,在室温下搅拌30分钟。
2、将搅拌均匀的纳米纤维素、蒙脱土、还原氧化石墨烯悬浊液置于超声清洗机中超声,直到整个体系分散均匀。
3、将均匀分散的悬浮液置于抽滤杯中,使用孔径为0.2μm聚四氟乙烯微滤膜抽滤直至在聚四氟乙烯膜上形成均匀的薄膜。
4、将滤纸置于烘箱中70℃烘干,得到纳米复合膜。
表1纳米柔性抗燃高介电纳米复合膜的制备配方实施例
表2柔性抗燃高介电纳米复合膜的性能指标
实施例2中,加入蒙脱土后,相对于纯的纳米纤维素膜,热稳定性、阻燃性以及介电性能得到了很大的提高。与此同时,当加入还原氧化石墨烯时,介电性能成倍增加,并且热性能和阻燃性也有一定的提高。最后所得的柔性抗燃高介电纳米复合膜的热性能、阻燃性、介电性能极佳,具有很好的应用生产价值。
实施例中的热性能由热重热差综合热分析仪(TG-DTA 6200 LAB SYS)测得,温度为50℃至75℃,升温速率为10℃/min;最大热释放速率和总的热释放量由微型量热仪(FAA-PCFC)测得;介电性能是由阻抗分析仪(Agilent 4294A)在室温下测得,频率为102Hz至107Hz。
图1、2、3是对应表1柔性抗燃高介电纳米复合膜的实物照片。从图1和图2对比可以看出,在添加了蒙脱土和石墨烯后制备的膜形貌发生了巨大变化,同时也能直观看出石墨烯组分均匀分散在膜中,并未发生团聚等现象。从图3可以看出,所制备的膜的弯曲折叠性能即柔韧性非常好。
从表2中各个实施例的性能指标中可以看出,本发明所制备的柔性阻燃、介电纳米复合膜具有极好的韧性、阻燃性以及介电性,使其能够在微型化、智能化、功能化的通讯器材、航空器件与光电器件中取得应用,具有很大的现实发展意义。

Claims (7)

1.一种柔性抗燃高介电纳米复合膜的制备方法,其特征在于:包括步骤:
a.在容器中取纳米纤维素分散于水中形成纳米纤维素悬浮液,依照蒙脱土和还原氧化石墨烯的质量分数,加入适量的蒙脱土悬浮液和还原氧化石墨烯湿料,在室温下快速搅拌至少30分钟;
b.将搅拌均匀的混合液进行超声分散,形成分散均匀稳定的混合分散液;
c.将分散液置于抽滤杯中,所用滤膜为孔径为0.2μm的微滤膜,负压抽滤;
d.将抽滤后的滤膜置于不高于70℃温度干燥,得到均匀的纳米复合膜,即为产品;
上述制备方法中蒙脱土、还原氧化石墨烯和纳米纤维素纤维的的质量百分比配比为:
蒙脱土 10%~50%,
还原氧化石墨烯 10%~20%,
余下为纳米纤维素纤维;
所述蒙脱土为钠基蒙脱土。
2.根据权利要求1所述的柔性抗燃高介电纳米复合膜的制备方法,其特征在于:所述步骤a中纳米纤维素悬浮液的固含量为0.027%,溶剂为去离子水。
3.根据权利要求1所述的柔性抗燃高介电纳米复合膜的制备方法,其特征在于:所述还原氧化石墨烯的碳氧比为8:1。
4.根据权利要求1所述的柔性抗燃高介电纳米复合膜的制备方法,其特征在于:所述纳米纤维素的直径为6~8nm,长度为1~2μm。
5.根据权利要求1至4中任意一项所述的柔性抗燃高介电纳米复合膜的制备方法,其特征在于:所述步骤d中抽滤后的滤膜的厚度为20μm~30μm。
6.根据权利要求5所述的柔性抗燃高介电纳米复合膜的制备方法,其特征在于:所述纳米纤维素为TEMPO氧化木浆纤维素通过超声粉碎作用剥离而制得。
7.根据权利要求6所述的柔性抗燃高介电纳米复合膜的制备方法,其特征在于:所述步骤d中干燥过程不鼓风。
CN201610131209.0A 2016-03-08 2016-03-08 一种柔性抗燃高介电纳米复合膜的制备方法 Active CN105694074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610131209.0A CN105694074B (zh) 2016-03-08 2016-03-08 一种柔性抗燃高介电纳米复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610131209.0A CN105694074B (zh) 2016-03-08 2016-03-08 一种柔性抗燃高介电纳米复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN105694074A CN105694074A (zh) 2016-06-22
CN105694074B true CN105694074B (zh) 2018-09-14

Family

ID=56220946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610131209.0A Active CN105694074B (zh) 2016-03-08 2016-03-08 一种柔性抗燃高介电纳米复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN105694074B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011021A (ja) * 2016-07-15 2018-01-18 エコホールディングス株式会社 建設物の内装材または外装材として使用可能な、防炎性能を有する超軽量太陽電池モジュール、該太陽電池モジュールを設置した建設物及び該太陽電池モジュールを用いた防災用太陽電池モジュール
CN107022895B (zh) * 2017-03-17 2020-03-27 南通纺织丝绸产业技术研究院 具有阻燃涂层的织物及其制备方法
CN107974869B (zh) * 2017-12-08 2020-07-21 电子科技大学 一种高取向高填充FeSiAl柔性复合纸的制备方法
CN108221465B (zh) * 2017-12-15 2020-05-12 复旦大学 纤维素纳米纤维/氟化碳管柔性复合膜及其制备方法
CN109593343B (zh) * 2018-11-12 2020-12-29 杭州师范大学 一种温度响应阻燃薄膜及其制备方法与应用
CN109776829B (zh) * 2019-02-21 2021-05-04 中国科学院青岛生物能源与过程研究所 一种制备高强高韧层状结构阻隔薄膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289259A (zh) * 2013-07-01 2013-09-11 中国石油大学(华东) 一种含有层状结构石墨的高介电复合材料及其制备方法
CN103319827A (zh) * 2013-07-02 2013-09-25 中国科学技术大学 一种有机–无机纳米复合薄膜的制备方法
CN103709565A (zh) * 2013-12-26 2014-04-09 清华大学 一种复合纤维及聚合物基柔性复合薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289259A (zh) * 2013-07-01 2013-09-11 中国石油大学(华东) 一种含有层状结构石墨的高介电复合材料及其制备方法
CN103319827A (zh) * 2013-07-02 2013-09-25 中国科学技术大学 一种有机–无机纳米复合薄膜的制备方法
CN103709565A (zh) * 2013-12-26 2014-04-09 清华大学 一种复合纤维及聚合物基柔性复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN105694074A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105694074B (zh) 一种柔性抗燃高介电纳米复合膜的制备方法
Cao et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding
Wang et al. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance
Zeng et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding
Hu et al. Scalable preparation of multifunctional fire-retardant ultralight graphene foams
Wu et al. Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber
Nie et al. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review
Hu et al. Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation
Si et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality
Liu et al. High-strength nanocomposite aerogels of ternary composition: poly (vinyl alcohol), clay, and cellulose nanofibrils
Li et al. Mass production of high thermal conductive boron nitride/nanofibrillated cellulose composite membranes
Hou et al. Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure
CN104672502B (zh) 氰乙基纤维素基高介电柔性纳米复合膜及其制备方法
Li et al. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding
Jabbour et al. Highly conductive graphite/carbon fiber/cellulose composite papers
Zhang et al. Leather solid waste/poly (vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding
Li et al. Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene
Ding et al. Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying
CN105670042B (zh) 一种柔性抗燃高介电纳米复合膜
JPWO2010095601A1 (ja) 機能性成形体およびその製造方法
Fan et al. Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite
Xie et al. Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework
Wang et al. The use of cellulose nanofibrils to enhance the mechanical properties of graphene nanoplatelets papers with high electrical conductivity
Yu et al. Silica ceramic nanofiber membrane with ultra-softness and high temperature insulation
Damnalı et al. Synergistic impact of graphene and carbon nanotubes on waste paper for hybrid nanocomposite substrates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant